EP0657011B1 - Burner - Google Patents

Burner Download PDF

Info

Publication number
EP0657011B1
EP0657011B1 EP94923708A EP94923708A EP0657011B1 EP 0657011 B1 EP0657011 B1 EP 0657011B1 EP 94923708 A EP94923708 A EP 94923708A EP 94923708 A EP94923708 A EP 94923708A EP 0657011 B1 EP0657011 B1 EP 0657011B1
Authority
EP
European Patent Office
Prior art keywords
burner
flame
porous material
gas
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94923708A
Other languages
German (de)
French (fr)
Other versions
EP0657011A1 (en
Inventor
Franz Durst
Dimosthenis Trimis
Gerold Dimaczek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gesellschaft Zur Verwertung Der Porenbrenner-Techn
Original Assignee
Applikations- und Technikzentrum fur Energieverfahrens- Umwelt- und Stromungstechnik
Durst Franz Prof Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6491841&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0657011(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applikations- und Technikzentrum fur Energieverfahrens- Umwelt- und Stromungstechnik, Durst Franz Prof Dr filed Critical Applikations- und Technikzentrum fur Energieverfahrens- Umwelt- und Stromungstechnik
Publication of EP0657011A1 publication Critical patent/EP0657011A1/en
Application granted granted Critical
Publication of EP0657011B1 publication Critical patent/EP0657011B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/10Flame flashback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/0027Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel
    • F24H1/0045Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using fluid fuel with catalytic combustion

Definitions

  • the invention relates to a burner with a housing that has a combustion chamber with an inlet for a gas / air mixture as fuel and an outlet for the exhaust gas having.
  • Burners of this type usually work with one that burns freely in the combustion chamber Flame that burns the gas / air mixture, using the hot exhaust gas as a heat source is used.
  • the hot exhaust gas is used to exchange heat on water Pipes passed to produce hot water or steam in them.
  • Pollutants such as NO x or CO are formed in such burners. These toxic and unhealthy gases are generated either at high flame temperatures or incomplete combustion in unstable flames or at low flame temperatures, which could be reduced, but then an unstable flame is produced. Furthermore, incomplete combustion of the gas / air mixture is also to be expected, that lowers efficiency.
  • the above-mentioned document also describes the combustion with the aid of catalysts with which complete combustion can be achieved at a low temperature.
  • the document specifies a NO x content of ⁇ 20 mg / m 3 for catalytic combustion.
  • Catalytic combustion is under development at several research institutes but has not yet progressed beyond the research stage. According to the authors, this type of burner cannot be expected to be commercially available within the next 5 years.
  • the flame stability in this burner is achieved by a heat-dissipating burner plate, which essentially consists of a perforated plate with circular bores through which the gas to be burned flows. Due to the heat dissipation via the perforated plate, the flame is practically held on the burner plate, which creates a stable flame.
  • the burner plate is also not sufficient to ensure flame stability in all operating parameters to ensure. So it is stated that at high air numbers a Mixture preheating of around 300 ° C should be provided as this will reduce the rate of combustion increases and thus reduces the tendency for the flames to withdraw becomes.
  • US-A-5 165 884 discloses flame stabilization by means of a control process in which a temperature detection takes place, as for example already from claim 1 feature b) of the document emerges. For this purpose, temperatures are measured at several points in the reactor and the flow rate and / or flow rate depending on the temperature changes in the matrix provided for combustion controlled.
  • the object of the invention is therefore to provide a burner in which the flame burns stably at low temperature and pollutant emissions.
  • the housing contains contains a porous material with contiguous cavities, whose porosity changes along the combustion chamber so that the pore size in the direction of flow of the gas / air mixture increases from inlet to outlet, being in a zone or at a Interface of the porous material in the combustion chamber is critical for the pore size Péclet number for flame development results above which a flame can arise and below which the flame development is suppressed.
  • This proposal according to the invention is in contrast to the prior art the housing is filled with a porous material that has the property of flow of the gas / air mixture to resist, so that the combustion current gas volume is throttled.
  • the Heat capacity of the porous material in the combustion chamber better the heat of combustion added and can therefore be cheaper than in the prior art for further use be transmitted.
  • the porous material also creates one Cooling that reduces the flame temperature
  • Péclet number which is the ratio of heat flow indicates due to transport to heat flow due to conduction.
  • the porosity in which a flame can set in
  • the use of a porous material in the combustion chamber also requires a high heat capacity, whereby a high thermal energy stored locally in the porous material and high efficiency values can be achieved in an advantageous manner. Furthermore, this has high Heat capacity also has the advantage that a heat exchanger, for example, for heating of water, for the production of hot water or steam in the combustion chamber can, which achieves a much better heat transfer for heat exchange is considered the state of the art.
  • the high power density is due to a higher combustion rate in the porous medium and a much larger flame front surface, which arises due to the porosity.
  • the porous material also has the advantage that in the flow of the gas / air mixture A high level of turbulence arises, which means that combustion speeds are up to 50 times higher than normal can be achieved. Above all, this means better degrees of combustion connected and higher power densities are achieved. On one below described embodiment, measurements were carried out which show that for the heat utilization efficiencies greater than 95% can be achieved.
  • the gas works Burner according to the invention essentially under a wide pressure range. Thereby operation under various pressures and even under high pressure is possible. For the burner according to the invention therefore has a wide range of applications.
  • the critical Péclet number is 65 +/- 25 and in particular 65 for natural gas / air mixtures. This number was determined based on tests for various gas / air mixtures. However, there is a large spread depending on the type of gas, but it was found that the natural Péclet number 65 is independent of the mixing ratio and the composition of the natural gas / air mixtures. This finding shows that the Péclet number is the suitable parameter for determining the porosity of the material to be selected in a burner according to the invention.
  • the given teaching allows the person skilled in the art, without large preliminary tests, to fix a burner according to the invention by designing the porosity of the porous material to a critical Péclet number of 65 with regard to the operating mode.
  • a burner in accordance with the teaching according to the invention can have a continuous transition from a low porosity to a high porosity in the combustion chamber, the flame development then starting at a porosity with the critical Péclet number.
  • the critical Péclet number can also vary with different gas / air mixtures. If the porosity of the porous material in the jacket were to run continuously, this would have the disadvantage that the flame could shift under different conditions.
  • two zones of different pore sizes lying one behind the other in the flow direction of the gas / air mixture are provided in the jacket, the first zone downstream of the inlet having a Péclet number for the flame development, which is smaller than the critical Péclet number, and the second zone further away from the inlet has a Péclet number which is greater than the critical Péclet number
  • the flame generation is fixed to the area or the area between the two zones, and essentially independent of operating parameters that could lead to a variation in the critical Péclet number.
  • the measure mentioned for determining the location of the flame origin therefore further increases the stability and makes it possible to build a burner which can be used over a wide range of uses.
  • the first zone has a pore size which gives a Péclet number ⁇ 40 and the second zone a pore size has a Péclet number ⁇ 90.
  • Péclet numbers which, as mentioned above, can be 65 +/- 25.
  • the specified values for the design of the zones for Péclet numbers ⁇ 40 or> 90 are, as will become clear later in the exemplary embodiment, simple to implement, and allow a burner for a wide range of applications Gas / air mixtures.
  • the porous material is a heat-resistant one Foam plastic, a ceramic or metal or a metal alloy.
  • porous Materials can be manufactured is known from the prior art.
  • the heat resistance does not have to be particularly high for normal domestic burners, since the flame is cooled by the porous material itself.
  • the temperatures remain below 1400 °.
  • a preferred development of the invention therefore provides that the porous material is heat-resistant up to 1500 ° C.
  • a large number of possible materials are available for a burner according to the invention, so that the material selection can be made not only from a technical point of view, but also a burner can be optimized with regard to an inexpensive construction and a low manufacturing outlay.
  • the porous material consists of packing material, for example in the form of bulk material, which can optionally be solidified, for example by sintering. With the specified type of materials, a porosity can be generated in a simple manner.
  • the porous material can consist of loosely layered grains, but it can also be solidified into a coherent porous mass.
  • Bulk material has the particular advantage that it can be easily filled into the housing and that it is manufactured can be handled very easily. But it's also burner maintenance, for cleaning, for example, easily possible, bulk goods out again to remove the housing.
  • the bulk material contains metal, a metal alloy or ceramic, in particular steatite, Stemalox or Al 2 O 3. These materials correspond in every respect to the technical requirements for a burner according to the invention.
  • the bulk material mentioned is readily available and is also reasonably priced.
  • a burner according to the invention can be constructed in a cost-effective and technically simple manner.
  • the bulk material in the vicinity of the outlet consists of grains of spherical shape with average diameters of 5 mm and in the subsequent area with average diameters> 11 mm, if the diameter for achieving the critical Péclet number is between 5 and 11 mm and in particular Is 9mm. If the grains of the bulk material are spherical, the uniformity of the bulk material can easily be checked during manufacture. In particular, this also applies to the attainable porosity, which is then only determined by the diameter of the spherical grains and their arrangement in the bed.
  • the NO x and CO emissions in particular can be reduced by using catalyst materials. Therefore, according to a preferred development, it is provided that the inner surfaces of the cavities of the porous material or the surfaces of the grains of the bulk material are coated with a catalyst material.
  • a burner according to the invention has a large surface area to interact with the gas. It is expected that a catalyst acts much more effectively than those known from the prior art Configurations. In addition, a burner according to the invention can be developed equip them with catalysts much easier, which means that they are very quickly ready for production, standard catalyst burner is made possible.
  • the housing has at least partially a cooling device.
  • the heat that flows into the housing could also be shielded from the outside world with insulating material, but cooling has the advantage that the heat can be absorbed by the coolant and then used again. As a result, the efficiency of a burner according to the invention can be increased further.
  • the cooling device is designed as a cooling coil surrounding or forming the housing, through which a coolant, in particular water, flows. Furthermore, a monitoring device can be provided which prevents the supply of fuel to the combustion chamber in the event of a coolant failure. Because of these features, the heat absorbed in the cooling can be reused, since the flowing coolant transports heat that can be removed at another location. In the case of coolant flows, however, it cannot be ruled out that the flow of the coolant is interrupted by a line break or blockage of the cooling coil, which could heat up the outer wall of the burner, which can lead to fire or burns. It is therefore expedient to provide a monitoring device which prevents the supply of fuel to the combustion chamber in the event of a coolant failure.
  • a cooling device for heat exchange for heat exchange.
  • the Heat in the burner e.g. dissipated as hot water or steam and can be used in other processes continue to be used for heating or for operating turbines.
  • the heat transfer here is not only direct Interaction of the hot gas with the cooling device, but for the most part over the porous material, which provides better heat transfer than the state of the Technology is guaranteed. This feature also serves to increase efficiency.
  • cooling of the housing is provided, which is connected in series with the cooling device for heat exchange.
  • the energy which is absorbed by the cooling of the housing in the coolant is conducted into the same circuit in which the heat in the coolant is used for heat exchange.
  • the coolant is preferably only used to cool the housing and then passed into the interior of the burner, where it interacts with the porous material at high temperature. In the development, the entire heat generated by the burner is absorbed in the coolant, which further increases the efficiency.
  • the cooling device in the burner forms a further flow resistance, which the design of the porous material in the area of the cooling device can.
  • the cooling device then acts similarly to the porous material.
  • the amount of porous material can then be reduced, with a more effective one Heat transfer is achieved when the cooling device according to a further development itself is designed so that it acts at least partially as a porous material and / or porous material replaced.
  • the distance of the cooling device from the Flame should be chosen as cheaply as possible. The highest temperature is reached in close to the flame, but it can also be suitable for lower temperatures Materials for forming the cooling device can be selected if they are outside of the flame area. In addition, the flame through the cooler not additionally cooled if it is outside the flame area, which is the Flame stability additionally increased. That is why a preferred further training sees the invention that the distance of the cooling device from the area with the critical Péclet number is at least so large that the cooling device with the flame does not is in contact. This has to do with the heat transfer from the flame to the cooling device due to the good heat conduction in the porous material only little influence.
  • Tests on exemplary embodiments have shown that the highest effectiveness is then achieved is when the porosity is generated with bulk material and the cooling device in one Distance of 2 to 4 grain sizes of the bed from the border area with the critical Péclet number 65 is arranged. According to further training, it can generally be expected that that the favorable conditions arise when the cooling device of the zone with the porosity required for the critical Péclet number is so far away that it does not dive into the flame area ..
  • an ignition device is arranged on the burner in such a way that the gas / air mixture is ignited in a region with a porosity that has the critical Péclet number.
  • the gas / air mixture could be ignited at all points on the burner where a combustible gas / air mixture is present, for example from the outlet.
  • the ignition takes place in an area in which the porosity has the critical Péclet number. As a result, the flame is lit precisely in the area by burning even in the stable state. Because of this, a high stability is brought about already at the time of ignition, since the flame would have to be kicked back at other points, but this is not possible at high fuel flow rates. In this case, ignition could only take place if the fuel flow was reduced in the meantime.
  • the feature of the development thus greatly reduces the expenditure on equipment for a burner according to the invention, since regulation of the ignition process can be omitted.
  • a flame trap is arranged between the inlet and the porous material. Because of the porous material, the flame is not expected to kick back, since the Peclet number in the inlet area does not permit the formation of a flame. Nevertheless, a flame trap is provided primarily for safety reasons, which can be important, for example, if the bulk material having the high porosity has been accidentally filled into the inlet area after cleaning work.
  • the flame trap should be as simple as possible since it is normally not required be.
  • the flame trap is a plate, which have a plurality of holes with a diameter smaller than that for each Fuels have critical "quenching" diameters. It has been shown that this Flame trap is effective with natural gas / air mixtures. Their main advantage lies in the simplicity of manufacture and the very inexpensive design. The effort for the flame trap is therefore kept low and remains reasonable, so that a additional flame trap can be used economically, although in Normal case for the burner according to the invention is not necessary.
  • Turbulence is generated in the fuel flow in the porous material.
  • S L is the laminar flame speed
  • d m is the equivalent diameter for the central cavity of the porous material
  • c p is the specific heat of the gas mixture
  • is the density of the gas mixture ⁇ and the thermal conductivity of the gas mixture.
  • the equation shows that the conditions for flame development essentially depend on gas parameters, and the properties of the porous material are only included in the equation via d m .
  • the Péclet number is therefore essentially independent of the material properties and only dependent on the porosity. A wide variety of materials or geometric shapes can therefore be used as the porous material in the burners according to the invention.
  • Fig. 1 shows a schematic representation of a burner with a housing 1, which has an inlet 2 for the gas / air mixture and an outlet 3 for the exhaust gases.
  • a flame trap 4 is provided, which the interior of the housing 1 divided. The located between this flame trap 4 and the outlet 3 Part of the interior of the housing 1 is filled with a porous material 5.
  • An ignition device 6 is also provided for igniting the gas mixture.
  • the gas / air mixture enters through inlet 2 and the exhaust gases leave the burner through the outlet 3.
  • the porous material 5 has locally different porosities, in accordance with the different hatched zones A, B and C.
  • zone A the pores are so small that the resulting Péclet number is smaller than the critical one Péclet number (65 for natural gas / air mixtures) is.
  • the critical Péclet number is that Limit above which a flame can develop or below which a flame is suppressed.
  • zone C the Péclet number is significantly larger than the critical Péclet number, so that a flame can develop there.
  • Zone B represents a transition area within which the porosity reaches the critical Péclet number.
  • the flame can only arise in zone B, and only at the points where the porosity reaches the critical Péclet number.
  • the porous material cools the flame so that only little NO x is generated.
  • the inner surfaces of the cavities of the porous material, in particular that of zone B, can also be coated with a catalyst, as a result of which a further reduction in the NO x and CO content in the exhaust gas is achieved.
  • zone B Due to the physical laws for flame development described above in porous material the flame will stabilize in zone B, namely in places where the gas / air mixture is just reaching the critical Péclet number. This but also means that the flame approaches with strong changes in the physical Can move parameters within region B so that a local In principle there is no flame stability. On the other hand, the one given by Zone B. Transition layer the advantage that the flame front at the smallest possible Cavities stabilized, which ensures the best possible heat transfer from the Flame to the porous material is guaranteed.
  • a burner can be used after the in Fig. 2 shown embodiment can be used.
  • the zone B has been omitted so that only the two zones A and C are present.
  • the flame stabilizes due to the one shown above Laws at the boundary layer between Zone A and Zone C.
  • the flame is So determined by the interface and therefore stable in place. Due to the variance of +/- 25 of the specified Péclet number of 65, it is advantageous to provide a porosity in zone A, whose Péclet number is less than 40 and in zone C a porosity that of a Péclet number of greater than 90 corresponds. Then the boundary layer determines for a large area of gas / air mixtures the location of the flame development, which increases the stability for one large range of gas parameters is guaranteed.
  • porous material Different materials, for example ceramic materials, can be used for the porous material.
  • heat-resistant foam plastics are also possible.
  • bulk material is used as the porous material.
  • Péclet numbers as a function of the diameter ⁇ were calculated for natural gas / air mixture and are shown in FIG. 3.
  • a stoichiometric laminar flame speed S L of 0.4 mm per sec was assumed for the calculation.
  • the Péclet number of 65 is achieved with a sphere radius of 9mm, while the above-mentioned Péclet numbers of 40 and 90 are given at 6mm and 12.5mm.
  • a first vertical line is drawn, which is the interface between the Zone A and Zone C. It is clearly evident that the highest temperature at the interface or with respect to just behind the interface in zone C.
  • the low gas temperature at the outlet also shows that the heat of the burned gas / air mixture is almost completely absorbed by the porous material, whereby the Construction of a heat exchanger with great efficiency is made possible.
  • a burner the embodiment of Fig. 2, it is possible to use a water heater with an output from 5kW to an exhaust gas temperature of 60 ° C and an efficiency of 95% to build.
  • the structural dimensions of the burner could be kept very small the length of the burner was only 15cm and the diameter was 8cm. The minor Dimensions are mainly due to the high power density that comes with Help of porous material can be achieved.
  • FIG 4 also shows that the highest temperatures are just behind the interface between Zone A and Zone C are created. It follows that for the production of hot steam the heat transfer from the flame to the water to be heated near it Interface should take place. One leading the water intended for steam generation Cooling device should therefore run in the area of the porous material that is about 3cm from the interface.
  • Fig. 5 shows the schematic structure of one for heating water or for generating of steam suitable burner.
  • This essentially includes the housing again 1, the inlet 2, the outlet 3, the flame trap 4, the ignition device 6 and the porous material 5.
  • the burner is arranged with its outlet 3 downward, so that Condensate can drain off easily.
  • the porous material 5 is only schematically by the same size Bullets indicated. This does not correspond to the real situation, because the porosity of the porous material changes along the direction of flow of the gas / air mixture, the balls in the inlet area have a smaller diameter than in Have outlet area.
  • an external cooling device which circumvents or even forms the housing 1 8 provided, which is designed as a cooling coil arranged around the housing 1 can be and prevents heat dissipation to the outside.
  • the cooling coil is from Water flows through and is equipped with a water monitor, which in the event of failure of Coolant interrupts the inflow of the gas / air mixture into the inlet 2, so that the Housing 1 is always cooled when the burner is in operation. This ensures that the outer wall cannot heat up too much, which in turn prevents that you can burn yourself on the housing or cause a fire.
  • the heat dissipated from the housing wall through the cooling coil can be reused efficiency increases when producing hot water or steam.
  • the inner cooling device 9 is only indicated schematically, in practice it can e.g. have the shape of a spiral so that the best possible heat transfer from the porous Material 5 is guaranteed. But they are also more complicated embodiments conceivable for the cooling device 9. For example, this can even be the porous material form or contribute to porosity, resulting in an even better heat transfer becomes possible.
  • the outer cooling device 8 is connected in series with the inner cooling device 9, whereby the water already preheated by the housing 1 into the inner cooling device 9 is performed and for heating the water or for the production of steam is also used.
  • an insert 10 which consists of a suitable material, is provided in the flame region of the combustion chamber, as can be seen in FIG receives porous material 5 and shields the inner wall of the housing 1 against direct heat radiation.
  • the insert 10 can also be designed such that it is arranged at a distance from the inner wall of the housing 1, so that a gap 11 between the inner wall and the insert 10 forms that is free of the combustible gas / air mixture. This design of the combustion chamber in the flame area further suppresses the CO emissions caused by incomplete or unstable combustion.
  • the flame trap 4 is intended to prevent the flame from kicking back. Basically, it is not necessary in the burner according to the invention because the flame cannot penetrate to inlet 2 because of the low Péclet number in zone A, it is therefore only intended to increase safety.
  • the flame trap consists of a 4 mm thick steel sheet into which a large number of holes with a diameter of 1 mm have been drilled, the density of the holes being less than 20 / cm 2 .
  • the ignition device 6 is in the vicinity of the interface 7, to a particular enable effective ignition.
  • the flame burns self-stabilizing at interface 7.
  • the exemplary embodiments described above show the simple structure of the invention Burner at low temperature, good heat transfer and one stable flame. In the event of incomplete combustion, it is the case with the invention Brennem also possible to operate this stoichiometrically or by providing to perform better combustion of catalyst material in the porous material, the pollutant content in the exhaust gas is reduced even further.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Burners (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

