JPS61259013A - Catalyst combustion device - Google Patents

Catalyst combustion device

Info

Publication number
JPS61259013A
JPS61259013A JP60100997A JP10099785A JPS61259013A JP S61259013 A JPS61259013 A JP S61259013A JP 60100997 A JP60100997 A JP 60100997A JP 10099785 A JP10099785 A JP 10099785A JP S61259013 A JPS61259013 A JP S61259013A
Authority
JP
Japan
Prior art keywords
catalyst
gas flow
gas
combustion
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60100997A
Other languages
Japanese (ja)
Inventor
Kenji Arisaki
有崎 虔治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60100997A priority Critical patent/JPS61259013A/en
Publication of JPS61259013A publication Critical patent/JPS61259013A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To provide a catalyst combustion device having such a catalyst burner that can be used in a condition in which a theoretical combustion temperature exceeds a heat-resistant allowable temperature of a catalyst carrier by a method wherein a combustion heat of the catalyst in a gas flow passage is absorbed (discharged) into a gas flow passage having no catalyst. CONSTITUTION:In a catalyst burner, combustible gas composed of mixture of fuel and fuel such as BFG or the like is uniformly supplied to gas flow passages 4A and 4B formed within a catalyst carrier frame 1 of each of the units. At this time, the combustible gas flowed into the gas flow passage 4A to which the catalyst 3 is deposited on its inner circumferential surface is completely ignited in each of the gas flow passages 4A and in turn the combustible gas flowing through the gas flow passage 4B to which not catalyst is deposited on its inner circumferential surface does not self-ignite. Therefor, the combustible gas flowing through the gas flow passage 4B may absorb the combustion heat in the gas flow passage 4A adjacent to it during its passage in the gas flow passage 4B through an hineycomb carrier 2. With this arrangement, a raising in temperature of the catalyst carrier caused by catalyst combustion can be kept at a temperature less than a heat-resistant allowable temperature of the catalyst carrier, so that it is possible to employ a low excessive rate of air (normally 1.1 to 1.2).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は触媒燃焼装置に係り、特に燃料のカロリーによ
る制約がなく、低過剰空気率で燃焼できるとともに触媒
担体の耐熱許容温度以下に維持するのに好適な触媒燃焼
装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a catalytic combustion device, and in particular, it is not limited by the calorie of the fuel, can burn at a low excess air rate, and can maintain the heat resistance below the allowable temperature of the catalyst carrier. The present invention relates to a catalytic combustion device suitable for.

〔発明の背景〕[Background of the invention]

触媒燃焼は特に高炉ガス(以下、BFGという)等の低
カロリー燃料を安定燃焼させるのに有効な方法である。
Catalytic combustion is a particularly effective method for stably burning low-calorie fuels such as blast furnace gas (hereinafter referred to as BFG).

しかしながら、触媒燃焼方式では、第1に触媒層内で燃
料が自己着火するためには、燃料と空気との可燃混合気
を予め着火燃焼温度まで加熱する必要があること、第2
に燃焼触媒担体の耐熱許容温度に限界があるため、燃焼
時にはこの温度内に維持することが必要であること等の
問題点がある。
However, in the catalytic combustion method, firstly, in order for the fuel to self-ignite within the catalyst layer, it is necessary to heat the combustible mixture of fuel and air to the ignition combustion temperature in advance;
Since there is a limit to the allowable heat resistance temperature of the combustion catalyst carrier, there are problems such as the need to maintain the temperature within this range during combustion.

例えばCO:21%、CO□ :20%、H8:3%、
残二N2の組成からなり、発熱量が700kcaj!/
NrrrのBFGを燃焼する場合、BFGの主成分はC
Oであり、COの自己着火温度は200℃であるため、
安全を見込んで250℃程度に予熱する必要がある。ま
たBFGの発熱量は700kcaj!/Nn?と低カロ
リーであるので助燃なくしては安定燃焼できない、ただ
し触媒燃焼であればBFGの安定燃焼は可能である。し
かしながら第11図から明らかなように250℃の予熱
を行うとすると理論燃焼温度は1500℃程度となり、
燃焼触媒担体の耐熱許容温度である1200℃を超える
ことになる。第11図からは空気過剰率を2.5倍以上
としなければ燃焼温度を燃焼触媒担体の耐熱許容温度以
下に維持できることがわかる。しかしながら、空気過剰
率を高くすることは大流量の可燃混合気を加熱するため
の熱エネルギが極めて大きいものとなり、また高過剰空
気で燃焼することはボイラ等の燃焼装置の熱経済上好ま
しくない。
For example, CO: 21%, CO□: 20%, H8: 3%,
The composition consists of N2 and the calorific value is 700kcaj! /
When burning BFG of Nrrr, the main component of BFG is C.
O, and the self-ignition temperature of CO is 200°C, so
To ensure safety, it is necessary to preheat to approximately 250°C. Also, the calorific value of BFG is 700kcaj! /Nn? Since BFG has a low calorie content, stable combustion is not possible without auxiliary combustion. However, stable combustion of BFG is possible with catalytic combustion. However, as is clear from Figure 11, if preheating is performed at 250°C, the theoretical combustion temperature will be approximately 1500°C.
This exceeds 1200°C, which is the allowable heat resistance temperature of the combustion catalyst carrier. It can be seen from FIG. 11 that the combustion temperature can be maintained below the allowable heat resistance temperature of the combustion catalyst carrier unless the excess air ratio is set to 2.5 times or more. However, increasing the excess air ratio requires an extremely large amount of thermal energy to heat a large amount of combustible mixture, and combustion with a high excess air ratio is unfavorable from the viewpoint of thermoeconomics of a combustion device such as a boiler.

