JPS5949403A - Method and device for combustion - Google Patents

Method and device for combustion

Info

Publication number
JPS5949403A
JPS5949403A JP16045682A JP16045682A JPS5949403A JP S5949403 A JPS5949403 A JP S5949403A JP 16045682 A JP16045682 A JP 16045682A JP 16045682 A JP16045682 A JP 16045682A JP S5949403 A JPS5949403 A JP S5949403A
Authority
JP
Japan
Prior art keywords
combustion
air
fuel
gas
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16045682A
Other languages
Japanese (ja)
Other versions
JPH0222285B2 (en
Inventor
Ryozo Echigo
越後 亮三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16045682A priority Critical patent/JPS5949403A/en
Publication of JPS5949403A publication Critical patent/JPS5949403A/en
Publication of JPH0222285B2 publication Critical patent/JPH0222285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/006Flameless combustion stabilised within a bed of porous heat-resistant material

Abstract

PURPOSE:To enable effective suppression of production of thermal NOX and an unburnt matter, such as CO, UHC, through uniformity of temperature distribution during combustion, and to improve combustion efficiency, by a method wherein fuel gas and gas containing oxygen are burnt within a block formed by an air-permeable solid having an enoughly high void volume. CONSTITUTION:Air-permeable solids 24, having a lower void volume than that of an air-permeable solid forming a combustion block 12, are connected to the upstream side and the downstream side of combustion gas of said block 12. A flow distributer 16 uniforms the flow of a mixed fuel MF and simultaneously disperses it uniformly, and combustion starts under condition in which the fuel is sealed in spaces in the air-permeable solid partitioned into the blocks 12. In which case, high-efficient heat exchange takes place, and the latent heat in combustion gas is converted into a large quantity of the solid radiation heat. In this case, by the effect of solid contact, low-temperature combustion gas is increased in temperature, the temperature of high-temperature combustion gas is suppressed, and temperature is leveled on the whole to provide uniform combustion, resulting in reduction in production of thermal NOX.

Description

【発明の詳細な説明】 この発明は、燃焼方法およびその装置に関−4ろもので
あって、一層詳細には、空隙率の充分大きい所謂通気性
固体中で混気燃料の高負荷燃力°口d1って均一な温度
分布を得、窒素酸化物(NOx)の発生や−・酸化炭素
(CO)、未燃炭化水素(UIIC)等の未燃分の発生
を抑制し、併せて高温の燃焼ガスを容易に得ることので
きる燃焼方法およびこれを実施するための燃焼装置に関
するもので、ちる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion method and an apparatus thereof, and more particularly, the present invention relates to a combustion method and an apparatus for the same, and more particularly, the present invention relates to a combustion method and an apparatus thereof, and more particularly, to a combustion method and an apparatus for the same. °The port d1 obtains a uniform temperature distribution, suppresses the generation of nitrogen oxides (NOx), and unburned substances such as carbon oxides (CO) and unburned hydrocarbons (UIIC), and also suppresses the generation of unburned substances such as carbon oxides (CO) and unburned hydrocarbons (UIIC). This invention relates to a combustion method that can easily obtain combustion gas, and a combustion apparatus for carrying out the method.

各種燃料を燃焼させて高温の燃焼ガスを得、これをボー
rうや炉等の加熱源とし、たり、ストーブ等の暖房源に
利用したりするに際して、燃料と気体との混合物からな
る混気燃料をバーナ(例えばシュバンクバーナ)から圧
力供給し、これに点火して火炎燃焼を行うのが一般的で
ある。しかるにこの所謂火炎燃焼では、その燃焼411
・賊におりる均一な燃焼の達成が困難である。このため
、火炎中に温度の局所的に高い部分や低い部分が存在し
、燃焼時の副産物どして有害な窒素酸化物(NOx)が
発生したり、その他−酸化炭素(CO)や未燃炭化水素
(UUC)が容易に発生する傾向がある。
When various fuels are burned to obtain high-temperature combustion gas and used as a heating source for a bowl or furnace, or as a heating source for a stove, etc., an air mixture consisting of a mixture of fuel and gas is generated. Generally, fuel is supplied under pressure from a burner (for example, a Schwanck burner) and ignited to perform flame combustion. However, in this so-called flame combustion, the combustion 411
・It is difficult to achieve uniform combustion. For this reason, there are locally high and low temperature areas in the flame, and harmful nitrogen oxides (NOx) are generated as byproducts during combustion, as well as carbon oxides (CO) and unburned Hydrocarbons (UUC) tend to be easily generated.

従って、公害防止の見地から行政上の排出量規制が強化
されるに伴い、硫黄分や窒素分の少い燃料への転換や1
1¥煙脱硝装置の設置、その他低NOx化等の努力がな
されているが、設ff1l費用の増大や技術的な問題か
ら、規制値達成が困イ、な現状となっている。
Therefore, as administrative emissions regulations are strengthened from the perspective of pollution prevention, there is a shift toward fuels with lower sulfur and nitrogen content, and
Efforts have been made to install smoke denitrification equipment and other measures to reduce NOx, but the current situation is that it is difficult to achieve the regulation value due to increased installation costs and technical problems.

このような所謂「サーマルN0xJは、燃料の燃焼時に
空気中の窒素と酸素とが反応して生成するものであるが
、燃焼温度が高くなるにつれて前記反応が激しくなり、
従ってその最大温度によりサーマルNOxの排出量が決
定されることが判明している。
Such so-called "thermal N0xJ" is generated by the reaction between nitrogen and oxygen in the air during fuel combustion, but as the combustion temperature increases, the reaction becomes more intense.
Therefore, it has been found that the amount of thermal NOx emissions is determined by the maximum temperature.

そして、通常の炎燃焼では温度分布が一定していないた
め、局部的に高温(例えば1400℃)の個所が生じ、
サーマルNOx発生増大の原因とな〕でいる。
In normal flame combustion, the temperature distribution is not constant, so there are localized areas of high temperature (for example, 1400 degrees Celsius).
This is the cause of increased thermal NOx generation.