PCT No. PCT/EP94/02156 Sec. 371 Date Mar. 1, 1995 Sec. 102(e) Date Mar. 1, 1995 PCT Filed Jul. 10, 1995 PCT Pub. No. WO95/01532 PCT Pub. Date Jan. 12, 1995.A burner with a housing enclosing a combustion chamber and with an inlet for a gas/air fuel mixture and an outlet for combustion gas is disclosed. The combustion chamber is filled with a porous material whose porosity varies along the combustion chamber in such a way that the pore size increases in the direction of flow of the gas/air mixture so that a critical Péclet number for the pore size and accordingly for flame development results at a boundary surface or in a determined zone of the porous material, above which number a flame can develop and below which number the flame development is suppressed.

Description

Die Erfindung bezieht sich auf einen Brenner mit einem Gehäuse, das einen Brennraum mit einem Einlaß für ein Gas-/Luftgemisch als Brennstoff und einen Auslaß für das Abgas aufweist.The invention relates to a burner with a housing that has a combustion chamber with an inlet for a gas / air mixture as fuel and an outlet for the exhaust gas having.

Brenner dieser Art arbeiten üblicherweise mit einer in dem Brennraum frei brennenden Flamme, die das Gas-/Luftgemisch verbrennt, wobei das heiße Abgas als Wärmequelle verwendet wird. Insbesondere wird das heiße Abgas zum Wärmetauschen an wasserführenden Rohren vorbeigeführt, um in diesen heißes Wasser oder Dampf zu erzeugen.Burners of this type usually work with one that burns freely in the combustion chamber Flame that burns the gas / air mixture, using the hot exhaust gas as a heat source is used. In particular, the hot exhaust gas is used to exchange heat on water Pipes passed to produce hot water or steam in them.

In solchen Brennern werden Schadstoffe wie NOx oder CO gebildet. Diese giftigen und gesundheitsschädlichen Gase entstehen entweder bei hoher Flammtemperatur bzw. bei unvollständiger Verbrennung in unstabilen Flammen bzw. bei niedriger Flammentemperatur, die zwar reduziert werden könnte, dann aber entsteht eine unstabile Flamme Ferner ist auch eine unvollständige Verbrennung des Gas-/Luftgemisches zu erwarten, die den Wirkungsgrad herabsetzt.Pollutants such as NO x or CO are formed in such burners. These toxic and unhealthy gases are generated either at high flame temperatures or incomplete combustion in unstable flames or at low flame temperatures, which could be reduced, but then an unstable flame is produced. Furthermore, incomplete combustion of the gas / air mixture is also to be expected, that lowers efficiency.

Um diese Nachteile zu vermeiden wurden verschiedene Brennertypen entwickelt. Ein Überblick ist in "Lean-Burn Premixed Combustion in Gas Turbine Combusters", A. Saul und D. Altemark, Vulkan-Verlag, Essen, Band 40 (1991) Heft 7-8, S. 336-342 dargestellt. Wesentliches Merkmal bei den dort beschriebenen Entwicklungen zur Reduzierung von Schadstoffen ist vor allem eine niedrige Flammtemperatur, wobei verschiedene Maßnahmen getroffen sind, die Brennstoffe möglichst vollständig zu verbrennen. Die wichtigsten Maßnahmen zur Erzielung einer effizienteren Verbrennung sind die Überstöchiometrie und die Katalyse. Beispielsweise ist in der genannten Druckschrift eine im Forschungsstadium befindliche Fett-Quensch-Mager-Verbrennungskammer von General Electric "LM 2500" angegeben, bei der in einer ersten Stufe ein brennstoffreiches Gemisch verbrannt wird. In einem Zwischenbereich wird dem in der ersten Stufe teilweise verbrannten Gas Luft zugeführt und in einer zweiten Stufe das dadurch entstehende Magergemisch verbrannt Für diesen Brenner wird von den Autoren ein NOx Gehalt von < 190mg/m3 Gas angegeben.To avoid these disadvantages, different types of burners have been developed. An overview is given in "Lean-Burn Premixed Combustion in Gas Turbine Combusters", A. Saul and D. Altemark, Vulkan-Verlag, Essen, Volume 40 (1991) Issue 7-8, pp. 336-342. A key feature in the developments described there for reducing pollutants is above all a low flame temperature, various measures being taken to burn the fuels as completely as possible. The most important measures to achieve a more efficient combustion are the superstoichiometry and the catalysis. For example, in the cited document, a fat-quensch-lean combustion chamber from General Electric "LM 2500" is specified, in which a fuel-rich mixture is burned in a first stage. In an intermediate area, air is supplied to the gas partially burned in the first stage and the resulting lean mixture is burned in a second stage. For this burner, the authors state a NO x content of <190 mg / m 3 gas.

Die obengenannte Druckschrift beschreibt auch die Verbrennung mit Hilfe von Katalysatoren, mit denen eine vollständige Verbrennung bei geringer Temperatur erreicht werden kann. Die Druckschrift gibt für die katalytische Verbrennung einen NOx Gehalt von < 20mg/m3 an. Die katalytische Verbrennung ist bei mehreren Forschungsstätten in Entwicklung die aber bisher noch nicht über das Forschungsstadium hinaus fortgeschritten ist. Nach Meinung der Autoren kann nicht erwartet werden, daß diese Art von Brennern innerhalb der nächsten 5 Jahre kommerziell einsetzbar ist.The above-mentioned document also describes the combustion with the aid of catalysts with which complete combustion can be achieved at a low temperature. The document specifies a NO x content of <20 mg / m 3 for catalytic combustion. Catalytic combustion is under development at several research institutes but has not yet progressed beyond the research stage. According to the authors, this type of burner cannot be expected to be commercially available within the next 5 years.

In der genannten Druckschrift werden Stabilitätsprobleme nicht detailliert diskutiert. Sie werden aber um so wichtiger, je geringer die Flammtemperatur gewählt wird.Stability problems are not discussed in detail in the cited publication. she However, the lower the flame temperature is chosen, the more important.

Eine Möglichkeit für die stabile Verbrennung bei niedrigen Temperaturen ist in "Neue Gasbrenner- und -gerätetechnik", ein Beitrag der Gaswirtschaft zum Umweltschutz, Otto Menzel, gwf Gas/Erdgas 130, 1989, Heft 7, S. 355-364 und in "Entwicklung eines schadstoffarmen Vormischbrenners für den Einsatz in Haushalts- Gasheizkesseln mit zylindrischer Brennkammer", H. Berg und Th. Jannemann, Gas Wärme International, Band 38 (1989), Heft 1, S. 28-34, Vulkan-Verlag, Essen angegeben. Der dort beschriebene "Thermomax"-Brenner hat nur einen geringen NOx Ausstoß. Die Flammstabilität wird bei diesem Brenner durch eine wärmeabführende Brennerplatte erreicht, die im wesentlichen aus einem Lochblech mit kreisrunden Bohrungen besteht, durch welche das zu verbrennende Gas strömt. Die Flamme wird aufgrund der Wärmeabführung über das Lochblech praktisch an der Brennerplatte festgehalten, wodurch eine stabile Flamme entsteht.One possibility for stable combustion at low temperatures is in "Neue Gasbrenner- und -gerätetechnik", a contribution of the gas industry to environmental protection, Otto Menzel, gwf Gas / Erdgas 130, 1989, Issue 7, pp. 355-364 and in "Development of a low-pollutant premix burner for use in domestic gas boilers with a cylindrical combustion chamber ", H. Berg and Th. Jannemann, Gas Wärme International, Volume 38 (1989), Issue 1, pp. 28-34, Vulkan-Verlag, Essen. The "Thermomax" burner described there has only a low NO x emission. The flame stability in this burner is achieved by a heat-dissipating burner plate, which essentially consists of a perforated plate with circular bores through which the gas to be burned flows. Due to the heat dissipation via the perforated plate, the flame is practically held on the burner plate, which creates a stable flame.

Die Brennerplatte ist aber auch nicht ausreichend, um die Flammenstabilität bei allen Betriebsparametern zu gewährleisten. So wird angegeben, daß bei hohen Luftzahlen eine Gemischvorwärmung von rund 300°C vorgesehen sein sollte, da sich hierdurch die Verbrennungsgeschwindigkeit erhöht und damit die Abhebeneigung für die Flammen verringert wird.The burner plate is also not sufficient to ensure flame stability in all operating parameters to ensure. So it is stated that at high air numbers a Mixture preheating of around 300 ° C should be provided as this will reduce the rate of combustion increases and thus reduces the tendency for the flames to withdraw becomes.

US-A-5 165 884 offenbart eine Flammenstabilisierung mittels eines Regelprozesses bei dem eine Temperaturerfassung erfolgt, wie beispielsweise schon aus Anspruch 1 Merkmal b) der Druckschrift hervorgeht. Dazu werden Temperaturen an mehreren Stellen im Reaktor gemessen und die Flußrate und/oder Flußmenge in Abhängigkeit der Temperaturänderungen in der zur Verbrennung vorgesehenen Matrix gesteuert.US-A-5 165 884 discloses flame stabilization by means of a control process in which a temperature detection takes place, as for example already from claim 1 feature b) of the document emerges. For this purpose, temperatures are measured at several points in the reactor and the flow rate and / or flow rate depending on the temperature changes in the matrix provided for combustion controlled.

Aus dem zitierten Stand der Technik wird deutlich, daß es möglich ist, eine Reduzierung von Schadstoffen durch niedrige Flammtemperatur zu erreichen, wobei aber die Stabilität der Flamme weiterhin ein wesentliches, ungelöstes Problem darstellt.From the cited prior art it is clear that a reduction is possible of pollutants to achieve through low flame temperature, while maintaining stability the flame continues to be an essential, unsolved problem.

Aufgabe der Erfindung ist es deshalb, einen Brenner zu schaffen, bei dem die Flamme bei niedriger Temperatur und Schadstoffemission stabil brennt.The object of the invention is therefore to provide a burner in which the flame burns stably at low temperature and pollutant emissions.

Ausgehend vom US-A-5 165 884 wird die Aufgabe durch ein Brenner gemäß Anspruch 1 gelöst. Das Gehäuse enthält dabei ein poröses Material mit zusammenhängenden Hohlräumen enthält, dessen Porosität sich längs des Brennraumes so ändert, daß die Porengröße in Flußrichtung des Gas-/Luftgemisch vom Einlaß zum Auslaß zunimmt, wobei sich in einer Zone oder an einer Grenzfläche des porösen Materials im Brennraum für die Porengröße eine kritische Péclet-Zahl für die Flammentwicklung ergibt, oberhalb der eine Flamme entstehen kann und unterhalb der die Flammentwicklung unterdrückt ist.Starting from US-A-5 165 884, the object is achieved by a burner according to claim 1. The housing contains contains a porous material with contiguous cavities, whose porosity changes along the combustion chamber so that the pore size in the direction of flow of the gas / air mixture increases from inlet to outlet, being in a zone or at a Interface of the porous material in the combustion chamber is critical for the pore size Péclet number for flame development results above which a flame can arise and below which the flame development is suppressed.