また、前記−酸化炭素(CO)や未燃炭化水素(UII
C)の発生も、燃焼ガスの燃焼温度と密接に関連してお
り、後述する触媒を用いた接触燃焼実験によれば、燃焼
温度が900°C以]・の@合に1,0、Ull〔は急
激に増大し、1000℃以上ではc、o、 uncとも
殆んど発生しないことが、確認されでいる。このように
サーマルNOxやC01UUCは、燃りJ℃高湿度関係
するため、高性能の触媒を用いた接触燃焼法の研究が近
時なされ、1000℃以」二の高湿度領域の燃焼を均一
かつ安定に行うことにより、NOx雪の光生を有効か−
)大幅に低減させる実績が得られている。
In addition, -carbon oxide (CO) and unburnt hydrocarbon (UII)
The occurrence of C) is also closely related to the combustion temperature of the combustion gas, and according to a catalytic combustion experiment using a catalyst described below, when the combustion temperature is 900°C or higher, 1,0, Ull It has been confirmed that [[] increases rapidly, and that c, o, and unc hardly occur at temperatures above 1000°C. In this way, thermal NOx and CO1UUC are associated with high humidity and combustion, so research on catalytic combustion methods using high-performance catalysts has recently been carried out to achieve uniform combustion in the high humidity region of 1000°C or higher. Is it possible to improve the photogeneration of NOx snow by doing it stably?
) We have a track record of significantly reducing this.

しかしなが1゛、、この触媒を使用する接触燃焼法をボ
イラ等の熱源用の燃焼装置やガスタービン等に応用する
に際しネックとなるのは、高温領域で長寿命の触媒【J
未だ開発されておらず、またこれに近い性能の触媒は極
めて高価となるため、ランニングコス1−が経済」二見
合わないことである。
However, the bottleneck in applying the catalytic combustion method using this catalyst to combustion equipment for heat sources such as boilers, gas turbines, etc. is that the long-life catalyst [J
It has not yet been developed, and catalysts with similar performance would be extremely expensive, so the running cost of 1- is not worth the cost.

更に、従来の火炎燃焼では、火炎としての燃焼反応が終
了した後に得られる高温の燃焼ガスは、その顕熱を充分
に熱源として在勤利用されないまま(すなわち大量の熱
エネルギーを未だ保有したまま)大気中に放散排出され
ているのが現状であって、ガス顕熱の有効利用が、省エ
ネルギーの見地から未解決1iIfI題として残されて
いた。
Furthermore, in conventional flame combustion, the high-temperature combustion gas obtained after the combustion reaction as a flame has finished is released into the atmosphere without its sensible heat being fully utilized as a heat source (that is, while still retaining a large amount of thermal energy). At present, gas is dissipated and discharged into the atmosphere, and the effective use of gas sensible heat remains an unresolved problem from the standpoint of energy conservation.

このような前記の問題点に鑑み、サーマルNOxやCO
,tlllc等の発生を低減抑制することができ、しか
も燃焼ガス中の顕熱を有効に引出し71高温の燃焼ガス
を得ることのできる新規な燃焼力法を求めて、発明者は
鋭意研究に努めた結果、空隙率の充分大きい所謂通気性
固体を使用して燃3ft、:l’ Illツクを構成し
、この燃焼ブロック中で燃1’lガスと空気との混合物
からなる混気燃料を燃焼さ田るようにすれば、後に述べ
るように通気性固体の大きな表面rtt(伝熱面積)故
に、近接する気体1)固体とほとんど等しい温度になり
、一方円体間は強い0輻射の授受により温度分布が平滑
化されるため均一・に燃焼し、その結果としてサーマル
NOxの発生が抑制され、更に未燃焼成分も高温に加熱
された通気性固体の細線に接触して再燃焼し、COやU
IICの発生も有効に抑制されることを突き止めた。
In view of the aforementioned problems, thermal NOx and CO
In search of a new combustion force method that can reduce and suppress the occurrence of , tlllc, etc., and also effectively draw out the sensible heat in the combustion gas and obtain high-temperature combustion gas, the inventor has made extensive research efforts. As a result, a so-called breathable solid with a sufficiently large porosity was used to construct a combustion block of 3ft, and a mixed fuel consisting of a mixture of gas and air was combusted in this combustion block. If the air-permeable solid has a large surface rtt (heat transfer area), as will be described later, the temperature of the adjacent gas (1) will be almost the same as that of the solid, while the temperature between the circular bodies will be the same due to the exchange of strong zero radiation. Because the temperature distribution is smoothed, combustion occurs uniformly, and as a result, the generation of thermal NOx is suppressed.Furthermore, unburned components come into contact with the fine wires of the permeable solid heated to high temperatures and are reburned, producing CO and U
It was found that the occurrence of IIC was also effectively suppressed.

しかも、後述する特性を有する通気性固体中で燃焼が行
われる結果として、燃焼ガスに含まれる顕熱が大量の輻
射熱に変換さiシるので極めて燃焼効率に優れ、高温の
燃焼ガスが容易に得られて、省エネルギーに大きく寄与
することも判った。
Furthermore, as a result of combustion taking place in an air-permeable solid having the characteristics described below, the sensible heat contained in the combustion gas is converted into a large amount of radiant heat, resulting in extremely high combustion efficiency and the ability to easily burn high-temperature combustion gas. It was also found that it greatly contributes to energy saving.

従って本説明に係る燃焼方法は、燃料ガスと空気との混
合物からなる混気燃料を、空隙率の、充分大きい通気性
固体で構成した燃焼ブロックに供給し、この燃焼ブロッ
ク中で前記混気燃料の燃焼を行うことを特徴とする特 また、本発明に係る燃焼装置i″fは、燃料ガスと空気
との混合物を供給する混気燃料供給管の開口側に、空隙
率の充分大きい通気性固体からなる燃焼ブロックを接続
したことを特徴と・1゛る。。
Therefore, in the combustion method according to the present description, a mixed fuel consisting of a mixture of fuel gas and air is supplied to a combustion block made of an air-permeable solid having a sufficiently large porosity, and in this combustion block, the mixed fuel is Particularly, the combustion device i″f according to the present invention is characterized in that the combustion device i″f according to the present invention is characterized in that the combustion device i″f has an air permeability with a sufficiently large porosity on the opening side of the mixed fuel supply pipe that supplies the mixture of fuel gas and air. It is characterized by connecting combustion blocks made of solid.

また、本願の別の発明に係る燃焼装置は、燃料ガスど空
気どのd1合物を供給する混気燃料供給管の開口側に、
空隙率の充分大きい通気性固体からなる燃焼ブロックを
接続し、この燃焼ブロックの燃焼ガスJJC出側に、該
ブロックを構成する通気性固体よりも空隙率の小さい通
気性固体を接続配置したことを特徴とする。
In addition, the combustion device according to another invention of the present application includes, on the opening side of the mixture fuel supply pipe that supplies the d1 mixture of fuel gas and air,
A combustion block made of a permeable solid having a sufficiently large porosity is connected, and a permeable solid having a smaller porosity than the permeable solid constituting the block is connected to the combustion gas JJC outlet side of this combustion block. Features.

更に本願の別の発明に係る燃焼装置は、燃料ガスと空気
との混合物を供給する混気燃料供給管の開口側に、空隙
率の小さい通気性固体を介して空隙率の充分大きい通気
性固体からなる燃焼ブロックを接続し、この燃焼ブロッ
クの燃焼ガス排出側に、該ブロックを構成する通気性固
体よりも空隙率の小さい通気性固体を接続配置11シた
ことを特徴とする。
Furthermore, in the combustion device according to another invention of the present application, a gas permeable solid having a sufficiently large porosity is inserted through a gas permeable solid having a small porosity on the opening side of the mixed fuel supply pipe that supplies a mixture of fuel gas and air. A combustion block consisting of the above is connected, and a permeable solid having a lower porosity than the permeable solid constituting the block is connected to the combustion gas discharge side of the combustion block.

なお、本願発明において、所、!PI通気性固体は、極
めて重要なウェイトを占めるものであるので、好適実施
例の説明に先立ち、この通気性固体の概略を述べること
とする。木明III −!に所謂通気4′1固体とは、
金属、セラミックス等の耐熱性材料を網状、ハニカム状
、繊維状等の名神形態に成形して通気性を持たせ、かつ
光その他熱線を透過さu f+Tiい適宜厚さの固体媒
体と定義することができる、。
In addition, in the present invention, places,! Since the PI air-permeable solid occupies a very important weight, a general description of this air-permeable solid will be given before describing the preferred embodiments. Kimei III-! What is the so-called aeration 4'1 solid?
Defined as a solid medium made of heat-resistant materials such as metals and ceramics into shapes such as nets, honeycombs, and fibers to provide air permeability and an appropriate thickness of U f + Ti that transmits light and other heat rays. I can do it.

これは、細線または細粒が多数焦合して構成されたもの
と考えられ、その実質的な表面積は極め一〇太きい。そ
して、固体の輻射射出能力は気体よりも充分高いもので
あるから、前記通気性固体に燃焼ガスを通過させると、
燃焼ガスの顕熱が表面積の極めて大きい固体と接触して
高効率の熱交換が行われ、大量の固体輻射熱を発生する
。この上′)な特性を有する固体伝熱変換素子を通気性
固体と称する。なお、この通気性固体は、燃焼ガスのト
流で熱交換により熱を奪フても、IニーAt側には殆ん
ど影響がでない、という特性がある。
This is thought to be composed of a large number of focused fine wires or fine grains, and its substantial surface area is extremely large. Since the radiation emission ability of a solid is sufficiently higher than that of a gas, when the combustion gas is passed through the breathable solid,
When the sensible heat of the combustion gas comes into contact with a solid with an extremely large surface area, highly efficient heat exchange occurs, generating a large amount of solid radiant heat. A solid heat transfer conversion element having the above characteristics is called a breathable solid. Note that this breathable solid has a characteristic that even if heat is removed by heat exchange with the flow of combustion gas, the I knee At side is hardly affected.

前記通気性固体Sの輻射熱射出状態について、第1図に
示す模式図により説明すると、通気性固体Sは燃焼ガス
Gの流通方向に厚さXを有するため、燃焼ガス(]が固
体Sを通過・l−るとその層内で対流熱伝達が行わ扛1
曲線Cでii< 1’ W、11度勾配を生じる。そし
て古層χ1・・・・χ5におい”C燃焼ガスの顕熱は固
体帽η・1烈y、・・・・y5.乙・・・・z5に変換
さh、夫々燃焼ガスGの上流側(’/)及び単流側(Z
)に向かうが、この固体輻射熱の内’74 g¥5及び
乙、7.2は通気性固体Sの前後方向の厚みに応じて遮
蔽されて減衰し、その結果大部分の輻射熱J(が燃焼ガ
スGの」二流側(Y)に射出される。
The radiant heat emission state of the breathable solid S will be explained using the schematic diagram shown in FIG. 1. Since the breathable solid S has a thickness X in the direction of flow of the combustion gas G, the combustion gas・Convection heat transfer takes place within the layer
In curve C, ii <1' W, resulting in an 11 degree slope. The sensible heat of the combustion gas in the ancient layer χ1... '/) and single flow side (Z
), but part of this solid radiant heat is shielded and attenuated according to the thickness of the breathable solid S in the front and back direction, and as a result, most of the radiant heat J ( The gas G is injected to the second flow side (Y).

次に、本発明に係る燃焼方法およびその装置につき、先
ず燃焼装置の好適な実施例を挙げて添伺図面を参照しな
がら説明し、作用効果に関連して燃焼方法の説明に及ぶ
ことどする。第2図は本発明に係る燃焼装置の1実施例
を示すものであって、燃料ガス(例えば都市ガス、天然
ガス、炉頂部ガス等の可燃性気体)と空気との混合物か
らなる混気燃料M1・′が、燃料供給源(図示せず)が
ら供給されて、混気燃料供給管1oに送給されるように
なっている。なお、燃焼ガス排出側から吸引ファン等に
より燃焼排ガスを吸引するようにずれば、d^気燃流M
Fを加圧供給しなくてもj;い。l、た、L1シ気燃料
MFは、後述のブロック体に流入する直前で燃料ガスと
空気とを混合するようにしてもよい。
Next, the combustion method and its device according to the present invention will be explained first by citing preferred embodiments of the combustion device, with reference to accompanying drawings, and then the combustion method will be explained in relation to its effects. . FIG. 2 shows one embodiment of the combustion apparatus according to the present invention, in which a mixture of fuel gas (for example, combustible gas such as city gas, natural gas, furnace top gas, etc.) and air is shown. M1.' is supplied from a fuel supply source (not shown) and is delivered to the mixed fuel supply pipe 1o. In addition, if the combustion exhaust gas is sucked in from the combustion gas exhaust side using a suction fan, etc., the d^air combustion flow M
There is no need to supply F under pressure. The fuel gas MF may be mixed with air immediately before flowing into the block body described later.