Nach diesem erfindungsgemäßen Vorschlag ist im Gegensatz zum Stand der Technik das Gehäuse mit einem porösen Material gefüllt, das die Eigenschaft besitzt, der Strömung des Gas-/Luftgemisches einen Widerstand entgegenzusetzen, so daß die zur Verbrennung anstehende Gasmenge gedrosselt wird. Außerdem wird auch durch die Wärmekapazität des porösen Materials im Brennraum die Verbrennungswärme besser aufgenommen und kann deshalb günstiger als beim Stand der Technik zur Weiterverwendung übertragen werden. Es entsteht durch das poröse Material zusätzlich eine Kühlung, die die Flammtemperatur verringert This proposal according to the invention is in contrast to the prior art the housing is filled with a porous material that has the property of flow of the gas / air mixture to resist, so that the combustion current gas volume is throttled. In addition, the Heat capacity of the porous material in the combustion chamber better the heat of combustion added and can therefore be cheaper than in the prior art for further use be transmitted. The porous material also creates one Cooling that reduces the flame temperature

Bei einer bestimmten Porengröße sind die chemische Reaktion der Flamme und die termische Relaxation gleich groß, so daß unterhalb dieser Porengröße keine Flamme entstehen kann, darüber jedoch eine freie Entflammung stattfindet. Diese Bedingung wird geeigneterweise mit Hilfe der Péclet-Zahl beschrieben, die das Verhältnis von Wärmestrom infolge Transport zu Wärmestrom infolge Leitung angibt. Entsprechend der Porosität, bei der eine Entflammung einsetzen kann, gibt es eine überkritische Péclet-Zahl für die Flammentwicklung. Da die Flamme nur in dem Bereich mit der kritischen Péclet-Zahl entstehen kann, wird eine selbststabilisierende Flammenfront im porösen Material erzeugt.For a given pore size, the chemical reaction of the flame and the thermal one Relaxation of the same size so that no flame is generated below this pore size can, but above that a free ignition takes place. This condition will suitably described using the Péclet number, which is the ratio of heat flow indicates due to transport to heat flow due to conduction. According to the porosity, in which a flame can set in, there is a supercritical Péclet number for flame development. Since the flame only in the area with the critical Péclet number can arise, a self-stabilizing flame front in the porous material generated.

Die Verwendung eines porösen Materials im Brennraum bedingt auch eine hohe Wärmekapazität, wodurch eine im porösen Material lokal gespeicherte hohe Wärmeenergie und hohe Effizienzwerte in vorteilhafter Weise erreicht werden können. Weiter hat diese hohe Wärmekapazität auch den Vorteil, daß ein Wärmetauscher beispielsweise zur Erwärmung von Wasser, zur Erzeugung von Heißwasser oder Dampf im Brennraum integriert werden kann, wodurch eine wesentlich bessere Wärmeübertragung für den Wärmetausch erreicht wird als beim Stand der Technik. Die hohe Leistungsdichte ist auf eine höhere Verbrennungsgeschwindigkeit im porösen Medium und eine viel größere Flammenfrontoberfläche, die aufgrund der Porosität entsteht, zurückzuführen.The use of a porous material in the combustion chamber also requires a high heat capacity, whereby a high thermal energy stored locally in the porous material and high efficiency values can be achieved in an advantageous manner. Furthermore, this has high Heat capacity also has the advantage that a heat exchanger, for example, for heating of water, for the production of hot water or steam in the combustion chamber can, which achieves a much better heat transfer for heat exchange is considered the state of the art. The high power density is due to a higher combustion rate in the porous medium and a much larger flame front surface, which arises due to the porosity.

Das poröse Material hat auch den Vorteil, daß in der Strömung des Gas-/Luftegemisches eine hohe Turbulenz entsteht, wodurch bis zu 50 mal höhere als normale Verbrennungsgeschwindigkeiten erreicht werden können. Damit sind vor allem bessere Verbrennungsgrade verbunden und es werden höhere Leistungsdichten erreicht. An einem weiter unten beschriebenen Ausführungsbeispiel wurden Messungen durchgeführt die zeigen, daß für die Wärmeausnutzung Effizienzen größer als 95% erreicht werden können.The porous material also has the advantage that in the flow of the gas / air mixture A high level of turbulence arises, which means that combustion speeds are up to 50 times higher than normal can be achieved. Above all, this means better degrees of combustion connected and higher power densities are achieved. On one below described embodiment, measurements were carried out which show that for the heat utilization efficiencies greater than 95% can be achieved.

Da das poröse Material selbst die Flamme kühlt, werden entsprechend niedrige Flammtemperaturen in Verbindung mit niedrigen Emissionswerten erreicht. Es ist daher keine Abkühlung nötig, wie sie im Stand der Technik entweder durch Überstöchiometrie oder Abgasrückführung vorgesehen ist.Since the porous material itself cools the flame, the flame temperatures become correspondingly low achieved in connection with low emission values. It is therefore not one Cooling necessary, as in the prior art either by overstoichiometry or Exhaust gas recirculation is provided.

Da das poröse Material dem Gasfluß selbst einen Widerstand entgegensetzt, arbeitet der erfindungsgemäße Brenner im wesentlichen unter einem weiten Druckbereich. Dadurch ist der Betrieb unter verschiedensten Drücken und sogar unter Hochdruck möglich. Für den erfindungsgemäßen Brenner ist also ein großer Anwendungsbereich gegeben. Since the porous material opposes the gas flow itself, the gas works Burner according to the invention essentially under a wide pressure range. Thereby operation under various pressures and even under high pressure is possible. For the burner according to the invention therefore has a wide range of applications.

Gemäß einer Weiterbildung der Erfindung ist die kritische Péclet-Zahl 65 +/- 25 und insbesondere für Erdgas/Luftgemische 65.
Diese Zahl wurde aufgrund von Versuchen für verschiedene Gas/Luftgemische ermittelt. Es ergibt sich jedoch eine große Streuung je nach Art des Gases, wobei aber festgestellt wurde, daß bei Erdgas-/Luft-Gemischen unabhängig vom Mischungsverhältnis und von der Zusammensetzung des Erdgases die kritische Péclet-Zahl 65 beträgt. Diese Erkenntnis zeigt, daß die Péclet-Zahl der geeignete Parameter ist, um die Porosität des auszuwählenden Materials bei einem erfindungsgemäßen Brenner zu bestimmen. Die gegebene Lehre erlaubt dem Fachmann, ohne große Vorversuche, einen erfindungsgemäßen Brenner durch die Auslegung der Porosität des porösen Materials auf eine kritische Péclet-Zahl von 65 hinsichtlich der Betriebsart festzulegen.
According to a development of the invention, the critical Péclet number is 65 +/- 25 and in particular 65 for natural gas / air mixtures.
This number was determined based on tests for various gas / air mixtures. However, there is a large spread depending on the type of gas, but it was found that the natural Péclet number 65 is independent of the mixing ratio and the composition of the natural gas / air mixtures. This finding shows that the Péclet number is the suitable parameter for determining the porosity of the material to be selected in a burner according to the invention. The given teaching allows the person skilled in the art, without large preliminary tests, to fix a burner according to the invention by designing the porosity of the porous material to a critical Péclet number of 65 with regard to the operating mode.

Ein Brenner gemäß der erfindungsgemäßen Lehre kann einen kontinuierlichen Übergang von einer geringen Porosität zu einer hohen Porosität im Brennraum aufweisen, wobei dann die Flammentwicklung bei einer Porosität mit der kritischen Péclet-Zahl beginnt. Wie vorstehend schon diskutiert, kann die kritische Péclet-Zahl aber bei verschiedenen Gas/Luftgemischen auch variieren. Das hätte bei kontinuierlichem Verlauf der Porosität des porösen Materials im Mantel den Nachteil, daß sich die Flamme bei unterschiedlichen Bedingungen verschieben könnte. Um eine definierte Position für die Flammentwicklung zu schaffen, sind bei einer vorteilhaften Weiterbildung der Erfindung im Mantel zwei in Flußrichtung des Gas-/Luftgemisches hintereinander liegende Zonen unterschiedlicher Porengröße vorgesehen, wobei die dem Einlaß nachgeordnete erste Zone eine Péclet-Zahl für die Flammentwicklung hat, die kleiner als die kritische Péclet-Zahl ist, und die vom Einlaß weiter entfernte zweite Zone eine Péclet-Zahl hat, die größer als die kritische Péclet-Zahl ist
Aufgrund dieser Maßnahmen ist die Flammentstehung auf die Fläche bzw. den Bereich zwischen den beiden Zonen festgelegt, und zwar im wesentlichen unabhängig von Betriebsparametern, die zu einer Variation der kritischen Péclet-Zahl führen könnten. Die genannte Maßnahme zur Festlegungen des Ortes der Flammentstehung erhöht also weiter die Stabilität und erlaubt es, einen Brenner zu bauen, der über einen weiten Einsatzbereich verwendbar ist.
A burner in accordance with the teaching according to the invention can have a continuous transition from a low porosity to a high porosity in the combustion chamber, the flame development then starting at a porosity with the critical Péclet number. As already discussed above, the critical Péclet number can also vary with different gas / air mixtures. If the porosity of the porous material in the jacket were to run continuously, this would have the disadvantage that the flame could shift under different conditions. In order to create a defined position for the flame development, in an advantageous development of the invention, two zones of different pore sizes lying one behind the other in the flow direction of the gas / air mixture are provided in the jacket, the first zone downstream of the inlet having a Péclet number for the flame development, which is smaller than the critical Péclet number, and the second zone further away from the inlet has a Péclet number which is greater than the critical Péclet number
As a result of these measures, the flame generation is fixed to the area or the area between the two zones, and essentially independent of operating parameters that could lead to a variation in the critical Péclet number. The measure mentioned for determining the location of the flame origin therefore further increases the stability and makes it possible to build a burner which can be used over a wide range of uses.

Gemäß einer bevorzugten Weiterbildung ist vorgesehen, daß die erste Zone eine Porengröße aufweist, die eine Péclet-Zahl ≤ 40 ergibt, und die zweite Zone eine Porengröße aufweist, die eine Péclet-Zahl ≥ 90 ergibt. According to a preferred development, it is provided that the first zone has a pore size which gives a Péclet number ≤ 40 and the second zone a pore size has a Péclet number ≥ 90.

Aufgrund dieses Merkmals ist also der gesamte bekannte Variationsbereich von kritischen Péclet-Zahlen, die wie vorstehend schon erwähnt 65 +/- 25 betragen können, abgedeckt. Die angegebenen Werte für die Auslegung der Zonen für Péclet-Zahlen < 40 bzw. > 90 sind, wie später an dem Ausführungsbeispiel deutlich wird, einfach zu verwirklichen, und erlauben es, einen Brenner für einen großen Einsatzbereich verschiedenster Gas/Luftgemische auszulegen.Because of this feature, the entire known range of variation is critical Péclet numbers, which, as mentioned above, can be 65 +/- 25. The specified values for the design of the zones for Péclet numbers <40 or> 90 are, as will become clear later in the exemplary embodiment, simple to implement, and allow a burner for a wide range of applications Gas / air mixtures.

Gemäß einer bevorzugten Weiterbildung ist das poröse Material ein hitzebeständiger Schaumkunststoff, eine Keramik oder Metall bzw. eine Metalllegierung. Wie derartige poröse Materialien gefertigt werden können, ist aus dem Stand der Technik bekannt.According to a preferred development, the porous material is a heat-resistant one Foam plastic, a ceramic or metal or a metal alloy. Such as porous Materials can be manufactured is known from the prior art.

Die Hitzebeständigkeit muß aber für normale Haushaltsbrenner nicht besonders hoch sein, da die Flamme durch das poröse Material selbst gekühlt wird. Versuche haben gezeigt, daß bei erfindungsgemäßen Brennern mit einer Leistungsfähigkeit von 9KW die Temperaturen unterhalb von 1400° bleiben. Deshalb sieht eine bevorzugte Weiterbildung der Erfindung vor, daß das poröse Material bis 1500°C hitzebeständig ist.
Aufgrund dieses Merkmals stehen für einen erfindungsgemäßen Brenner eine Vielzahl von möglichen Materialien zur Verfügung, so daß die Materialauswahl nicht nur nach technischen Gesichtspunkten getroffen werden kann, sondern ein Brenner auch bezüglich eines kostengünstigen Aufbaus und eines geringen fertigungstechnischen Aufwands optimiert werden kann.
However, the heat resistance does not have to be particularly high for normal domestic burners, since the flame is cooled by the porous material itself. Experiments have shown that in burners according to the invention with a capacity of 9 kW, the temperatures remain below 1400 °. A preferred development of the invention therefore provides that the porous material is heat-resistant up to 1500 ° C.
On the basis of this feature, a large number of possible materials are available for a burner according to the invention, so that the material selection can be made not only from a technical point of view, but also a burner can be optimized with regard to an inexpensive construction and a low manufacturing outlay.

Gemäß einer bevorzugten Weiterbildung der Erfindung besteht das poröse Material aus Füllkörpem, z.B. in Form von Schüttgut, welches ggfs., beispielsweise durch Sinterung, verfestigt sein kann.
Mit der angegebenen Art von Materialien läßt sich eine Porosität in einfacher Weise erzeugen. Das poröse Material kann aus locker geschichteten Körnern bestehen, es kann aber auch zu einer zusammenhängenden porösen Masse verfestigt sein.
According to a preferred development of the invention, the porous material consists of packing material, for example in the form of bulk material, which can optionally be solidified, for example by sintering.
With the specified type of materials, a porosity can be generated in a simple manner. The porous material can consist of loosely layered grains, but it can also be solidified into a coherent porous mass.

Schüttgut hat vor allem den Vorteil, daß es leicht in das Gehäuse einfüllbar ist und fertigungstechnisch sehr einfach gehandhabt werden kann. Es ist aber auch bei der Brennerwartung, beispielsweise für eine Reinigung, einfach möglich, Schüttgut wieder aus dem Gehäuse zu entfernen.Bulk material has the particular advantage that it can be easily filled into the housing and that it is manufactured can be handled very easily. But it's also burner maintenance, for cleaning, for example, easily possible, bulk goods out again to remove the housing.

Gemäß einer vorzugsweisen Weiterbildung der Erfindung enthält das Schüttgut Metall, eine Metalllegierung oder Keramik, insbesondere Steatit, Stemalox oder Al2O3 Diese Materialien entsprechen in jeder Hinsicht den technischen Anforderungen für einen erfindungsgemäßen Brenner. Das genannte Schüttgut ist leicht erhältlich und liegt auch preislich in einem vertretbaren Bereich. Durch die Weiterbildung wird so ein kostengünstiger und fertigungstechnisch einfacher Aufbau eines erfindungsgemäßen Brenners ermöglicht.According to a preferred development of the invention, the bulk material contains metal, a metal alloy or ceramic, in particular steatite, Stemalox or Al 2 O 3. These materials correspond in every respect to the technical requirements for a burner according to the invention. The bulk material mentioned is readily available and is also reasonably priced. As a result of the further development, a burner according to the invention can be constructed in a cost-effective and technically simple manner.

Gemäß einer bevorzugten Weiterbildung der Erfindung besteht das Schüttgut in der Nähe des Auslasses aus Körnern kugelähnlicher Form mit mittleren Durchmessern von 5mm und im nachfolgenden Bereich mit mittleren Durchmessern > 11mm, wenn der Durchmesser zur Erreichung der kritischen Péclet-Zahl zwischen 5 und 11mm liegt und insbesondere 9mm beträgt.
Wenn die Körner des Schüttgutes kugelförmig sind, läßt sich bei der Fertigung die Gleichmäßigkeit des Schüttgutes leicht kontrollieren. Insbesondere gilt das auch für die erreichbare Porosität, die dann nur durch den Durchmesser der kugelförmigen Körner und deren Anordnung in der Schüttung bestimmt ist. Es hat sich bei Stahl, Steatit, Stemalox oder Al2O3 und bei Verwendung von Erdgas/Luftgemischen gezeigt, daß die Péclet-Zahl von 65 bei Kugeln mit einem Durchmesser von 9mm und Péclet-Zahlen von 40 bzw. 90 bei Durchmessern von ungefähr 11 bzw. 5mm erreicht werden. Bei der Weiterbildung wird also die erforderliche Porosität mit einfachen Mitteln erzielt, vor allem da Schüttgut der genannten Art und der entsprechenden Größe leicht verfügbar ist. Ohne großen Aufwand zu treiben, lassen sich so die erforderlichen Porositäten für einen erfindungsgemäßen Brenner verwirklichen.
According to a preferred development of the invention, the bulk material in the vicinity of the outlet consists of grains of spherical shape with average diameters of 5 mm and in the subsequent area with average diameters> 11 mm, if the diameter for achieving the critical Péclet number is between 5 and 11 mm and in particular Is 9mm.
If the grains of the bulk material are spherical, the uniformity of the bulk material can easily be checked during manufacture. In particular, this also applies to the attainable porosity, which is then only determined by the diameter of the spherical grains and their arrangement in the bed. With steel, steatite, Stemalox or Al 2 O 3 and with the use of natural gas / air mixtures, it has been found that the Péclet number of 65 for balls with a diameter of 9 mm and Péclet numbers of 40 and 90 for diameters of approximately 11 or 5mm can be reached. In the case of further training, the required porosity is therefore achieved with simple means, especially since bulk material of the type mentioned and the corresponding size is readily available. The required porosities for a burner according to the invention can thus be achieved without great effort.

Wie beim Stand der Technik schon erwähnt wurde, läßt sich vor allem die NOx und CO-Emission durch Einsatz von Katalysatormaterialien verringern. Deswegen ist gemäß einer bevorzugten Weiterbildung vorgesehen, daß die Innenflächen der Hohlräume des porösen Materials bzw. die Oberflächen der Körner des Schüttguts mit einem Katalysatormaterial beschichtet sind.As has already been mentioned in the prior art, the NO x and CO emissions in particular can be reduced by using catalyst materials. Therefore, according to a preferred development, it is provided that the inner surfaces of the cavities of the porous material or the surfaces of the grains of the bulk material are coated with a catalyst material.

Bei einem erfindungsgemäßen Brenner ist aufgrund der Porosität eine große Oberfläche zur Wechselwirkung mit dem Gas vorhanden. Dadurch ist zu erwarten, daß ein Katalysator wesentlich effektiver wirkt, als bei den aus dem Stand der Technik bekannten Konfigurationen. Außerdem läßt sich ein erfindungsgemäßer Brenner gemäß der Weiterbildung mit Katalysatoren wesentlich einfacher ausstatten, wodurch sehr schnell ein fertigungsreifer, serienmäßig verfügbarer Katalysatorbrenner möglich gemacht wird. Because of the porosity, a burner according to the invention has a large surface area to interact with the gas. It is expected that a catalyst acts much more effectively than those known from the prior art Configurations. In addition, a burner according to the invention can be developed equip them with catalysts much easier, which means that they are very quickly ready for production, standard catalyst burner is made possible.

Gemäß einer vorzugsweisen Weiterbildung der Erfindung weist das Gehäuse zumindest teilweise eine Kühlungvorrichtung auf.
Im Prinzip könnte man die Wärme, die in das Gehäuse abfließt, auch mit Isoliermaterial gegenüber der Außenwelt abschirmen, jedoch hat eine Kühlung den Vorteil, daß die Wärme von dem Kühlmittel aufgenommen und dann weiterverwendet werden kann. Aufgrund dessen kann die Effizienz eines erfindungsgemäßen Brenners weiter erhöht werden.
According to a preferred development of the invention, the housing has at least partially a cooling device.
In principle, the heat that flows into the housing could also be shielded from the outside world with insulating material, but cooling has the advantage that the heat can be absorbed by the coolant and then used again. As a result, the efficiency of a burner according to the invention can be increased further.

Gemäß einer vorteilhaften Weiterbildung ist die Kühlvorrichtung als eine das Gehäuse umgebende bzw. dieses bildende Kühlschlange ausgebildet, durch die ein Kühlmittel, insbesondere Wasser, fließt. Weiter kann eine Überwachungseinrichtung vorgesehen sein, die bei Ausfall des Kühlmittels die Zufuhr von Brennstoff in den Brennraum verhindert.
Aufgrund dieser Merkmale ist die in der Kühlung aufgenommene Wärme weiterverwendbar, da das fließende Kühlmittel Wärme transportiert, die an einem anderen Ort entnommen werden kann. Bei Kühlmittelströmen kann aber nicht ausgeschlossen werden, daß der Strom des Kühlmittels durch Leitungsbruch oder Verstopfung der Kühlschlange unterbrochen wird, wodurch sich die Außenwand des Brenners aufheizen könnte, was zu Brand oder Verbrennungen führen kann. Deswegen ist es zweckmäßig, eine Überwachungseinrichtung vorzusehen, die bei Ausfall des Kühlmittels die Zufuhr von Brennstoff in den Brennraum verhindert.
According to an advantageous development, the cooling device is designed as a cooling coil surrounding or forming the housing, through which a coolant, in particular water, flows. Furthermore, a monitoring device can be provided which prevents the supply of fuel to the combustion chamber in the event of a coolant failure.
Because of these features, the heat absorbed in the cooling can be reused, since the flowing coolant transports heat that can be removed at another location. In the case of coolant flows, however, it cannot be ruled out that the flow of the coolant is interrupted by a line break or blockage of the cooling coil, which could heat up the outer wall of the burner, which can lead to fire or burns. It is therefore expedient to provide a monitoring device which prevents the supply of fuel to the combustion chamber in the event of a coolant failure.

Aufgrund der Maßnahmen läßt sich also eine hohe Effizienz des Brenners bei gleichzeitiger Kühlung der Außenwand erzeugen, wobei eine große Sicherheit gewährleistet ist.Due to the measures, a high efficiency of the burner can be achieved at the same time Generate cooling of the outer wall, whereby great security is guaranteed.

Gemäß einer vorzugsweisen Weiterbildung der Erfindung ist in einem Bereich größerer Porenöffnungen des Materials eine Kühlvorrichtung zum Wärmetauschen vorgesehen. Mit Hilfe dieser Kühlvorrichtung, die als Kühlschlange ausgebildet sein kann, wird die Wärme im Brenner z.B. als Heißwasser oder Dampf abgeführt und kann in weiteren Prozessen zur Heizung oder zum Betrieb von Turbinen weiterverwendet werden. Im Gegensatz zum Stand der Technik erfolgt die Wärmeübertragung hier nicht nur durch direkte Wechselwirkung des heißen Gases mit der Kühlvorrichtung, sondern zum größten Teil über das poröse Material, wodurch eine bessere Wärmeübertragung als beim Stand der Technik gewährleistet ist. Auch dieses Merkmal dient zur Erhöhung der Effizienz. According to a preferred development of the invention is larger in one area Pore openings of the material provided a cooling device for heat exchange. With the help of this cooling device, which can be designed as a cooling coil, the Heat in the burner e.g. dissipated as hot water or steam and can be used in other processes continue to be used for heating or for operating turbines. In contrast to the state of the art, the heat transfer here is not only direct Interaction of the hot gas with the cooling device, but for the most part over the porous material, which provides better heat transfer than the state of the Technology is guaranteed. This feature also serves to increase efficiency.

Gemäß einer bevorzugten Weiterbildung ist eine Kühlung des Gehäuses vorgesehen, die mit der Kühlvorrichtung zum Wärmetauschen in Reihe geschaltet ist.
Aufgrund dieser Maßnahme wird die Energie, die durch die Kühlung des Gehäuses im Kühlmittel aufgenommen wird, in denselben Kreis geführt, in dem die Wärme in dem Kühlmittel zum Wärmetauschen verwendet wird. Vorzugsweise wird das Kühlmittel dabei erst zur Kühlung des Gehäuses verwendet und anschließend in den Innenraum des Brenners geleitet, wo es mit dem porösen Material hoher Temperatur wechselwirkt. Bei der Weiterbildung wird so die gesamte vom Brenner erzeugte Wärme im Kühlmittel aufgenommen, wodurch die Effizienz weiter erhöht wird.
According to a preferred development, cooling of the housing is provided, which is connected in series with the cooling device for heat exchange.
As a result of this measure, the energy which is absorbed by the cooling of the housing in the coolant is conducted into the same circuit in which the heat in the coolant is used for heat exchange. The coolant is preferably only used to cool the housing and then passed into the interior of the burner, where it interacts with the porous material at high temperature. In the development, the entire heat generated by the burner is absorbed in the coolant, which further increases the efficiency.

Je effektiver der Übergang der im Brenner erzeugten Wärme auf die Kühlvorrichtung innerhalb des Brenners ist, desto wirkungsvoller erfolgt die Wärmeübertragung. Außerdem bildet die Kühlvorrichtung im Brenner einen weiteren Strömungswiderstand, der bei der Auslegung des porösen Materials im Bereich der Kühlvorrichtung berücksichtigt werden kann. Die Kühlvorrichtung wirkt dann also ähnlich wie das poröse Material. Die Menge porösen Materials kann dann verringert werden, wobei auch eine wirkungsvollere Wärmeübertragung erreicht wird, wenn die Kühlvorrichtung gemäß einer Weiterbildung selbst so ausgebildet ist, daß diese zumindest teilweise als poröses Material wirkt und/oder poröses Material ersetzt.The more effective the transfer of the heat generated in the burner to the cooling device inside the burner, the more effectively the heat is transferred. Furthermore the cooling device in the burner forms a further flow resistance, which the design of the porous material in the area of the cooling device can. The cooling device then acts similarly to the porous material. The The amount of porous material can then be reduced, with a more effective one Heat transfer is achieved when the cooling device according to a further development itself is designed so that it acts at least partially as a porous material and / or porous material replaced.

Bei der Optimierung eines Brenners sollte auch der Abstand der Kühlvorrichtung von der Flamme möglichst günstig gewählt werden. Die höchste Temperatur erreicht man zwar in der Nähe der Flamme, es können jedoch auch für geringere Temperaturen geeignete Materialien zur Ausbildung der Kühlvorrichtung ausgewählt werden, wenn diese sich außerhalb des Flammbereichs befindet. Außerdem wird die Flamme durch die Kühlvorrichtung nicht zusätzlich gekühlt, wenn diese außerhalb des Flammbereichs liegt, was die Stabilität der Flamme zusätzlich erhöht. Deswegen sieht eine vorzugsweise Weiterbildung der Erfindung vor, daß der Abstand der Kühlvorrichtung von dem Bereich mit der kritischen Péclet-Zahl mindestens so groß ist, daß die Kühlvorrichtung mit der Flamme nicht in Berührung steht. Auf die Wärmeübertragung von Flamme zur Kühlvorrichtung hat das aufgrund der guten Wärmeleitung im porösen Material nur wenig Einfluß.When optimizing a burner, the distance of the cooling device from the Flame should be chosen as cheaply as possible. The highest temperature is reached in close to the flame, but it can also be suitable for lower temperatures Materials for forming the cooling device can be selected if they are outside of the flame area. In addition, the flame through the cooler not additionally cooled if it is outside the flame area, which is the Flame stability additionally increased. That is why a preferred further training sees the invention that the distance of the cooling device from the area with the critical Péclet number is at least so large that the cooling device with the flame does not is in contact. This has to do with the heat transfer from the flame to the cooling device due to the good heat conduction in the porous material only little influence.

Um die Flamme durch die Kühlung des äußeren Gehäuses nicht zu beeinflussen, sieht eine vorzugsweise Weiterbildung der Erfindung vor, daß durch eine zusätzliche Vorrichtung, z.B. einen Einsatz im Brennerraum ein Span mit einer Abmessung größer als 1mm zwischen der Innenwand des Gehäuses und dem Einsatz, in dem sich das poröse Material befindet, entsteht. Dadurch werden die CO-Emissionen, die durch unvollständige oder instabile Verbrennungen entstehen, weiter unterdrückt.In order not to affect the flame by cooling the outer casing, see a preferred development of the invention that by an additional device, e.g. a chip in the burner chamber with a dimension larger than 1mm between the inner wall of the housing and the insert in which the porous Material is created. This will reduce the CO emissions caused by incomplete or unstable burns occur, further suppressed.

Versuche an Ausführungsbeispielen haben gezeigt, daß die höchste Effektivität dann erreicht wird, wenn die Porosität mit Schüttgut erzeugt wird und die Kühlvorrichtung in einem Abstand von 2 bis 4 Korngrößen der Schüttung von dem Grenzbereich mit der kritischen Péclet-Zahl 65 angeordnet ist. Allgemein ist gemäß einer Weiterbildung zu erwarten, daß sich die günstigten Bedingungen dann ergeben, wenn die Kühlvorrichtung von der Zone mit der für die kritische Péclet-Zahl erforderlichen Porosität soweit entfernt ist, daß sie nicht in den Flammenbereich eintaucht..Tests on exemplary embodiments have shown that the highest effectiveness is then achieved is when the porosity is generated with bulk material and the cooling device in one Distance of 2 to 4 grain sizes of the bed from the border area with the critical Péclet number 65 is arranged. According to further training, it can generally be expected that that the favorable conditions arise when the cooling device of the zone with the porosity required for the critical Péclet number is so far away that it does not dive into the flame area ..

Gemäß einer anderen bevorzugten Weiterbildung ist am Brenner eine Zündvorrichtung so angeordnet, daß die Entflammung des Gas-/Luftgemisches in einem Bereich mit einer Porosität erfolgt, die die kritische Péclet-Zahl aufweist.
Im Prinzip könnte das Gas-/Luftgemisch an allen Stellen des Brenners entzündet werden, an denen ein brennfähiges Gas-/Luftgemisch vorhanden ist, beispielsweise vom Auslaß her. Gemäß der Weiterbildung erfolgt die Zündung aber in einem Bereich, in dem die Porosität die kritische Péclet-Zahl aufweist. Dadurch wird die Flamme genau in dem Bereich gezündet, indem sie auch im stabilen Zustand brennt. Aufgrund dessen wird eine hohe Stabilität schon im Zeitpunkt der Entflammung bewirkt, da an anderen Stellen erst ein Rückschlagen der Flamme erfolgen müßte, das jedoch bei hohen Strömungsgeschwindigkeiten des Brennstoffes gar nicht möglich ist. In diesem Fall könnte eine Zündung nur bei zwischenzeitlicher Reduzierung des Brennstofflusses erfolgen. Das Merkmal der Weiterbildung reduziert also den apparativen Aufwand für einen erfindungsgemäßen Brenner in hohem Maß, da eine Regelung des Zündvorganges unterbleiben kann.
According to another preferred development, an ignition device is arranged on the burner in such a way that the gas / air mixture is ignited in a region with a porosity that has the critical Péclet number.
In principle, the gas / air mixture could be ignited at all points on the burner where a combustible gas / air mixture is present, for example from the outlet. According to the further development, the ignition takes place in an area in which the porosity has the critical Péclet number. As a result, the flame is lit precisely in the area by burning even in the stable state. Because of this, a high stability is brought about already at the time of ignition, since the flame would have to be kicked back at other points, but this is not possible at high fuel flow rates. In this case, ignition could only take place if the fuel flow was reduced in the meantime. The feature of the development thus greatly reduces the expenditure on equipment for a burner according to the invention, since regulation of the ignition process can be omitted.

Gemäß einer anderen vorteilhaften Weiterbildung der Erfindung ist zwischen Einlaß und porösem Material eine Flammenfalle angeordnet.
Aufgrund des porösen Materials ist zwar kein Rückschlagen der Flamme zu erwarten, da die Peclet-Zahl im Einlaßbereich keine Ausbildung einer Flamme erlaubt. Dennoch ist vor allem aus Sicherheitsgründen eine Flammenfalle vorgesehen, die beispielsweise dann wichtig sein kann, wenn nach Reinigungsarbeiten das die hohe Porosität aufweisende Schüttgut versehentlich in den Einlaßbereich eingefüllt worden ist.
According to another advantageous development of the invention, a flame trap is arranged between the inlet and the porous material.
Because of the porous material, the flame is not expected to kick back, since the Peclet number in the inlet area does not permit the formation of a flame. Nevertheless, a flame trap is provided primarily for safety reasons, which can be important, for example, if the bulk material having the high porosity has been accidentally filled into the inlet area after cleaning work.