図中、参照符号12は、空隙率の充づ〉人さな通気性固
体からなる適宜立体形状のブロック体を示し、このブロ
ック体12の内部で、後述するように燃料の燃焼が行わ
れるので、以下これを燃焼ブロックと称する。
In the figure, reference numeral 12 indicates a suitably three-dimensional block made of air permeable solid with sufficient porosity, and combustion of fuel takes place inside this block 12, as will be described later. , hereinafter referred to as a combustion block.

前記温気燃料供給管10は図示の如く長形の開口部14
を有し、この開口側に、+’+if記空隙串の空隙大き
な通気性固体からなる燃焼プロッタ12が接続配置され
ている。この場合、供給’i’ I Oの開口部14と
燃焼ブロック12との間には、セラミックプレー1−に
多数の細孔を穿設してなる整流格子の如き整流手段16
を介在させで、供給管1゜から加圧供給される温気燃料
M r”を均一に勺赦し。
The hot air fuel supply pipe 10 has an elongated opening 14 as shown in the figure.
A combustion plotter 12 made of an air-permeable solid material with a large air gap skewer is connected to this opening side. In this case, between the opening 14 of the supply 'i' I O and the combustion block 12, there is a rectifying means 16 such as a rectifying grid formed by drilling a large number of pores in the ceramic plate 1-.
The hot fuel M r'' supplied under pressure from the supply pipe 1° is uniformly released by interposing the fuel.

た後、燃焼ブロック12中に送り込むよう構成するのが
好ましい。
Preferably, the fuel is then fed into the combustion block 12.

この燃焼ブロック12を構成する通気性固体の空隙率は
、99%またはそれ以」二(換言すれば。
The porosity of the air permeable solid constituting this combustion block 12 is 99% or more (in other words).

充填率1%またはそれ以下)とするのが好ましく、この
ように空隙率の充分大きい通気性固体としては、例えば
耐熱性の金属細線を綿状に集塊させたブロック体や、耐
熱金網の多重積層体、その他セラミックス材料を軽石状
に発泡固化させた多孔質物体等がりf適に使用される。
It is preferable that the air-permeable solid material has a sufficiently large porosity (filling rate of 1% or less), and examples of breathable solids with a sufficiently large porosity include, for example, blocks made of a floc-like agglomeration of heat-resistant thin metal wires, or multiple layers of heat-resistant wire mesh. Laminated bodies and other porous objects made by foaming and solidifying ceramic materials into a pumice shape are suitably used.

この場合、通気性固体がどのR1度の空隙率であれば1
充分大きい」と云い得るか、が問題となるが、金網のよ
うにメツシュ数で表現するよりも、光学的厚さを基準と
して判断するのが最も適当である。)’/i学的厚さの
測定は、光源と照度計との間に被測定対象物どなる通気
性固体を介在させ、光がどれ位吸収されているか、を前
記照度側により求めるものであって、金属細線の線径そ
の他吸収系数を考慮して決定される。本実施例の場合、
燃焼ブロック12を構成する通気性固体として、燃焼ブ
ロック自体の大きさに応じて光学的厚さが1乃至1oの
範囲にある金属細線の集塊を使用したところ、好適な結
果が得られた。
In this case, if the air permeable solid has a porosity of R1 degree, then 1
The question is whether it can be said to be sufficiently large, but it is most appropriate to judge based on the optical thickness rather than expressing it by the mesh number as in the case of wire mesh. )'/iMeasurement of the optical thickness involves interposing a breathable solid material such as the object to be measured between the light source and the illuminance meter, and determining how much light is absorbed from the illuminance side. It is determined by considering the wire diameter and absorption coefficient of the thin metal wire. In the case of this example,
Suitable results were obtained by using an agglomerate of fine metal wires having an optical thickness in the range of 1 to 1 degrees depending on the size of the combustion block itself as the air permeable solid constituting the combustion block 12.

更にこの燃焼ブロック12は、混気燃料が流入して来る
上流側および燃焼ガスがfJN出される一1砦4ε側を
除いて、その外周を耐火性の断熱材料2oて囲繞して、
該ブロック12の外周からの輻射熱の逃出を遮蔽するよ
う構成しである。ずなわら、これによって輻射熱が、ブ
ロック12中に閉し込められることになる。
Furthermore, this combustion block 12 is surrounded by a fire-resistant heat insulating material 2o on its outer periphery, except for the upstream side where the mixed fuel flows in and the side of the 11th block 4ε where the combustion gas is discharged.
The structure is such that the escape of radiant heat from the outer periphery of the block 12 is blocked. However, this results in radiant heat being trapped within the block 12.

第3図は、本願に係る別の発明の実施例を示すものであ
って、第2図に示す熱交換装置を基本どし、その燃焼ブ
ロック12の燃力℃ガス排出側に、該ブロック12を構
成する通気性固体よりも空隙率の小さい通気性固体22
が接続配置されCいる。
FIG. 3 shows another embodiment of the invention according to the present application, which basically uses the heat exchange device shown in FIG. Air permeable solid 22 with a smaller porosity than the air permeable solid composing the air permeable solid 22
are connected and arranged.

この通気性固体22の空隙率は、90%乃至95%また
はそれ以上(換言すれば、充填率10%乃至5%または
それ以下)とするのが好ましい。本実施例の場合も、温
気燃料供給管の開し1部14と燃焼ブロック12との間
には、多孔板の如き整流手段16が介装されて、混気燃
料M Fを均一・に分1fRさせて該ブロック12中に
送り込むよう構成されており、更に燃焼ブロック12及
び通気性固体22の外周には、混欝1料が流入する上流
側および燃焼ガスが排出される下流側を除いて、耐火性
の断点材料20で囲繞しである。
The porosity of this breathable solid 22 is preferably 90% to 95% or more (in other words, the filling rate is 10% to 5% or less). In the case of this embodiment as well, a rectifying means 16 such as a perforated plate is interposed between the opening 14 of the hot fuel supply pipe and the combustion block 12 to uniformly distribute the mixed fuel MF. Furthermore, the outer peripheries of the combustion block 12 and the permeable solid 22 are arranged so as to be fed into the block 12 at a rate of 1fR, and the outer peripheries of the combustion block 12 and the air permeable solid 22 are covered except for the upstream side where the mixture 1 charge flows in and the downstream side where the combustion gas is discharged. and is surrounded by a fire-resistant breaking material 20.