Die Flammenfalle sollte, da sie im Normalfall nicht benötigt wird, möglichst einfach ausgebildet sein. Gemäß einer vorzugsweisen Weiterbildung ist die Flammenfalle eine Platte, die eine Vielzahl von Löchern mit einem Durchmesser kleiner als der für die jeweiligen Brennstoffe kritische "quenching" Durchmesser aufweist. Es hat sich gezeigt, daß diese Flammenfalle bei Erdgas/Luftgemischen wirksam ist. Ihr großer Vorteil liegt vor allem in der Einfachheit der Herstellung und in der sehr kostengünstigen Ausführung. Der Aufwand für die Flammenfalle wird daher gering gehalten und bleibt vertretbar, so daß eine zusätzliche Flammenfalle wirtschaftlich vertretbar eingesetzt werden kann, obwohl sie im Normalfall für den erfindungsgemäßen Brenner nicht notwendig ist.The flame trap should be as simple as possible since it is normally not required be. According to a preferred further development, the flame trap is a plate, which have a plurality of holes with a diameter smaller than that for each Fuels have critical "quenching" diameters. It has been shown that this Flame trap is effective with natural gas / air mixtures. Their main advantage lies in the simplicity of manufacture and the very inexpensive design. The effort for the flame trap is therefore kept low and remains reasonable, so that a additional flame trap can be used economically, although in Normal case for the burner according to the invention is not necessary.

Aufgrund der hohen Leistungsdichte und der großen Menge Materials zur Aufnahme von Wärme ist es auch einfach, den erfindungsgemäßen Brenner nach Art eines Brennwertkessels zu betreiben, da die Abgastemperatur bei diesen stark reduziert ist. Das dabei jedoch entstehende Kondensat muß abgeführt werden. Dies ist bei dem erfindungsgemäßen Brenner einfach zu bewerkstelligen, denn es wurden bei Versuchsmodellen festgestellt, daß diese in jeder Lage, sogar mit Flammentwicklung entgegen der Schwerkraft, betrieben werden können. Bei einem mit dem Auslaß nach unten angeordneten Brenner würde das Kondensat in einfacher Weise durch diesen abfließen können, so daß keine zusätzlichen Maßnahmen getroffen werden müssen. Deshalb sieht eine bevorzugte Weiterbildung der Erfindung vor, daß Einlaß, Auslaß und poröses Material so angeordnet sind, daß entstehendes Kondensat durch den Auslaß abfließen kann.Due to the high power density and the large amount of material to accommodate It is also easy to heat the burner according to the invention in the manner of a To operate condensing boilers because the exhaust gas temperature is greatly reduced. The resulting condensate must be removed. This is the case with the invention Burner easy to do, because it was in test models found that this in any position, even with flame development contrary to Gravity, can be operated. One with the outlet down Burner would be able to easily drain the condensate through this, so that no additional measures need to be taken. Therefore one sees preferred development of the invention before that inlet, outlet and porous material so are arranged so that condensate can flow through the outlet.

Weitere Maßnahmen und Vorteile der Erfindung ergeben sich auch aus den nachfolgend anhand der Zeichnungen beschriebenen Ausführungsbeispielen.Further measures and advantages of the invention also result from the following embodiments described with reference to the drawings.

Es zeigen:

  • Fig. 1 eine erste Ausführungsform des Brenners mit drei Zonen;
  • Fig. 2 eine weitere Ausführungsform des Brenners mit zwei Zonen;
  • Fig. 3 ein Diagramm für Péclet-Zahlen in Abhängigkeit des Kugeldurchmessers bei einer Kugelschüttung,
  • Fig. 4 ein Diagramm für den Temperaturverlauf innerhalb des porösen Materials bei dem Ausführungsbeispiel gemäß Fig. 2,
  • Fig. 5 einen Schnitt durch einen als Wassererhitzer oder Dampferzeuger ausgelegten Brenner entsprechend der in Fig. 2 gezeigten, jedoch mit dem Auslaß nach unten angeordneten Ausführungsform und
  • Fig. 6 einen Schnitt durch einen mit einem Einsatz versehenen Brenner.
  • Show it:
  • Figure 1 shows a first embodiment of the burner with three zones.
  • 2 shows a further embodiment of the burner with two zones;
  • 3 shows a diagram for Péclet numbers as a function of the ball diameter in the case of a ball bed,
  • 4 shows a diagram for the temperature profile within the porous material in the embodiment according to FIG. 2,
  • 5 shows a section through a burner designed as a water heater or steam generator in accordance with the embodiment shown in FIG. 2, but with the outlet arranged downwards
  • Fig. 6 shows a section through a burner provided with an insert.
  • Die Flammentwicklung in porösem Material ist bereits durch mehrere Wissenschaftler untersucht und beschrieben worden, insbesondere durch V.S. Babkin, A.A. Korzhavin und V.A. Bunev in "Propagation of Premixed Gaseous Explosion Flames in Porous Media, Combustion and Flame", Volume 87, 1991, S. 182 bis 190. Von diesen Autoren wurde der folgende Ausbreitungsmechanismus für Flammen beschrieben.The flame development in porous material has already been done by several scientists has been examined and described, in particular by V.S. Babkin, A.A. Korzhavin and V.A. Bunev in "Propagation of Premixed Gaseous Explosion Flames in Porous Media, Combustion and Flame ", Volume 87, 1991, pp. 182 to 190. By these authors the following flame propagation mechanism has been described.

    Im porösen Material werden Turbulenzen im Brennstoffluß erzeugt. Eine positive Rückkopplung zwischen Flammenbeschleunigung und der Erzeugung von Turbulenzen wird durch lokale Unterdrückung von den chemischen Reaktionen aufgrund intensiven Wärmeaustauschens in der turbulenten Flammenzone gedämpft. Wenn die charakteristische Zeit des thermischen Ausgleichs kleiner wird als die chemische Konversion, wird die Flammbildung verhindert. Da außerdem bei turbulenter Strömung die verschiedensten Geschwindigkeiten auftreten, werden die Anteile der Flamme mit maximalen Geschwindigkeiten unterdrückt, wodurch eine stabile Flammenausbreitung erzeugt wird.Turbulence is generated in the fuel flow in the porous material. A positive feedback between flame acceleration and the generation of turbulence by local suppression of chemical reactions due to intense heat exchange muffled in the turbulent flame zone. If the characteristic The time of the thermal compensation becomes smaller than the chemical conversion, the Prevents flame formation. Because there is also a wide variety of turbulent flows Speeds occur, the proportions of the flame are at maximum speeds suppressed, which creates a stable flame spread.

    Die Experimente der Autoren führten zu einer kritischen Péclet-Zahl von 65 +/- 25 für die Flammenfortpflanzung in porösem Material, wobei die Varianz im wesentlichen durch extrem unterschiedliche Gaszusammensetzungen gegeben ist. Bei Erdgas/Luftgemischen ist aber im wesentlichen eine Péclet-Zahl von 65 zu erwarten.The authors' experiments resulted in a critical Péclet number of 65 +/- 25 for the Flame propagation in porous material, the variance being essentially extreme different gas compositions are given. With natural gas / air mixtures however, a Péclet number of 65 is essentially to be expected.

    Die Péclet-Zahl läßt sich durch die folgende Gleichung errechnen: Pe = (SLdmcpρ)/λ. wobei SL die laminare Flammengeschwindigkeit, dm der äquivalente Durchmesser für den mittleren Hohlraum des porösen Materials, cp die spezifische Wärme des Gasgemisches, ρ die Dichte des Gasgemisches λ und die Wärmeleitzahl des Gasgemisches ist. Die Gleichung zeigt, daß die Bedingungen für die Flammentwicklung im wesentlichen von Gasparametern abhängen, und die Eigenschaften des porösen Materials nur über dm in die Gleichung eingehen. Die Péclet-Zahl ist also im wesentlichen unabhängig von den Materialeigenschaften und nur abhängig von der Porosität. Es können also bei erfindungsgemäßen Brennern die verschiedensten Materialien bzw. geometrische Formen als poröses Material verwendet werden.The Péclet number can be calculated using the following equation: P e = (P L d m c p ρ) / λ. where S L is the laminar flame speed, d m is the equivalent diameter for the central cavity of the porous material, c p is the specific heat of the gas mixture, ρ is the density of the gas mixture λ and the thermal conductivity of the gas mixture. The equation shows that the conditions for flame development essentially depend on gas parameters, and the properties of the porous material are only included in the equation via d m . The Péclet number is therefore essentially independent of the material properties and only dependent on the porosity. A wide variety of materials or geometric shapes can therefore be used as the porous material in the burners according to the invention.

    Im übrigen sind alle in die Gleichung eingehenden Werte meßbar, so daß mit Hilfe der angegebenen Gleichung eine technische Lehre gegeben ist, die sich auf die verschiedensten Gasgemische anwenden läßt.In addition, all values in the equation can be measured, so that with the help of given equation is given a technical lesson that relates to the most diverse Gas mixtures can be used.

    Fig. 1 zeigt in schematischer Darstellung einen Brenner mit einem Gehäuse 1, welches einen Einlaß 2 für das Gas-/Luftgemisch und einen Auslaß 3 für die Abgase aufweist. In einem Abstand vom Einlaß 2 ist eine Flammenfalle 4 vorgesehen, welche den Innenraum des Gehäuses 1 unterteilt. Der zwischen dieser Flammenfalle 4 und dem Auslaß 3 gelegene Teil des Innenraumes des Gehäuses 1 ist mit einem porösen Material 5 ausgefüllt. Weiter ist eine Zündvorrichtung 6 zur Zündung des Gasgemisches vorgesehen.Fig. 1 shows a schematic representation of a burner with a housing 1, which has an inlet 2 for the gas / air mixture and an outlet 3 for the exhaust gases. In a distance from the inlet 2, a flame trap 4 is provided, which the interior of the housing 1 divided. The located between this flame trap 4 and the outlet 3 Part of the interior of the housing 1 is filled with a porous material 5. An ignition device 6 is also provided for igniting the gas mixture.

    Das Gas-/Luftgemisch tritt durch den Einlaß 2 ein und die Abgase verlassen den Brenner durch den Auslaß 3. Das poröse Material 5 weist örtlich unterschiedliche Porositäten auf, und zwar entsprechend den unterschiedlich schraffierten Zonen A, B und C. In Zone A sind die Poren so klein, daß die sich daraus ergebende Péclet-Zahl kleiner als die kritische Péclet-Zahl (65 für Erdgas/Luftgemische) ist. Die kritische Péclet-Zahl ist der Grenzwert, oberhalb dem eine Flamme entstehen kann bzw. unterhalb dem eine Flamme unterdrückt wird. In Zone C ist die Péclet-Zahl wesentlich größer als die kritische Péclet-Zahl, so daß sich dort eine Flamme entwickeln kann. Zone B stellt einen Übergangsbereich dar, innerhalb dem die Porosität die kritische Péclet-Zahl erreicht.The gas / air mixture enters through inlet 2 and the exhaust gases leave the burner through the outlet 3. The porous material 5 has locally different porosities, in accordance with the different hatched zones A, B and C. In zone A the pores are so small that the resulting Péclet number is smaller than the critical one Péclet number (65 for natural gas / air mixtures) is. The critical Péclet number is that Limit above which a flame can develop or below which a flame is suppressed. In zone C, the Péclet number is significantly larger than the critical Péclet number, so that a flame can develop there. Zone B represents a transition area within which the porosity reaches the critical Péclet number.

    Nach den dargestellten Erkenntnissen über die Flammentwicklung im porösen Material, kann die Flamme nur in Zone B entstehen, und zwar nur an den Stellen, an denen die Porosität die kritische Péclet-Zahl erreicht. Das poröse Material kühlt dabei die Flamme, so daß nur wenig NOx erzeugt wird. Die Innenflächen der Hohlräume des porösen Materials, insbesondere des der Zone B, können auch mit einem Katalysator beschichtet werden, wodurch eine weitere Verringerung des NOx und CO -Anteils im Abgas erreicht wird.According to the knowledge about the flame development in the porous material, the flame can only arise in zone B, and only at the points where the porosity reaches the critical Péclet number. The porous material cools the flame so that only little NO x is generated. The inner surfaces of the cavities of the porous material, in particular that of zone B, can also be coated with a catalyst, as a result of which a further reduction in the NO x and CO content in the exhaust gas is achieved.

    Aufgrund der oben dargestellten physikalischen Gesetzmäßigkeiten für die Flammentwicklung in porösem Material wird sich die Flamme in der Zone B stabilisieren, und zwar an Orten, an denen das Gas-/Luftgemisch gerade die kritische Péclet-Zahl erreicht. Dies bedeutet aber auch, daß sich die Flammenansätze bei starken Änderungen der physikalischen Parameter innerhalb der Region B verschieben können, so daß eine örtliche Flammenstabilität prinzipiell nicht gegeben ist. Andererseits hat die durch die Zone B gegebene Übergangsschicht den Vorteil, daß sich die Flammenfront bei den kleinstmöglichen Hohlräumen stabilisiert, wodurch der bestmögliche Wärmeübergang von der Flamme zum porösen Material gewährleistet ist.Due to the physical laws for flame development described above in porous material the flame will stabilize in zone B, namely in places where the gas / air mixture is just reaching the critical Péclet number. This but also means that the flame approaches with strong changes in the physical Can move parameters within region B so that a local In principle there is no flame stability. On the other hand, the one given by Zone B. Transition layer the advantage that the flame front at the smallest possible Cavities stabilized, which ensures the best possible heat transfer from the Flame to the porous material is guaranteed.

    Wird jedoch auf eine örtlich stabile Flamme Wert gelegt, kann ein Brenner nach dem in Fig. 2 gezeigten Ausführungsbeispiel verwendet werden. Bei diesem ist gegenüber dem in Fig. 1 beschriebenen die Zone B weggelassen worden, so daß nur die zwei Zonen A und C vorhanden sind. Hier stabilisiert sich die Flamme aufgrund der oben dargestellten Gesetzmäßigkeiten an der Grenzschicht zwischen Zone A und Zone C. Die Flamme ist also durch die Grenzfläche festgelegt und daher ortsstabil. Aufgrund der Varianz von +/- 25 der angegebenen Péclet-Zahl von 65 ist es vorteilhaft, in Zone A eine Porosität vorzusehen, deren Péclet-Zahl kleiner als 40 ist und in Zone C eine Porosität, die einer Péclet-Zahl von größer 90 entspricht. Dann bestimmt die Grenzschicht für einen großen Bereich von Gas-/Luftgemischen den Ort der Flammentwicklung, wodurch die Stabilität für einen großen Bereich von Gasparametern gewährleistet wird.However, if value is placed on a locally stable flame, a burner can be used after the in Fig. 2 shown embodiment can be used. This is compared to the described in Fig. 1, the zone B has been omitted so that only the two zones A and C are present. Here the flame stabilizes due to the one shown above Laws at the boundary layer between Zone A and Zone C. The flame is So determined by the interface and therefore stable in place. Due to the variance of +/- 25 of the specified Péclet number of 65, it is advantageous to provide a porosity in zone A, whose Péclet number is less than 40 and in zone C a porosity that of a Péclet number of greater than 90 corresponds. Then the boundary layer determines for a large area of gas / air mixtures the location of the flame development, which increases the stability for one large range of gas parameters is guaranteed.

    Für das poröse Material können unterschiedliche Materialien, z.B. Keramikwerkstoffe, verwendet werden. Es sind aber auch hitzebeständige Schaumkunststoffe möglich. Bei den folgenden Betrachtungen wird als poröses Material Schüttgut verwendet Bei Schüttgut mit runden Körnem läßt sich der in die Gleichung für die Péclet-Zahl eingehende Parameter dm für die Porosität aufgrund von geometrischen Überlegungen berechnen als dm =δ/2,77, wobei δ der Durchmesser der kugelförmigen Körner des Schüttguts ist.Different materials, for example ceramic materials, can be used for the porous material. However, heat-resistant foam plastics are also possible. In the following considerations, bulk material is used as the porous material. For bulk material with round grains, the parameter d m for the porosity, which is included in the equation for the Péclet number, can be calculated on the basis of geometric considerations as d m = δ / 2.77, where δ is the diameter of the spherical grains of the bulk material.

    Entsprechend der oben angegebenen Gleichung wurden für Erdgas/Luftgemisch Péclet-Zahlen in Abhängigkeit vom Durchmesser δ berechnet, die in Fig. 3 dargestellt sind. Für die Berechnung wurde eine stöchiometrische laminare Flammengeschwindigkeit SL von 0,4mm pro sec angenommen. Die Péclet-Zahl von 65 wird bei einem Kugelradius von 9mm erreicht, während die genannten Péclet-Zahlen von 40 bzw. 90 bei 6mm bzw. bei 12,5mm gegeben sind.According to the equation given above, Péclet numbers as a function of the diameter δ were calculated for natural gas / air mixture and are shown in FIG. 3. A stoichiometric laminar flame speed S L of 0.4 mm per sec was assumed for the calculation. The Péclet number of 65 is achieved with a sphere radius of 9mm, while the above-mentioned Péclet numbers of 40 and 90 are given at 6mm and 12.5mm.

    In einem Versuchsaufbau gemäß Fig. 2 wurden Körner mit Durchmessern von 5mm in Zone A und 11mm in Zone C verwendet. Dabei wurden unterschiedlichste Testmaterialien verwendet, z.B. Kugeln aus poliertem Stahl sowie Keramikkörner unterschiedlichster Zusammensetzungen und Größen, wie Steatit, Stemalox oder Al2O3. Es zeigte sich, daß die erfindungsgemäßen Vorteile bei allen Materialien erreicht wurden.In a test set-up according to FIG. 2, grains with diameters of 5 mm in zone A and 11 mm in zone C were used. A wide variety of test materials were used, e.g. polished steel balls and ceramic grains of various compositions and sizes, such as steatite, Stemalox or Al 2 O 3 . It was found that the advantages according to the invention were achieved with all materials.

    Der Temperaturverlauf in Flußrichtung des Gas-/Luftgemisches in einem derartigen Versuchsbrenner ist in Fig. 4 für verschiedene Leistungen dargestellt, wobei der Mantel von außen gekühlt wurde. Es zeigte sich, daß selbst bei hohen Leistungen von 9kW die höchste Temperatur unter 1500°C lag. Deshalb können alle Materialien verwendet werden, die bis 1500°C temperaturstabil sind.The temperature profile in the flow direction of the gas / air mixture in such a test burner is shown in Fig. 4 for different performances, the jacket of was cooled outside. It was shown that even with high outputs of 9 kW highest temperature was below 1500 ° C. Therefore all materials can be used which are temperature stable up to 1500 ° C.

    In Fig. 4 ist eine erste senkrechte Linie eingezeichnet, die die Grenzfläche zwischen der Zone A und der Zone C darstellt. Es ist deutlich erkennbar, daß die höchste Temperatur an der Grenzfläche bzw. bezüglich kurz hinter der Grenzfläche in der Zone C entsteht.In Fig. 4, a first vertical line is drawn, which is the interface between the Zone A and Zone C. It is clearly evident that the highest temperature at the interface or with respect to just behind the interface in zone C.

    Weiter ist aus Fig. 4 erkennbar, daß die Temperaturen zum Auslaß 3 (zweite senkrechte Linie) hin stark abfallen. Es kann also mit Hilfe eines erfindungsgemäßen Brenners eine Abgastemperatur unterhalb des Taupunkts erreicht werden, wodurch sich die Vorteile eines Brennwertkessels ergeben. Allerdings muß aber das dabei entstehende Kondensat abgeführt werden. Es hat sich gezeigt, daß der Brenner unabhängig von seiner Lage zum Schwerefeld der Erde stabil arbeitet, so daß er auch waagerecht oder mit dem Auslaß 3 nach unten betrieben werden kann. Bei dieser letzten Anordnung kann das Kondensat aus dem Brenner herausfließen.From Fig. 4 it can be seen that the temperatures to the outlet 3 (second vertical Line) drop sharply. So it can with the help of a burner according to the invention Exhaust temperature can be reached below the dew point, which gives the advantages of a Result in condensing boiler. However, the resulting condensate must be dissipated. It has been shown that the burner regardless of its location for Gravity field of the earth works stably, so that it is also horizontal or with the outlet 3 can be operated downwards. With this last arrangement, the condensate flow out of the burner.

    Die niedrige Gastemperatur am Auslaß zeigt auch, daß die Wärme des verbrannten Gas/Luftgemisch fast vollständig von dem porösen Material aufgenommen wird, wodurch der Bau eines Wärmetauschers mit großer Effizienz ermöglicht wird. Mit einem Brenner nach dem Ausführungsbeispiel von Fig. 2 ist es möglich, einen Wassererhitzer mit einer Leistung von 5kW eine Abgastemperatur von 60°C und einem Wirkungsgrad von 95% zu bauen. Die baulichen Abmessungen des Brenners konnten dabei sehr klein gehalten werden, so betrug die Länge des Brenners nur 15cm und der Durchmesser 8cm. Die geringen Abmessungen sind vor allem auf die hohe Leistungsdichte zurückzuführen, die mit Hilfe von porösem Material erreicht werden kann.The low gas temperature at the outlet also shows that the heat of the burned gas / air mixture is almost completely absorbed by the porous material, whereby the Construction of a heat exchanger with great efficiency is made possible. After with a burner the embodiment of Fig. 2, it is possible to use a water heater with an output from 5kW to an exhaust gas temperature of 60 ° C and an efficiency of 95% to build. The structural dimensions of the burner could be kept very small the length of the burner was only 15cm and the diameter was 8cm. The minor Dimensions are mainly due to the high power density that comes with Help of porous material can be achieved.

    Fig. 4 zeigt auch, daß die höchsten Temperaturen kurz hinter der Grenzfläche zwischen Zone A und Zone C entstehen. Hieraus folgt, daß für die Erzeugung Heißen Dampfes die Wärmeübertragung von der Flamme auf das zu erhitzende Wasser in der Nähe dieser Grenzfläche stattfinden sollte. Eine das zur Dampferzeugung vorgesehene Wasser führende Kühlvorrichtung sollte daher in dem Bereich des porösen Materials verlaufen, der ungefähr 3cm von der Grenzfläche entfernt ist.Figure 4 also shows that the highest temperatures are just behind the interface between Zone A and Zone C are created. It follows that for the production of hot steam the heat transfer from the flame to the water to be heated near it Interface should take place. One leading the water intended for steam generation Cooling device should therefore run in the area of the porous material that is about 3cm from the interface.

    Unabhängig hiervon ist es im allgemeinen zweckmäßig, die Kühlvorrichtung nicht zu nah an der Flamme anzuordnen, da die Flamme zur Erhaltung ihrer Stabilität nicht selbst abgekühlt werden soll. Deswegen ist es vorteilhaft, die Kühlvorrichtung in die Nähe der Grenzschicht zu verlegen, aber nicht in den Flammbereich. Sollten Materialprobleme aufgrund der hohen Temperaturen bei der Ausführung der Kühlvorrichtung entstehen, sind größere Abstände vorzuziehen.Regardless of this, it is generally advisable not to close the cooling device to be placed on the flame as the flame does not cool down itself to maintain its stability shall be. Therefore, it is advantageous to close the cooling device Lay the boundary layer, but not in the flame area. Should be due to material problems the high temperatures in the execution of the cooling device arise prefer larger distances.

    Fig. 5 zeigt den schematischen Aufbau eines zum Erhitzen von Wasser bzw. zum Erzeugen von Dampf geeigneten Brenners. Dieser umfaßt im wesentlichen wieder das Gehäuse 1, den Einlaß 2, den Auslaß 3, die Flammenfalle 4, die Zündeinrichtung 6 und das poröse Material 5. Der Brenner ist mit seinem Auslaß 3 nach unten angeordnet, so daß Kondensat leicht abfließen kann. Das poröse Material 5 ist nur schematisch durch gleichgroße Kugeln angedeutet. Dies entspricht nicht den realen Gegebenheiten, denn die Porosität des porösen Materials ändert sich ja entlang der Flußrichtung des Gas/Luftgemisch, wobei die Kugeln im Einlaßbereich einen geringeren Durchmesser als im Auslaßbereich aufweisen.Fig. 5 shows the schematic structure of one for heating water or for generating of steam suitable burner. This essentially includes the housing again 1, the inlet 2, the outlet 3, the flame trap 4, the ignition device 6 and the porous material 5. The burner is arranged with its outlet 3 downward, so that Condensate can drain off easily. The porous material 5 is only schematically by the same size Bullets indicated. This does not correspond to the real situation, because the porosity of the porous material changes along the direction of flow of the gas / air mixture, the balls in the inlet area have a smaller diameter than in Have outlet area.

    Die Grenzfläche zwischen den oben beschriebenen Zonen A und C ist durch eine unterbrochene Linie 7 angedeutet. Wie vorstehend schon erläutert, entsteht die Flamme an dieser Grenzfläche 7 und überträgt ihre Wärme im wesentlichen in einem Bereich von wenigen cm in der Region C auf das poröse Material.The interface between zones A and C described above is broken by a Line 7 indicated. As already explained above, the flame is created this interface 7 and transfers its heat essentially in a range of a few cm in region C on the porous material.

    Zusätzlich ist eine das Gehäuse 1 umgehende bzw. dieses sogar bildende äußere Kühlvorrichtung 8 vorgesehen, die als um das Gehäuse 1 angeordnete Kühlschlange ausgebildet sein kann und die Wärmeabfuhr nach außen verhindert. Die Kühlschlange wird von Wasser durchflossen und ist mit einem Wasserwächter versehen, der bei Ausfall von Kühlmittel den Zustrom des Gas-/Luftgemisch in den Einlaß 2 unterbricht, so daß das Gehäuse 1 stets gekühlt wird, wenn der Brenner in Betrieb ist. So wird sichergestellt, daß sich die Außenwand nicht zu stark erwärmen kann, wodurch wiederum verhindert wird, daß man sich am Gehäuse verbrennen kann oder von diesem ein Brand ausgelöst wird. Die von der Gehäusewand durch die Kühlschlange abgeführte Wärme kann weiterverwendet werden, dadurch erhöht sich die Effizienz bei der Heißwasser- oder Dampferzeugung. In addition, there is an external cooling device which circumvents or even forms the housing 1 8 provided, which is designed as a cooling coil arranged around the housing 1 can be and prevents heat dissipation to the outside. The cooling coil is from Water flows through and is equipped with a water monitor, which in the event of failure of Coolant interrupts the inflow of the gas / air mixture into the inlet 2, so that the Housing 1 is always cooled when the burner is in operation. This ensures that the outer wall cannot heat up too much, which in turn prevents that you can burn yourself on the housing or cause a fire. The heat dissipated from the housing wall through the cooling coil can be reused efficiency increases when producing hot water or steam.

    Weiter zeigt Fig. 5 die Anordnung einer inneren Kühlvorrichtung 9, die sich vom Auslaß 3 her bis kurz vor die Grenzfläche 7 in das poröse Matenal der Zone C erstreckt.5 shows the arrangement of an internal cooling device 9 which extends from the outlet 3 extends until shortly before the interface 7 into the porous material of zone C.

    Die innere Kühivorrichtung 9 ist nur schematisch angedeutet, in der Praxis kann sie z.B. die Form einer Spirale aufweisen, damit ein möglichst guter Wärmeübergang vom porösen Material 5 gewährleistet ist. Es sind aber auch kompliziertere Ausführungsformen für die Kühlvorrichtung 9 denkbar. So kann diese beispielsweise selbst das poröse Material bilden bzw. zur Porosität beitragen, wodurch ein noch besserer Wärmeübergang möglich wird.The inner cooling device 9 is only indicated schematically, in practice it can e.g. have the shape of a spiral so that the best possible heat transfer from the porous Material 5 is guaranteed. But they are also more complicated embodiments conceivable for the cooling device 9. For example, this can even be the porous material form or contribute to porosity, resulting in an even better heat transfer becomes possible.

    Die äußere Kühlvorrichtung 8 ist mit der inneren Kühlvorrichtung 9 in Reihe verbunden, wodurch das schon durch das Gehäuse 1 vorgewärmte Wasser in die innere Kühlvorrichtung 9 geführt wird und zur Erhitzung des Wassers bzw. für die Erzeugung von Dampf mitverwendet wird.The outer cooling device 8 is connected in series with the inner cooling device 9, whereby the water already preheated by the housing 1 into the inner cooling device 9 is performed and for heating the water or for the production of steam is also used.

    Um zu vermeiden, daß die Flamme im Brennraum nicht durch zu starke Abkühlung durch die äußere Kühlvorrichtung 8 beeinflußt wird, ist, wie aus Fig. 6 ersichtlich, im Flammbereich des Brennraumes ein Einsatz 10, der aus einem geeigneten Material besteht, vorgesehen, der das poröse Material 5 aufnimmt und die Innenwand des Gehäuses 1 gegen direkte Wärmebestrahlung abschirmt Der Einsatz 10 kann auch so ausgebildet sein, daß er in einem Abstand von der Innenwand des Gehäuses 1 angeordnet ist, so daß sich zwischen der Innenwand und dem Einsatz 10 ein Spalt 11 bildet, der frei von dem brennbaren Gas-/Luftgemisch ist.
    Durch diese Ausbildung des Brennraumes im Flammbereich werden die CO-Emissionen, die durch unvollständige oder instabile Verbrennung entstehen, weiter unterdrückt.
    In order to avoid that the flame in the combustion chamber is not influenced by excessive cooling by the external cooling device 8, an insert 10, which consists of a suitable material, is provided in the flame region of the combustion chamber, as can be seen in FIG receives porous material 5 and shields the inner wall of the housing 1 against direct heat radiation. The insert 10 can also be designed such that it is arranged at a distance from the inner wall of the housing 1, so that a gap 11 between the inner wall and the insert 10 forms that is free of the combustible gas / air mixture.
    This design of the combustion chamber in the flame area further suppresses the CO emissions caused by incomplete or unstable combustion.

    Die Flammenfalle 4 soll ein Rückschlagen der Flamme verhindern. Grundsätzlich ist sie bei dem erfindungsgemäßen Brenner nicht notwendig, da die Flamme wegen der geringen Péclet-Zahl in der Zone A nicht zum Einlaß 2 durchschlagen kann, sie ist also lediglich zur Erhöhung der Sicherheit vorgesehen. Die Flammenfalle besteht im Ausführungsbeispiel gemäß Fig. 5 aus einem 4mm dicken Stahlblech, in das eine Vielzahl von Löchern mit einem Durchmesser von 1 mm gebohrt wurde, wobei die Dichte der Löcher kleiner als 20/cm2 ist. The flame trap 4 is intended to prevent the flame from kicking back. Basically, it is not necessary in the burner according to the invention because the flame cannot penetrate to inlet 2 because of the low Péclet number in zone A, it is therefore only intended to increase safety. In the exemplary embodiment according to FIG. 5, the flame trap consists of a 4 mm thick steel sheet into which a large number of holes with a diameter of 1 mm have been drilled, the density of the holes being less than 20 / cm 2 .

    Die Zündeinrichtung 6 befindet sich in der Nähe der Grenzfläche 7, um eine besonders wirkungsvolle Zündung zu ermöglichen. Im Ausführungsbeispiel brennt die Flamme selbststabilisierend an der Grenzfläche 7.The ignition device 6 is in the vicinity of the interface 7, to a particular enable effective ignition. In the exemplary embodiment, the flame burns self-stabilizing at interface 7.