第4図は、本願に係る更に別の発明の実施例を示ずもめ
であって、第2図に示す基本構成において、燃焼ブロッ
ク12の燃焼ガスJ−,’tAt側および下流側に、夫
々該ブロック12を構成する通気性固体よりも空隙率の
小さい通気性固体24を接続配置したものである。この
通気性固体24の空隙率は、90%乃至95%またはそ
れ以L(換言すれば、充填率10%乃至5%またはぞJ
L以下)とするのが好ましい。この実施例の@合、混気
燃料供給管10の開11部14は一方の通気性固体24
に接続されていて、供給管10から加圧送給された温気
燃料は、この通気性固体24を通過する際に均一に分散
されるので、前記第2図及び第3図に示す実施例のよう
に整流手段16を別途配設する必要はない。イ11シ、
燃焼ブロック12および通気性固体24.24の外周か
ら輻射熱が逃出するのを遮蔽する目的で、耐火性の断熱
月料20によす図示の通り囲繞しであることは、第2図
及び第3図に示す実施例と同様である。
FIG. 4 shows a housewife showing still another embodiment of the invention according to the present application, in which in the basic configuration shown in FIG. Air permeable solids 24 having a smaller porosity than the air permeable solids constituting the block 12 are connected and arranged. The porosity of this breathable solid 24 is 90% to 95% or more (in other words, the filling rate is 10% to 5% or more).
L or less) is preferable. In this embodiment, the opening 11 portion 14 of the fuel mixture supply pipe 10 is connected to one of the permeable solids 24.
The hot fuel supplied under pressure from the supply pipe 10 is uniformly dispersed when passing through the air-permeable solid 24, so that the embodiment shown in FIGS. Thus, there is no need to separately provide the rectifying means 16. I11,
Surrounding the combustion block 12 and the permeable solids 24, 24 as shown in FIGS. This is similar to the embodiment shown in FIG.

次に、このように構成した本発明に係る燃がC1々置の
作用および効果につき、燃焼方法との関係において、以
下説明する。第2図に示す実施例において、供給管10
を介して混気燃IIM+”を供給すると、この混気燃料
は整流手段16によりその流れを整えられると共に均一
に分散して、燃焼ブロック12中に送給される。参照狩
野2Gで示す点火手段(例えばヒーータまたはスパーク
プラグ)により混気燃料に点火すると、ブ【」ツタ12
としで画成される通気性固体の空間中に封じ込められた
状態で、燃焼が開始される。通気性固体は、先に述べた
ように、実質的な比表面積が極めて大きく、固体の輻射
射出能力は気体より’b充づ)に高いtJのであるから
、燃焼反応が終了した高温の燃焼ガスが通気性固体に接
触することにより高効宇の熱交換が行われ、燃焼ガス中
の顕熱lよ大川の固体中1.1 り=1熱に変換される
。このとき、固体接触の効果により燃焼ガスの低い温度
のところは’jl−,1:げらit、また高い温度のと
ころは押えられるため、全体として温度が平担化し、均
一な燃焼が得られる(通常の火炎燃焼では、火炎面に局
部的に高い温度や低い温度のところが生じる)。このよ
うに温度が均一化される結果として、サーマルNOxの
発生が低減化される。これは、サーマルNOxは燃焼温
度が高くなると共に窒素と酸素との反応が激しくなるが
、本発明に係る装置では、その原因となる局所的な温度
上昇がないからである。また、通常はサーマルNOxを
低減させるべく燃焼温度?r降下させると、COやUI
IC等の未燃分が発生するが1本発明装置では、未燃分
は高温の金属細線等の通気性固体に接触して燃焼がなさ
れるので、COや01IC等の未燃分が発生して大気を
汚染する惧れがない。
Next, the functions and effects of the combustion engine C1 according to the present invention configured as described above will be explained below in relation to the combustion method. In the embodiment shown in FIG.
When the air-fuel mixture IIM+ is supplied through the air-fuel mixture IIM+, the flow of this air-fuel mixture is adjusted by the straightening means 16, and the mixture is uniformly dispersed and fed into the combustion block 12.The ignition means shown by reference Kano 2G When the air-fuel mixture is ignited by a heater or spark plug (for example, a heater or spark plug), a
Combustion is initiated while confined within the air-permeable solid space defined by the aperture. As mentioned earlier, air permeable solids have an extremely large practical specific surface area, and the radiation emission capacity of solids is higher than that of gases (tJ), so the high temperature combustion gas after the combustion reaction has finished. Highly effective heat exchange occurs when the gas comes into contact with an air-permeable solid, and the sensible heat l in the combustion gas is converted to 1 heat in the Okawa solid. At this time, due to the effect of solid contact, the low temperature parts of the combustion gas are suppressed, and the high temperature parts are suppressed, so the temperature becomes even as a whole and uniform combustion is obtained. (In normal flame combustion, there are locally high and low temperature areas on the flame surface.) As a result of this temperature uniformity, the generation of thermal NOx is reduced. This is because thermal NOx has a higher combustion temperature and a more intense reaction between nitrogen and oxygen, but in the device according to the present invention, there is no local temperature increase that would cause this. In addition, combustion temperature is usually used to reduce thermal NOx. When lowered, CO and UI
Unburned components such as IC are generated, but in the device of the present invention, unburned components such as CO and 01IC are generated as the unburned components come into contact with a permeable solid such as a high-temperature metal wire and are combusted. There is no risk of polluting the air.

次に、第3図に示す実施例では、燃焼ブロック12の燃
焼ガス排出側に通気性固体2.2が接続配置されている
。このため、高温の燃焼ガスが前記通気性固体22に流
入して、ここでも高効率の熱交換が行われ、該燃焼ガス
中の顕熱が大量の固体輻射熱に変換される。しかも、第
1図に示す模式図を参照して理論説明したように、得ら
れる大量の輻射熱の大部分は燃焼ガスの」−流側、すな
わち燃焼ブロック12に向けて射出されるから、該ブロ
ック12中の輻射熱は更に増大し、燃焼ガスの温度が一
層上昇してかつ平担化することになる。
Next, in the embodiment shown in FIG. 3, a permeable solid 2.2 is connected and arranged on the combustion gas discharge side of the combustion block 12. Therefore, high-temperature combustion gas flows into the air-permeable solid 22, where highly efficient heat exchange is performed, and the sensible heat in the combustion gas is converted into a large amount of solid radiant heat. Moreover, as explained theoretically with reference to the schematic diagram shown in FIG. The radiant heat in the combustion chamber 12 further increases, and the temperature of the combustion gas further increases and becomes even.

また、第4図に示す実施例では、燃焼プロ7り12を挾
んで両側に通気性固体2 /Iが夫々接続配置されてい
る。そして、混気燃料M Fの燃焼は、第2図に示す実
施例と同様に、燃焼ブロック12中で行われる訳である
から、各通気性固体24に対する燃焼ガスの」二流側は
、常に当該ブロック12中に存在することになる。従っ
て、該ブし1ツク12中で生成した高温の燃焼ガスが、
各通気性固体24に流入してガス中の顕熱を大量の固体
輻射熱に変換させると、得られたIIq4射熱は、第3
図に示す実施例と同様に、燃焼ガスの−1−流側である
燃焼ブロック12に向けて射出されることになる。
Further, in the embodiment shown in FIG. 4, breathable solids 2/I are connected and arranged on both sides of the combustion chamber 7 and 12, respectively. Since the combustion of the mixed fuel M F is carried out in the combustion block 12 as in the embodiment shown in FIG. It will be present in block 12. Therefore, the high temperature combustion gas generated in the book 12
When the sensible heat in the gas is converted into a large amount of solid radiant heat by flowing into each breathable solid 24, the obtained IIq4 radiant heat is
Similar to the embodiment shown in the figure, the combustion gas is injected toward the combustion block 12 on the -1- flow side.

しかも本実施例の場合は、ブロック12を挾んで両側か
ら輻射熱が射出されるようになっているので、該ブロッ
ク12中の燃焼温度は極めて」二4し、かつ平担化され
る。
Moreover, in the case of this embodiment, since radiant heat is emitted from both sides of the block 12, the combustion temperature in the block 12 is extremely low and even.

そして、第2図乃至第3図に示す何れの燃焼装置におい
ても、燃焼ブロック12中で得られた温度分布の平担化
した高温の燃焼ガスは、図示のようにド流側に向けて封
、出され、ガスタービンや大型ボイラ、その他」二業用
炉や暖房装置等の熱源として利用される。
In any of the combustion apparatuses shown in FIGS. 2 and 3, the high temperature combustion gas with a flattened temperature distribution obtained in the combustion block 12 is sealed toward the downstream side as shown in the figure. It is used as a heat source for gas turbines, large boilers, and other industrial furnaces and heating equipment.