    Es wurden auch Versuche mit einer Zündung vom Auslaß 3 her durchgeführt. Diese Art der Zündung war jedoch nachteilig, da die Geschwindigkeit der Flammenfront der freien Flamme vergleichsweise gering zu der Flammengeschwindigkeit im porösen Material ist. Ein Rückschlagen der Flamme vom Auslaß 3 zur Grenzfläche 7 war nur möglich, wenn die mittlere Geschwindigkeit des Gas-/Luftgemisches am Auslaß 3 gering gehalten wurde. Eine Zündung vom Auslaß 3 her würde also eine zusätzliche Regelung erfordern, bei der die Strömungsgeschwindigkeit des Gas-/Luftgemisches erst gedrosselt und dann nach Entflammung an der Grenzfläche 7 wieder erhöht wird. Hieraus ergibt sich der Vorteil einer Zündung in Nähe der Grenzfläche 7, die komplizierte Regelungs-Lösungen für das Gas-/Luftgemisch nicht erfordertExperiments with ignition from outlet 3 have also been carried out. This kind the ignition was disadvantageous, however, because the speed of the flame front of the free Flame is comparatively low to the flame speed in the porous material. A flashback of the flame from the outlet 3 to the interface 7 was only possible if the average speed of the gas / air mixture at outlet 3 is kept low has been. Ignition from outlet 3 would therefore require additional regulation, where the flow velocity of the gas / air mixture is throttled first and then after ignition at the interface 7 is increased again. This gives the advantage an ignition near the interface 7, the complicated control solutions for the gas / air mixture does not require

    Die vorbeschriebenen Ausführungsbeispiele zeigen den einfachen Aufbau des erfindungsgemäßen Brenners bei geringer Temperatur, guter Wärmeübertragung sowie einer stabilen Flamme. Bei unvollständiger Verbrennung ist es bei den erfindungsgemäßen Brennem auch möglich, diese überstöchiometrisch zu betreiben oder durch das Vorsehen von Katalysatormaterial in dem porösen Material eine bessere Verbrennung durchzuführen, wobei der Schadstoffanteil im Abgas noch weiter reduziert wird.The exemplary embodiments described above show the simple structure of the invention Burner at low temperature, good heat transfer and one stable flame. In the event of incomplete combustion, it is the case with the invention Brennem also possible to operate this stoichiometrically or by providing to perform better combustion of catalyst material in the porous material, the pollutant content in the exhaust gas is reduced even further.

    Claims (24)

    1. A burner, which is designed for a gas/air mixture as the fuel, which has a laminar flame velocity SL due to its physical properties and the design of the burner and is defined with reference to its specific heat cp, a density ρ and a thermal conductivity λ, whereby in this burner a housing (1) is provided, which has a combustion space with an inlet (2) for the gas/air mixture and an outlet (3) for the exhaust gas, in which the housing (1) contains a porous material (5) with communicating voids, the porosity of which alters along the length of the combustion space, characterised in that the pore size increases in the direction of flow of the gas mixture from the inlet (2) to the outlet (3), whereby for the pore size a critical Peclet number (SLdmcpρ)/λ for the flame development of the gas/air mixture is produced by reason of the selected pore size in a zone (B) or at a boundary surface (7) of the porous material (5) in the combustion space, above which a flame can form and below which flame development is suppressed, dm being the equivalent diameter of the mean void in the porous material in zone (B) or at the boundary surface (7), whereby the flame formation on the surface (7) or in the zone (B) is determined substantially independently of operating parameters which could result in a variation of the critical Peclet number.
    2. A burner as claimed in Claim 1, characterised in that the critical Peclet number is 65 ± 25 and, particularly for natural gas/air mixtures, 65.
    3. A burner as claimed in Claim 1 or 2, characterised in that two first and second zones (A, C) of different pore size are provided behind one another in the housing (1) in the flow direction of the gas/air mixture, between which the boundary surface (7) is situated, the first zone (A) arranged downstream of the inlet (2) having a Peclet number which is smaller than the critical Peclet number and the second zone (C) further away from the inlet (2) has a Peclet number which is larger than the critical Peclet number.
    4. A burner as claimed in Claim 3, characterised in that the first zone (A) has a pore size which produces a Peclet number ≤ 40 and the second zone (C) has a pore size which produces a Peclet number ≥ 90.
    5. A burner as claimed in one of Claims 1 to 4, characterised in that the porous material is heat resistant plastic sponge, ceramic material or metal or a metal alloy.
    6. A burner as claimed in Claim 5, characterised in that the porous material is heat resistant up to a temperature of 1500°C.
    7. A burner as claimed in Claims 1 to 4, characterised in that the porous material is filling bodies, e.g. in the form of granular material, which can optionally be stabilised, for instance by sintering.
    8. A burner as claimed in Claim 7, characterised in that the granular material contains metal or ceramic material, particularly steatite, Stemalox or Al2O3.
    9. A burner as claimed in Claim 7 or 8, characterised in that the granular material in the vicinity of the inlet (2) comprises grains of ball-like shape with a mean diameter of 5 mm and in the subsequent region with a mean diameter ≥ 11 mm if, at atmospheric pressure, the diameter to reach the critical Peclet number lies between 5 and 11 mm and is, in particular, 9 mm.
    10. A burner as claimed in Claims 1 to 9, characterised in that the internal surfaces of the voids in the porous material or the surfaces of the grains of the granular material are coated with a catalyst material.
    11. A burner as claimed in Claims 1 to 10, characterised in that the housing (1) has at least partially a cooling device (8).
    12. A burner as claimed in Claim 11, characterised in that the cooling device (8) is constructed as a cooling coil, which surrounds the housing (1) or defines it and through which a coolant, particularly water, flows.
    13. A burner as claimed in Claim 12, characterised in that a monitoring device is provided which shuts off the supply of fuel into the combustion space in the event of failure of the coolant.
    14. A burner as claimed in Claims 1 to 13, characterised in that a cooling device (9) is arranged for heat exchange in a region of relatively large pore openings in the material.
    15. A burner as claimed in Claim 14, characterised in that the cooling device (8) of the housing (1) is connected in series with the cooling device (9) for heat exchange.
    16. A burner as claimed in Claim 14 or 15, characterised in that the cooling device (9) is itself so constructed that it acts at least partially as porous material and/or replaces porous material.
    17. A burner as claimed in one of Claims 14 to 16, characterised in that the spacing of the cooling device (9) from zone (B) or the boundary surface (7) with the critical Peclet number is at least so large that the cooling device (9) does not come into contact with the flame.
    18. A burner as claimed in Claims 14 to 16, characterised in that the internal wall of the housing (1) is shielded from direct heat radiation, at least in the flame region, by an additional device (10), for instance by means of an insert of suitable material.
    19. A burner as claimed in Claim 18, characterised in that the device (10) is arranged at a spacing from the internal wall of the housing (1) which leaves free a gap (11) which is free of the gas/air mixture.
    20. A burner as claimed in one of Claims 14 to 18, characterised in that the cooling device (9) is so far away from the zone with the porosity necessary for the critical Peclet number that it does not extend into the flame region.
    21. A burner as claimed in Claims 1 to 20, characterised in that an ignition device (6) is so arranged that the ignition of the gas/air mixture occurs in a region with a porosity which has the critical Peclet number.
    22. A burner as claimed in one of Claims 1 to 21, characterised in that a flame trap (4) is arranged between the inlet (2) and porous material (5).
    23. A burner as claimed in Claim 22, characterised in that the flame trap (4) is a plate which has a plurality of holes with a diameter smaller than the critical "quenching" diameter for the fuel mixtures in question.
    24. A burner as claimed in one of Claims 1 to 23, characterised in that the inlet (2), outlet (3) and porous material (5) are so arranged that condensate can drain away through the outlet (3).
    EP94923708A 1993-07-02 1994-07-01 Burner Expired - Lifetime EP0657011B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4322109 1993-07-02
    DE4322109A DE4322109C2 (en) 1993-07-02 1993-07-02 Burner for a gas / air mixture
    PCT/EP1994/002156 WO1995001532A1 (en) 1993-07-02 1994-07-01 Burner

    Publications (2)

    Publication Number Publication Date
    EP0657011A1 EP0657011A1 (en) 1995-06-14
    EP0657011B1 true EP0657011B1 (en) 1999-01-20

    Family

    ID=6491841

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94923708A Expired - Lifetime EP0657011B1 (en) 1993-07-02 1994-07-01 Burner

    Country Status (11)

    Country Link
    US (1) US5522723A (en)
    EP (1) EP0657011B1 (en)
    JP (1) JP3219411B2 (en)
    CN (1) CN1046802C (en)
    AT (1) ATE176039T1 (en)
    DE (2) DE4322109C2 (en)
    DK (1) DK0657011T3 (en)
    ES (1) ES2129659T3 (en)
    GR (1) GR3029984T3 (en)
    RU (1) RU2125204C1 (en)
    WO (1) WO1995001532A1 (en)

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001014249A1 (en) * 1999-08-23 2001-03-01 Sgl Acotec Gmbh Method for a burner and a corresponding device
    DE10246231A1 (en) * 2002-10-04 2004-04-15 Robert Bosch Gmbh Automotive fuel cell has afterburner chamber void filled with open pored silicon carbide foam ceramic foam block with glow plug ignition with regulated input of combustion gases
    US7837974B2 (en) 2005-05-10 2010-11-23 Uhde Gmbh Method for heating and partial oxidation of a steam/natural gas mixture after a primary reformer
    DE102022106404A1 (en) 2022-03-18 2023-09-21 Vaillant Gmbh Gas burner arrangement, gas heater and use

    Families Citing this family (101)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6155211A (en) * 1995-04-04 2000-12-05 Srp 687 Pty Ltd. Air inlets for water heaters
    US6135061A (en) * 1995-04-04 2000-10-24 Srp 687 Pty Ltd. Air inlets for water heaters
    US6196164B1 (en) 1995-04-04 2001-03-06 Srp 687 Pty. Ltd. Ignition inhibiting gas water heater
    US6295951B1 (en) 1995-04-04 2001-10-02 Srp 687 Pty. Ltd. Ignition inhibiting gas water heater
    US6003477A (en) * 1995-04-04 1999-12-21 Srp 687 Pty. Ltd. Ignition inhibiting gas water heater
    US6085699A (en) * 1995-04-04 2000-07-11 Srp 687 Pty Ltd. Air inlets for water heaters
    US5797355A (en) * 1995-04-04 1998-08-25 Srp 687 Pty Ltd Ignition inhibiting gas water heater
    DE19527583C2 (en) * 1995-07-28 1998-01-29 Max Rhodius Gmbh Burners, especially for heating systems
    FR2745063B1 (en) * 1996-02-16 1998-03-27 Air Liquide RADIANT BURNER FOR OXYGEN COMBUSTION
    DE19646957B4 (en) 1996-11-13 2005-03-17 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Method and apparatus for burning liquid fuel
    NL1005800C2 (en) * 1996-11-16 1999-05-10 Fasto Nefit Bv Porous body for gas-burner - has open space at igniter between successive zones
    NL1004647C2 (en) * 1996-11-29 1998-06-03 Fasto Nefit Bv Burner for gas and air mixture
    DE19718886A1 (en) * 1997-05-03 1998-11-05 Bosch Gmbh Robert Process for the production of porous moldings
    DE19718885C2 (en) 1997-05-03 2003-10-09 Bosch Gmbh Robert gas burner
    DE19718898C1 (en) * 1997-05-03 1998-10-22 Bosch Gmbh Robert Gas burner with a porous burner
    DE19725646A1 (en) 1997-06-18 1998-12-24 Iav Gmbh Cylinder-piston unit, in particular for steam engines
    US5890886A (en) * 1997-07-21 1999-04-06 Sulzer Chemtech Ag Burner for heating systems
    US5993192A (en) * 1997-09-16 1999-11-30 Regents Of The University Of Minnesota High heat flux catalytic radiant burner
    DE19753407C2 (en) * 1997-12-02 2000-08-03 Invent Gmbh Entwicklung Neuer Technologien Process and apparatus for converting heat into work
    DE19804267C2 (en) * 1998-02-04 2000-06-15 Loos Deutschland Gmbh Shell boilers for pore burners
    DE19813897A1 (en) * 1998-03-28 1999-09-30 Bosch Gmbh Robert Segmented insulation for burners with porous media
    DE19813898B4 (en) * 1998-03-28 2008-05-29 Robert Bosch Gmbh gas burner
    US6293230B1 (en) * 1998-10-20 2001-09-25 Srp 687 Pty Ltd. Water heaters with flame traps
    US6142106A (en) * 1998-08-21 2000-11-07 Srp 687 Pty Ltd. Air inlets for combustion chamber of water heater
    US6269779B2 (en) 1998-08-21 2001-08-07 Srp 687 Pty Ltd. Sealed access assembly for water heaters
    US6302062B2 (en) 1998-08-21 2001-10-16 Srp 687 Pty Ltd. Sealed access assembly for water heaters
    US6223697B1 (en) 1998-08-21 2001-05-01 Srp 687 Pty Ltd. Water heater with heat sensitive air inlet
    US5950573A (en) * 1998-10-16 1999-09-14 Srp 687 Pty. Ltd. Power vented water heater with air inlet
    DE19900231A1 (en) * 1999-01-07 2000-07-20 Deutsch Zentr Luft & Raumfahrt Method for improving burn in IC engine has a porous insert in the cylinder to control the burn volume
    DE19904921C2 (en) * 1999-02-06 2000-12-07 Bosch Gmbh Robert Liquid heater
    US6183241B1 (en) 1999-02-10 2001-02-06 Midwest Research Institute Uniform-burning matrix burner
    JP4178649B2 (en) * 1999-02-24 2008-11-12 ダイキン工業株式会社 Air conditioner
    DE10000652C2 (en) * 2000-01-11 2002-06-20 Bosch Gmbh Robert Burner with a catalytically active porous body
    DE10032190C2 (en) * 2000-07-01 2002-07-11 Bosch Gmbh Robert Gas burner with a porous material burner
    DE10038716C2 (en) * 2000-08-09 2002-09-12 Bosch Gmbh Robert Gas burner with a porous material burner with a homogeneous combustion process
    DE10115644C2 (en) * 2000-12-12 2003-01-09 Bosch Gmbh Robert Gas burner with a porous material burner
    DE10114903A1 (en) 2001-03-26 2002-10-17 Invent Gmbh Entwicklung Neuer Technologien Burner for a gas / air mixture
    ATE319964T1 (en) 2001-06-02 2006-03-15 Gvp Ges Zur Vermarktung Der Po METHOD AND DEVICE FOR LOW-POLLUTANT NON-CATALYTIC COMBUSTION OF A LIQUID FUEL
    DE10155226B4 (en) * 2001-11-09 2015-10-22 Robert Bosch Gmbh Heater with a burner with pore body
    DE10160837B4 (en) * 2001-12-12 2006-03-02 Daimlerchrysler Ag Method of mixing hot combustion gases with secondary air to limit the temperature
    DE10226445C1 (en) * 2002-06-13 2003-06-12 Enginion Ag Motor vehicle auxiliary power unit for converting heat into mechanical energy has steam generator driven by exhaust gases to drive electrical generator
    DE10228411C1 (en) * 2002-06-25 2003-09-18 Enginion Ag Burner for the combustion of a gas/oxygen fuel, has a fine-pore material at the inflow and a coarse-pore material at the outflow, separated to give an intermediate pore-free zone during start-up
    DE10262231B4 (en) * 2002-07-04 2009-04-16 Sgl Carbon Ag Process for the production of hydrogen
    AU2003250108A1 (en) * 2002-07-19 2004-02-09 Shell Internationale Research Maatschappij B.V. Use of a blue flame burner
    AU2003250994A1 (en) * 2002-07-19 2004-02-09 Shell Internationale Research Maatschappij B.V. Process for combustion of a liquid hydrocarbon
    US20050271991A1 (en) * 2002-07-19 2005-12-08 Guenther Ingrid M Process for operating a yellow flame burner
    DE10233340B4 (en) * 2002-07-23 2004-07-15 Rational Ag Pore burner and cooking device containing at least one pore burner
    AU2003256855A1 (en) * 2002-08-05 2004-02-23 Board Of Regents, The University Of Texas System Porous burner for gas turbine applications
    DE10244676B4 (en) * 2002-09-24 2006-03-30 Enginion Ag Device for waste grease and waste oil recovery
    JP2004186663A (en) * 2002-10-09 2004-07-02 Sharp Corp Semiconductor memory device
    US7101175B2 (en) * 2003-04-04 2006-09-05 Texaco Inc. Anode tailgas oxidizer
    US20050026094A1 (en) * 2003-07-31 2005-02-03 Javier Sanmiguel Porous media gas burner
    EP1742867A1 (en) * 2003-09-01 2007-01-17 Cambridge Enterprise Limited Method for producing hydrogen
    DE10354368A1 (en) * 2003-11-20 2005-06-30 Enginion Ag Motor vehicle with internal combustion engine and auxiliary unit
    DE102004012988B4 (en) * 2004-03-16 2006-06-01 Enginion Ag Porous burner especially for hydrocarbon gas or hydrogen has additional oxygen or air added into the porous structure to control the burn temperature
    US7857616B2 (en) * 2004-04-06 2010-12-28 Tiax Llc Burner apparatus
    DE102004019650A1 (en) * 2004-04-22 2005-11-10 Basf Ag Oxidative gas phase reaction in a porous medium
    DE102004041815A1 (en) * 2004-08-30 2006-03-09 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Process and apparatus for the evaporation of liquid fuels
    DE502004008587D1 (en) * 2004-09-29 2009-01-15 Sgl Carbon Ag Process for the preparation of ceramised or metallised foams
    DE102004049903B4 (en) * 2004-10-13 2008-04-17 Enerday Gmbh Burner device with a porous body
    US8177545B2 (en) * 2004-12-17 2012-05-15 Texaco Inc. Method for operating a combustor having a catalyst bed
    ES2304644T3 (en) * 2005-01-31 2008-10-16 Basf Se PROCEDURE FOR OBTAINING NANOPARTICULAR SOLID PRODUCTS.
    EP1715247A1 (en) * 2005-04-19 2006-10-25 Paul Scherrer Institut Burner
    DE102005027698A1 (en) * 2005-06-15 2006-12-21 Daimlerchrysler Ag Porous burner for combustion of hydrogen, has mixing space for mixing reducing and oxidizing agents, combustion space filled with porous material, and flame barrier containing another porous material of preset porosity and density
    DE102005044494B3 (en) * 2005-09-16 2007-03-08 Wenzel, Lothar Device for removing harmful components from exhaust gases of internal combustion engines
    DE102005056629B4 (en) * 2005-11-25 2007-08-02 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh burner arrangement
    CN100404954C (en) * 2006-01-20 2008-07-23 东北大学 Porous metal medium burner capable of burning low heat value gas
    US7547422B2 (en) * 2006-03-13 2009-06-16 Praxair Technology, Inc. Catalytic reactor
    EP1840459A1 (en) * 2006-03-31 2007-10-03 Truma Gerätetechnik GmbH &amp; Co. KG Burner System with Cold Flame Process
    AT504398B1 (en) * 2006-10-24 2008-07-15 Windhager Zentralheizung Techn PORENBURNER, AND METHOD FOR OPERATING A PORN BURNER
    DE102007015753B4 (en) 2007-03-30 2018-08-09 Khs Gmbh Shrink tunnels, shrink gas heaters and shrink-wrap shrink wrap on packages or packages
    US7493876B2 (en) * 2007-07-11 2009-02-24 Joseph Robert Strempek Passive mixing device for staged combustion of gaseous boiler fuels
    DE102008000010B4 (en) 2008-01-07 2010-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plate-shaped ceramic heat radiating body of an infrared surface radiator
    CN101338356B (en) * 2008-08-07 2010-06-09 东北大学 Heat treating furnace using porous medium combustor
    DE102008048359B4 (en) * 2008-09-22 2010-08-26 Sgl Carbon Se Apparatus for combustion of a fuel / oxidizer mixture
    DE102008042540B4 (en) 2008-10-01 2010-08-26 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Device for receiving a molten metal
    DE102008053959B4 (en) 2008-10-30 2010-12-09 Rational Ag Food processor with burner
    DE102009003575A1 (en) 2009-03-06 2010-09-09 Krones Ag Apparatus and method for heat treatment of packaging goods
    DE102009047751B4 (en) 2009-04-24 2012-05-03 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh burner arrangement
    US8808654B2 (en) 2009-09-29 2014-08-19 Praxair Technology, Inc. Process for sulfur removal from refinery off gas
    TWI450439B (en) 2009-10-22 2014-08-21 Atomic Energy Council A combustion apparatus appliable to high temperature fuel cells
    US20120159951A1 (en) * 2010-12-24 2012-06-28 Avery Maurice C Vehicle Propulsion System
    DE102011106446A1 (en) 2011-07-04 2013-01-10 Technische Universität Bergakademie Freiberg Method and device for combustion of fuel gases, in particular of fuel gases with greatly fluctuating caloric contents
    US9976740B2 (en) * 2012-06-12 2018-05-22 Board of Regents of the Nevada Systems of Higher Educations, on Behalf of the University of Nevada, Reno Burner
    DE102013101368B4 (en) 2013-02-12 2023-04-27 Gidara Energy B.V. fluidized bed gasifier
    CN103528062B (en) * 2013-09-25 2015-10-28 杭州电子科技大学 The fire radiant of the rotary premixed porous-medium gas hot stove of air blast and combustion method thereof
    CN105579776B (en) * 2013-10-07 2018-07-06 克利尔赛恩燃烧公司 With the premix fuel burner for having hole flame holder
    DE102014217534A1 (en) 2014-09-03 2016-03-03 Volkswagen Aktiengesellschaft Magnesium Melting Furnace, Operating Procedures and Magnesium Casting Plant
    DE102014226791A1 (en) 2014-12-22 2016-06-23 Thyssenkrupp Ag Method for arranging a bed in a burner and burner basket for a burner
    RU2616962C1 (en) * 2016-04-27 2017-04-18 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Heat generator combustion chamber
    DE102016008289B4 (en) 2016-06-30 2019-01-31 Fernando Rafael Reichert Apparatus and method for allothermic fixed bed gasification of carbonaceous material
    US10514165B2 (en) 2016-07-29 2019-12-24 Clearsign Combustion Corporation Perforated flame holder and system including protection from abrasive or corrosive fuel
    US10539326B2 (en) 2016-09-07 2020-01-21 Clearsign Combustion Corporation Duplex burner with velocity-compensated mesh and thickness
    CN106288370B (en) * 2016-09-07 2021-09-24 河北工业大学 Gas boiler based on porous medium combustion technology
    CN108279281B (en) * 2018-01-29 2022-02-15 北京科技大学 Method and device for controlling oxygen-enriched combustion process of metal
    MX2021007898A (en) * 2018-12-28 2021-08-27 Univ Tecnica Federico Santa Maria Utfsm Porous burner for ovens.
    CN110425536B (en) * 2019-08-06 2020-11-10 东北大学 Angle type porous medium burner
    KR102228295B1 (en) * 2020-09-29 2021-03-16 국방과학연구소 Oxygen distribution reactor for liquid fuel combustion applicable of fuel reformer in a submarine
    RU2747900C1 (en) * 2020-10-02 2021-05-17 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» Heat generator
    CN114413478B (en) * 2022-01-17 2023-04-04 中国市政工程华北设计研究总院有限公司 Condensing type household gas water heater suitable for pure hydrogen source
    CN116293676B (en) * 2023-05-18 2023-08-01 佛山仙湖实验室 Porous medium combustion device, ammonia gas combustion system and combustion control method