以」二詳細に説明したように、本発明に係る燃焼方法及
びその装置によれば、混気燃料を通気性固体からなる燃
焼ブロック中で燃焼させることにより、固体接触の効果
によって燃焼時の温度分布を均一にさせることができ、
こ」tによってサーマルNOXの発生や、CO,ull
c等の未燃分の発生を有効に抑制することができる。し
かも通気性固体の特性として、燃焼ガスが比表面積の1
4I)で大きい該通気性固体と接触する際に高効率の熱
交換が行われ、燃焼ガスの顕熱は大量の固体輻射熱に変
換されるものであるため、燃焼ブロック中での燃焼温度
が均一に上昇し、優れた燃焼効率が得られるものである
As described in detail below, according to the combustion method and apparatus according to the present invention, by burning the mixed fuel in a combustion block made of air-permeable solid, the temperature during combustion is reduced by the effect of solid contact. The distribution can be made uniform,
This may cause the generation of thermal NOX, CO, or
It is possible to effectively suppress the generation of unburned substances such as c. Moreover, as a characteristic of breathable solids, the combustion gas is 1% of the specific surface area.
4I) Highly efficient heat exchange occurs when it comes into contact with the large breathable solid, and the sensible heat of the combustion gas is converted into a large amount of solid radiant heat, so the combustion temperature in the combustion block is uniform. This increases the combustion efficiency and provides excellent combustion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通気性固体の輻射熱量状態を示す模式図、第2
図は本発明に係る燃焼方法に実施するための燃焼装置の
概略構成図、第:3図は別の発明しこ係る燃焼装置の概
略構成図、第4図3,1更に別の発明に係る燃焼装置の
概略構成図である。 10・・・・混気燃料供給管 12=、、−°燃焼ブロ
ック。 14・・・・開口部     16・・・・整流手段2
0・・・・耐火性断熱材 22.24・・・・通気性固体 26・・・・点火手段 特許出願人  越 後 亮 三 同          吉  澤  着  男同   
    大同特殊m株式会社 手続補正書(自発) 昭和58年12月12日 特許庁長官 若 杉 和 夫 殿 1、事件の表示  昭和57年特許願第160456号
2、発明の名称  燃焼方法およびその装置3、補正を
する者 事件との関係  特許出願人 住 所  東京都江東区越中島1丁目3番17−603
号氏名 越後亮三(はが2名) 4、代理人〒460 (1)明細書の「特許請求の範囲」の欄および「発明の
詳細な説明」の欄 補正書 特願昭57−160456号 1、明細書第1頁第4行〜第2頁第15行特許請求の範
囲を次の通り補正する。 「2、特許請求の範囲 (1)燃料ガスと贅人■育欠盗上を、空隙率の充分大き
い通気性固体で構成した皿焼ブロックに供給し、この燃
焼ブロック中で前記燃料ガスおよび酸素含有気体の燃焼
を行うことを特徴とする燃焼方法。 (2)燃料ガス供給管および酸素含有気体供給管の開口
側に、空隙率の充分大きい通気性固体からなる燃焼ブロ
ックを接続したことを特徴とする燃焼装置。 (3)麓圭Jフ1」■リムロ、!1fJJJ免生供給管
の開口部と燃焼ブロックとの間に、好ましくは星豆ガス
と酸素含有気体とを均一に分散して流通させるための整
流手段を介在させてなる特許請求の範囲第2項記載の燃
焼2装置。 (4)燃料ガス(b および 、′−鵠供給管の開口側
に、空隙率の充分大きい通気性固体からなる燃焼ブロッ
クを接続し、この燃焼ブロックの燃焼ガス排出側に、該
ブロックを構成する通気性固体よりも空隙率の小さい通
気性固体を接続配置したことを特徴とする燃焼装置。 (5)監且左ス應1 およびmへ一供給管の開口部と燃
焼ブロックとの間に、好ましくはlガスと一醸jW君」
1りd本(工を均一に分散して流通させるための整流手
段を介在させてなる特許請求の範囲第4項記載の燃焼装
置。 (6)燃料ガス(給管および酸素含有気体供給管の開口
側に、空隙率の小さい通気性固体を介して空隙率の充分
大きい通気性固体からなる燃焼ブロックを接続し、この
燃焼ブロックの燃焼ガス排出側に、該ブロックを構成す
る通気性固体よりも空隙率の小さい通気性固体を接続配
置、したことを特徴とする燃焼装置。」 2、同第6頁第16行〜第17行 「空気・・・燃料」を、 「酸素含有気体」と補正する。 3、同第6頁第19行 「混気燃料」を、 [燃料ガスおよび酸素含有気体」と補正する。 4、同第7頁第1行〜第2行 「と空気・・・燃料」を、 「供給管および酸素含有気体」と補正する。 5、同第7頁第6行 「と空気・・・燃料」を、 「供給管および酸素含有気体」と補正する。 6、同第7頁第13行 「と空気・・燃料」を、 「供給管および酸素含有気体」と補正する。 7、同第17頁第20行の次に、以下の通り加入する。 [なお前述した好適実施例については、燃料ガスと空気
との混合物からなる温気燃料を、共通の2rL気′燃料
供給管を介して燃焼ブロックに送り込む場合につき説明
したが、燃料ガス供、lI@管および空気供給管を独立
して設け、夫々の供給管を前記燃焼ブロックに接続して
、該燃焼ブロック中で燃Ji4ガスと空気との混合およ
び燃焼を行うようにしてもよい。更に前記燃焼ブロック
に入る以前または該ブロック中で燃料ガスと混合される
気体は、一般に空気とされるが、その他酸素を含有して
いる気体が適宜使用されるものである。」 16−
Figure 1 is a schematic diagram showing the state of radiant heat of a breathable solid, Figure 2
Figure 3 is a schematic diagram of a combustion apparatus for carrying out the combustion method according to the present invention, Figure 3 is a schematic diagram of a combustion apparatus according to another invention, and Figure 4 is a diagram of a combustion apparatus according to another invention. FIG. 1 is a schematic configuration diagram of a combustion device. 10...Mixture fuel supply pipe 12=,, -° combustion block. 14... Opening 16... Rectifying means 2
0...Fire-resistant insulation material 22.24...Breathable solid 26...Ignition means patent applicant Ryo Echigo Sando Yoshizawa Aruku Otoko Do
Daido Special M Co., Ltd. Procedural Amendment (Voluntary) December 12, 1980 Director of the Japan Patent Office Kazuo Wakasugi 1, Indication of the case 1981 Patent Application No. 160456 2, Title of the invention Combustion method and device 3 , Relationship with the case of the person making the amendment Patent applicant address 1-3-17-603 Etchujima, Koto-ku, Tokyo
Name: Ryozo Echigo (2 persons) 4. Agent: 460 (1) Written amendment in the “Claims” and “Detailed Description of the Invention” columns of the specification Patent Application No. 160456/1983 , page 1, line 4 to page 2, line 15 of the specification, the claims are amended as follows. 2. Scope of Claims (1) Fuel gas and oxygen are supplied to a pan-firing block made of an air-permeable solid having a sufficiently large porosity, and in this combustion block, the fuel gas and oxygen are supplied. A combustion method characterized by burning the gas contained. (2) A combustion block made of an air-permeable solid with a sufficiently large porosity is connected to the opening side of the fuel gas supply pipe and the oxygen-containing gas supply pipe. A combustion device that does this. (3) Roku Kei Jfu 1"■Rimuro,! 1fJJJ A rectifying means is interposed between the opening of the JJJ immune supply pipe and the combustion block to uniformly distribute and distribute the star bean gas and the oxygen-containing gas. Combustion 2 device as described. (4) A combustion block made of an air permeable solid with a sufficiently large porosity is connected to the opening side of the fuel gas (b and ,') supply pipe, and the block is configured on the combustion gas discharge side of this combustion block. A combustion device characterized in that a gas permeable solid having a lower porosity than the gas permeable solid is connected and arranged. Preferably L gas and Ikjo jW-kun.”
The combustion apparatus according to claim 4, comprising a rectifying means for uniformly distributing and circulating the fuel gas (fuel gas (supply pipe and oxygen-containing gas supply pipe)). A combustion block made of an air permeable solid with a sufficiently large porosity is connected to the opening side via an air permeable solid with a small porosity, and a combustion block made of an air permeable solid with a sufficiently large porosity is connected to the combustion gas discharge side of the combustion block. A combustion device characterized by a connected arrangement of air permeable solids with low porosity.'' 2. Corrected ``air...fuel'' in lines 16 and 17 of page 6 to ``oxygen-containing gas.'' 3. Correct "mixed fuel" in line 19 of page 6 to "fuel gas and oxygen-containing gas". 4. Correct "air...fuel" in lines 1 and 2 of page 7 of same. " is corrected to "supply pipe and oxygen-containing gas." On page 7, line 13, "and air...fuel" is corrected to "supply pipe and oxygen-containing gas." 7. Next to page 17, line 20, add the following. In the embodiment, a case has been described in which hot fuel consisting of a mixture of fuel gas and air is sent to the combustion block through a common 2rL air fuel supply pipe. Separate pipes may be provided, and each supply pipe may be connected to the combustion block to mix and burn the combustion gas and air in the combustion block.Furthermore, before entering the combustion block, Alternatively, the gas mixed with the fuel gas in the block is generally air, but other gases containing oxygen may be used as appropriate." 16-

Claims (1)

【特許請求の範囲】 (])燃料ガスと空気との混合物からなる温気燃料を、
空隙率の充分大きい通気性固体で構成した焼焼プロッタ
に供給し、この燃焼ブロック中で前記混気燃料の燃焼を
行うことを特徴とする燃焼方法。 (2)燃料ガスと空気との混合物を供給する混気燃料供
給管の開1.1側に、空隙率の/I、分大きい通気性固
体からなる燃焼ブロック登接続したことを特徴とする燃
焼装置。 (3)混気燃料供給管の開1111部ど燃に17iソ【
」ツクどの間に、好ましくは混気燃料を均一に分散して
流通させるための整流手段を介在させてなる特許請求の
範囲第2項記載の燃焼装置。 (4)燃料ガスと空気との混合物を供給する混気燃料供
給管の開口側に、空隙率の充分大きい通気性固体からな
る燃焼ブロックを接続し、この燃焼ブロックの燃焼ガス
排出側に、該フロックを構成する通気性固体よりも空隙
′6の小さい通気性固体を接続配置したことを特徴とす
る燃焼装置。 (5)混気燃料供給管の開口部と燃焼ブロックとの間に
、好ましくは混気燃料を均一に分11女し°C流通させ
るための整流手段を介在させてなる特il’1請求の範
囲第4項記載の燃焼装置。 (6)燃料ガスと空気との混合物を供給する混気燃料供
給管の開口側に、空隙率の小さい通気性固体を介して空
隙率の充分大きい通気性(J、1体かC)なる燃焼ブロ
ックを接続し、この燃焼ブし】〉・りの燃焼ガス排出側
に、該ブロックを構成する通気性固体よりも空隙率の小
さい通気性固体!115′続配置したことを特徴とする
燃焼装置。
[Claims] (]) Hot fuel consisting of a mixture of fuel gas and air,
A combustion method characterized in that the mixed fuel is supplied to a combustion plotter made of an air-permeable solid having a sufficiently large porosity, and the mixed fuel is combusted in this combustion block. (2) Combustion characterized in that a combustion block made of an air-permeable solid having a porosity of /I is connected to the open 1.1 side of the mixture fuel supply pipe that supplies a mixture of fuel gas and air. Device. (3) Open 1111 part of air-fuel mixture supply pipe 17i
3. The combustion apparatus according to claim 2, wherein a rectifying means is preferably interposed between the fuel mixture and the fuel mixture for uniformly distributing and circulating the fuel mixture. (4) Connect a combustion block made of air permeable solid with a sufficiently large porosity to the opening side of the mixed fuel supply pipe that supplies a mixture of fuel gas and air, and connect the combustion block to the combustion gas discharge side of this combustion block. A combustion device characterized in that air permeable solids having smaller voids '6 than the air permeable solids constituting the flocs are connected and arranged. (5) Preferably, a rectifying means is interposed between the opening of the fuel mixture supply pipe and the combustion block for uniformly distributing the fuel mixture at 11 °C. Combustion device according to scope 4. (6) Combustion with a sufficiently large air permeability (J, one body or C) through a gas permeable solid with a small air porosity on the opening side of the mixed fuel supply pipe that supplies a mixture of fuel gas and air. Connect the blocks and place this combustion gas exhaust side on the combustion gas exhaust side of the air-permeable solid, which has a smaller porosity than the air-permeable solid that makes up the block! A combustion device characterized in that 115' is arranged in series.
JP16045682A 1982-09-14 1982-09-14 Method and device for combustion Granted JPS5949403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16045682A JPS5949403A (en) 1982-09-14 1982-09-14 Method and device for combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16045682A JPS5949403A (en) 1982-09-14 1982-09-14 Method and device for combustion

Publications (2)

Publication Number Publication Date
JPS5949403A true JPS5949403A (en) 1984-03-22
JPH0222285B2 JPH0222285B2 (en) 1990-05-18

Family

ID=15715323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16045682A Granted JPS5949403A (en) 1982-09-14 1982-09-14 Method and device for combustion

Country Status (1)

Country Link
JP (1) JPS5949403A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016795A1 (en) * 1991-03-15 1992-10-01 Radian Corporation Apparatus and method for combustion within porous matrix elements
EP0539449A1 (en) * 1990-07-18 1993-05-05 Radian Corporation Combustion method and apparatus for staged combustion within porous matrix elements
WO1995001532A1 (en) * 1993-07-02 1995-01-12 Applikations- Und Technik Zentrum Für Energieverfahrens-, Umwelt Und Strömungstechnik Burner
NL1004647C2 (en) * 1996-11-29 1998-06-03 Fasto Nefit Bv Burner for gas and air mixture
US7771281B2 (en) 2005-02-17 2010-08-10 Mitsubishi Electric Corporation Gear coupling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509825A (en) * 1973-06-02 1975-01-31
JPS5272944A (en) * 1975-12-15 1977-06-18 Takao Ueshima Liquid fuel combustion method and its device
JPS5319732U (en) * 1976-07-29 1978-02-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509825A (en) * 1973-06-02 1975-01-31
JPS5272944A (en) * 1975-12-15 1977-06-18 Takao Ueshima Liquid fuel combustion method and its device
JPS5319732U (en) * 1976-07-29 1978-02-20

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539449A1 (en) * 1990-07-18 1993-05-05 Radian Corporation Combustion method and apparatus for staged combustion within porous matrix elements
WO1992016795A1 (en) * 1991-03-15 1992-10-01 Radian Corporation Apparatus and method for combustion within porous matrix elements
WO1995001532A1 (en) * 1993-07-02 1995-01-12 Applikations- Und Technik Zentrum Für Energieverfahrens-, Umwelt Und Strömungstechnik Burner
NL1004647C2 (en) * 1996-11-29 1998-06-03 Fasto Nefit Bv Burner for gas and air mixture
US7771281B2 (en) 2005-02-17 2010-08-10 Mitsubishi Electric Corporation Gear coupling

Also Published As

Publication number Publication date
JPH0222285B2 (en) 1990-05-18

Similar Documents

Publication Publication Date Title
JPH0626620A (en) Catalyst combustion unit system
JPS57192215A (en) Metal-heating oven
JPS61259013A (en) Catalyst combustion device
JPS5949403A (en) Method and device for combustion
JPH06511530A (en) catalytic converter
EP0791785A3 (en) Hot fluid generating apparatus
JPS5949494A (en) Heat exchanger
CN212901544U (en) Low-heat-value gas combustion system
CN209147148U (en) Counter-combustion coal stove and its device for reducing tar generation
CN209147149U (en) Counter-combustion coal stove and its secondary air-distributing device
JPS59167621A (en) Catalyst burner
JP4085219B2 (en) Combustion device
JPS6260605B2 (en)
JP3212002B2 (en) Low-nitrogen oxide alternating combustion method
CN2375890Y (en) Double-grate cyclone gas stove
JPS591918A (en) Heating device for promoting radiation
JPS58173302A (en) Improved gas combustion with low nox discharge
JP3053700B2 (en) Concentration combustion device
JPS605645B2 (en) Low NOx type heat treatment furnace
JP2001065805A (en) Combustion device
JPH025708A (en) Method for combusting unburned component in exhaust gas of engine
JPH0593515A (en) Water tube boiler
JPS604718A (en) Burner for surface combustion
JPS59210202A (en) Smokeless combustion device of fine bituminous coal or the like
CN116379425A (en) Low-heat value preheating type premixed porous medium burner