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1830826A (en) * 1925-08-17 1931-11-10 Cox Frederick John Refractory diaphragm for use in surface-combustion apparatus
    DE2211297A1 (en) * 1971-04-26 1972-11-16 CA. Sundberg AB, Kallhäll (Schweden) Gaseous fuel burners
    US4154568A (en) * 1977-05-24 1979-05-15 Acurex Corporation Catalytic combustion process and apparatus
    US4397356A (en) * 1981-03-26 1983-08-09 Retallick William B High pressure combustor for generating steam downhole
    JPS58140511A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Device for catalytic combustion
    JPS5949403A (en) * 1982-09-14 1984-03-22 Ryozo Echigo Method and device for combustion
    US4477464A (en) * 1983-02-10 1984-10-16 Ciba-Geigy Corporation Hetero-benzazepine derivatives and their pharmaceutical use
    WO1985004402A1 (en) * 1984-03-24 1985-10-10 Takeda Chemical Industries, Ltd. Fused 7-membered ring compounds and process for their preparation
    JPS61250409A (en) * 1985-04-30 1986-11-07 Toshiba Corp Apparatus for catalytic combustion
    IT1197078B (en) * 1986-08-07 1988-11-25 Umberto Viani BOILERS WITH METHANE CATALYTIC COMBUSTION FOR WATER HEATING FOR DOMESTIC USE
    CS274537B1 (en) * 1986-09-22 1991-08-13 Vaclav Ing Rybar Radiation boiler for heating liquids
    JPH07116224B2 (en) * 1987-12-29 1995-12-13 吉富製薬株式会社 Benzolactam compound
    JPH01290630A (en) * 1988-05-17 1989-11-22 Takeda Chem Ind Ltd Drug preparation for transcutaneous administration
    US5165884A (en) * 1991-07-05 1992-11-24 Thermatrix, Inc. Method and apparatus for controlled reaction in a reaction matrix

    Cited By (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2001014249A1 (en) * 1999-08-23 2001-03-01 Sgl Acotec Gmbh Method for a burner and a corresponding device
    DE19939951A1 (en) * 1999-08-23 2001-03-08 Sgl Technik Gmbh Method for a burner and a corresponding device
    DE19939951C2 (en) * 1999-08-23 2002-10-24 Sgl Acotec Gmbh Method for a burner and a corresponding device
    US7666367B1 (en) 1999-08-23 2010-02-23 Sgl Carbon Ag Method for a burner and a corresponding device
    DE10246231A1 (en) * 2002-10-04 2004-04-15 Robert Bosch Gmbh Automotive fuel cell has afterburner chamber void filled with open pored silicon carbide foam ceramic foam block with glow plug ignition with regulated input of combustion gases
    US7837974B2 (en) 2005-05-10 2010-11-23 Uhde Gmbh Method for heating and partial oxidation of a steam/natural gas mixture after a primary reformer
    DE102022106404A1 (en) 2022-03-18 2023-09-21 Vaillant Gmbh Gas burner arrangement, gas heater and use

    Also Published As

    Publication number Publication date
    RU95112038A (en) 1997-01-10
    DE4322109C2 (en) 2001-02-22
    CN1111914A (en) 1995-11-15
    ES2129659T3 (en) 1999-06-16
    DK0657011T3 (en) 1999-09-13
    JP3219411B2 (en) 2001-10-15
    RU2125204C1 (en) 1999-01-20
    EP0657011A1 (en) 1995-06-14
    US5522723A (en) 1996-06-04
    JPH08507363A (en) 1996-08-06
    GR3029984T3 (en) 1999-07-30
    ATE176039T1 (en) 1999-02-15
    DE59407692D1 (en) 1999-03-04
    WO1995001532A1 (en) 1995-01-12
    CN1046802C (en) 1999-11-24
    DE4322109A1 (en) 1995-01-12

    Similar Documents

    Publication Publication Date Title
    EP0657011B1 (en) Burner
    EP0463218B1 (en) Method and device for combustion of fuel in a combustion chamber
    DE3930037A1 (en) WATER TUBE BOILER AND METHOD FOR ITS BURNER OPERATION
    EP1060346B1 (en) Method and device for the combustion of liquid fuel
    DE2461078A1 (en) PROCESS FOR REDUCING POLLUTANTS DURING INCINERATION PROCESSES AND DEVICE FOR CONDUCTING THESE
    DE4405894A1 (en) Combustion device within a tube bundle boiler and combustion process for its operation
    WO2012107013A2 (en) Axial piston motor and method for operating an axial piston motor
    DE60125892T2 (en) combustion chamber
    DE69821362T2 (en) METHOD AND DEVICE FOR REDUCING CO AND NOX EMISSIONS IN A HEATER
    DE1802196A1 (en) Burner unit for radiator
    DE2808874A1 (en) METHOD AND DEVICE FOR GENERATING A HOT GAS FLOW
    DE2952502A1 (en) METHOD FOR CONTROLLING THE CONTACT KINETIC FLAMELESS COMBUSTION AND BOILER FOR CARRYING OUT THIS METHOD
    DE69930337T2 (en) Boiler with catalytic combustion
    DE1551767A1 (en) Burners for flowing fuels
    EP2347177B1 (en) Device for burning a fuel/oxidant mixture
    DE69929769T2 (en) Burner assembly and burner head for gas mixture combustion
    WO2007090692A2 (en) Waste heat steam generator with pore burners
    EP3105504B1 (en) Process of operating an ultra-small-scale combustion plant for biogenic solid fuels and ultra-small-scale combustion plant
    DE3927378C2 (en)
    AT407915B (en) AIR DUCTING DEVICE FOR THE AIR OF HEATING EQUIPMENT
    DE2745493A1 (en) METHOD AND DEVICE FOR COMBUSTION OF EXPLOSIBLE GASES
    EP0249087B1 (en) Infrared radiant heater for large spaces
    AT299490B (en) Burners for liquid and / or gaseous fuels
    DE1431615B2 (en) DEVICE FOR CONTACTLESS CARRYING OF DISC-SHAPED WORKPIECES ON A G OF COMBUSTIBLE FLAMMABLE MEDIA FOR THE PURPOSE OF HEAT TREATMENT
    DE2215101C3 (en) Process for heating or vaporizing fluids by radiation

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19950223

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: TRIMIS, DIMOSTHENIS

    Owner name: DURST, FRANZ, PROF. DR.

    Owner name: APPLIKATIONS- UND TECHNIKZENTRUM FUER ENERGIEVERFA

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: DIMACZEK, GEROLD

    Inventor name: TRIMIS, DIMOSTHENIS

    Inventor name: DURST, FRANZ

    17Q First examination report despatched

    Effective date: 19961007

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

    REF Corresponds to:

    Ref document number: 176039

    Country of ref document: AT

    Date of ref document: 19990215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59407692

    Country of ref document: DE

    Date of ref document: 19990304

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990302

    ET Fr: translation filed
    ITF It: translation for a ep patent filed

    Owner name: MODIANO & ASSOCIATI S.R.L.

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: GESELLSCHAFT ZUR VERWERTUNG DER PORENBRENNER-TECHN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2129659

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990407

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: GESELLSCHAFT ZUR VERWERTUNG DER PORENBRENNER-TECHN

    NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

    Free format text: PAT. BUL. 07/99 PAGE 942: CORR.: GESELLSCHAFT ZUR VERWERTUNG DER PORENBRENNER-TECHNIK (GVP) GBR MIT HAFTUNGSBESCHRAENKUNG.

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: ROBERT BOSCH GMBH

    Effective date: 19991020

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: ROBERT BOSCH GMBH

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBO Opposition rejected

    Free format text: ORIGINAL CODE: EPIDOS REJO

    PLBN Opposition rejected

    Free format text: ORIGINAL CODE: 0009273

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: OPPOSITION REJECTED

    27O Opposition rejected

    Effective date: 20001117

    NLR2 Nl: decision of opposition
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20110728

    Year of fee payment: 18

    Ref country code: DK

    Payment date: 20110728

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20120730

    Year of fee payment: 19

    Ref country code: IE

    Payment date: 20120730

    Year of fee payment: 19

    Ref country code: SE

    Payment date: 20120730

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20120731

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20120731

    Year of fee payment: 19

    Ref country code: ES

    Payment date: 20120730

    Year of fee payment: 19

    Ref country code: FR

    Payment date: 20120809

    Year of fee payment: 19

    Ref country code: DE

    Payment date: 20120727

    Year of fee payment: 19

    Ref country code: IT

    Payment date: 20120730

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20120730

    Year of fee payment: 19

    Ref country code: PT

    Payment date: 20120702

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20120727

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20140102

    BERE Be: lapsed

    Owner name: *GVP G. ZUR VERWERTUNG DER PORENBRENNER-TECHNIK GB

    Effective date: 20130731

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59407692

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20140201

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    Effective date: 20130731

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 176039

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20130701

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20130701

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: ML

    Ref document number: 990401063

    Country of ref document: GR

    Effective date: 20140204

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20140331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130702

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59407692

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F23C0011000000

    Ipc: F23C0013000000

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140204

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140102

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59407692

    Country of ref document: DE

    Effective date: 20140201

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 59407692

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F23C0011000000

    Ipc: F23C0013000000

    Effective date: 20140526

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: MAXIMUM VALIDITY LIMIT REACHED

    Effective date: 20140701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140808

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130702

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140708

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20140109