したがって、燃焼触媒担体の耐熱許容温度範囲内でかつ
過剰空気率を通常の1.1〜1.2程度にする触媒燃焼
法が要望されている。
Therefore, there is a need for a catalytic combustion method in which the excess air ratio is within the allowable temperature range of the combustion catalyst carrier and the excess air ratio is about 1.1 to 1.2.

従来の触媒バーナは第12図に示すようにBFGと空気
との混合気からなる可燃ガス26は予め着火燃焼温度ま
で昇温され、触媒担体27を通過して触媒層内で完全燃
焼して、火炎のない燃焼排ガス28を放出する。触媒担
体27は、第13図に示すように図示していない触媒担
体枠に囲まれた正方格子の基盤目状に形成された格子2
9の内表面全てに触媒30が蒸着されている。可燃ガス
26は格子29に形成される触媒蒸着面を有するガス流
路を通過する際、触媒30面に接触して自己着火し、ガ
ス流路を出たときは燃焼を完了するのが通例である。し
たがって格子29は、そのまま燃焼面となるため、第1
2図に示す触媒担体27の耐熱許容温度以上の燃焼温度
にさらされる。
In a conventional catalytic burner, as shown in FIG. 12, a combustible gas 26 consisting of a mixture of BFG and air is heated in advance to an ignition combustion temperature, passes through a catalyst carrier 27, and is completely combusted within a catalyst layer. Flameless combustion exhaust gas 28 is released. As shown in FIG. 13, the catalyst carrier 27 is a lattice 2 formed in the shape of a square lattice grid surrounded by a catalyst carrier frame (not shown).
A catalyst 30 is deposited on the entire inner surface of 9. When the combustible gas 26 passes through a gas flow path having a catalyst-deposited surface formed on the grid 29, it comes into contact with the catalyst 30 surface and self-ignites, and when it exits the gas flow path, combustion is usually completed. be. Therefore, since the grid 29 becomes the combustion surface as it is, the first
The catalyst carrier 27 shown in FIG. 2 is exposed to a combustion temperature higher than the allowable heat resistance temperature.

ハニカム状の触媒担体27は壁の厚さがIN以下に薄い
ため、触媒担体27の劣化が短期間に進行し、触媒担体
27の交換頻度が多くなる。
Since the honeycomb-shaped catalyst carrier 27 has a wall thickness as thin as IN or less, the catalyst carrier 27 deteriorates in a short period of time, and the catalyst carrier 27 is replaced more frequently.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、理
論燃焼温度が触媒担体の耐熱許容温度を超えるような条
件下でも使用可能な触媒バーナを存する触媒燃焼装置を
提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a catalytic combustion device that includes a catalytic burner that can be used even under conditions where the theoretical combustion temperature exceeds the allowable heat resistance temperature of the catalyst carrier.

〔発明の概要〕[Summary of the invention]

本発明は、内周面に触媒を有するガス流路に隣接して触
媒を有しないガス流路を設け、触媒が有するガス流路に
おける燃焼熱を触媒を有しないガス流路側に吸収(放出
)するようにしたものである。
The present invention provides a gas flow path that does not have a catalyst adjacent to a gas flow path that has a catalyst on the inner peripheral surface, and absorbs (releases) combustion heat in the gas flow path that has a catalyst to the gas flow path that does not have a catalyst. It was designed to do so.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the drawings.

第1図は本発明にかかる触媒燃焼装置における触媒担体
の一例を示す全体構成図、第2図は第1図のA−A線断
面図、第3図は第1図の要部拡大断面図である。
FIG. 1 is an overall configuration diagram showing an example of a catalyst carrier in a catalytic combustion device according to the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. 3 is an enlarged sectional view of the main part of FIG. 1. It is.

第1図〜第3図に示すように触媒担体は触媒担体枠l内
にハニカム状の触媒担体2が配置された構造となってお
り、ハニカム状の触媒担体2によって多数のガス流路が
形成されている。これらのガス流路のうち、交互(千鳥
状)に位置するガス流路の内周面には触媒3が蒸着され
、他のガス流路には触媒は蒸着されることなく担体から
なる内周面が形成されている。第3図において、触媒3
が蒸着されたガス流路4Aには図解をしやすいように特
に斜線を入れ、触媒が蒸着されていないガス流路4Bに
は斜線を入れることなく空白のままとされている。上記
のような触媒担体枠1を1つのユニットとして多数個の
ユニットが第12図に示したような触媒バーナ内に設置
される。
As shown in Figs. 1 to 3, the catalyst carrier has a structure in which a honeycomb-shaped catalyst carrier 2 is arranged within a catalyst carrier frame l, and a large number of gas flow paths are formed by the honeycomb-shaped catalyst carrier 2. has been done. Among these gas flow channels, the catalyst 3 is deposited on the inner peripheral surface of the gas flow channels located alternately (staggered), and the catalyst 3 is not deposited on the inner circumferential surface of the other gas flow channels, which are made of a carrier. A surface is formed. In Figure 3, catalyst 3
The gas flow path 4A where the catalyst is deposited is particularly marked with diagonal lines for ease of illustration, and the gas flow path 4B where the catalyst is not deposited is left blank without any diagonal lines. A large number of units including the catalyst carrier frame 1 as described above are installed in a catalyst burner as shown in FIG. 12.

この触媒バーナにおいて、BFG等の燃料と空気との混
合気からなる可燃ガスは各ユニットの触媒担体枠1内に
形成されるガス流路4A、4Bに均一に供給される。こ
のとき、内周面に触媒3が蒸着されたガス流路4Aが流
入した可燃ガスは各ガス流路4A内で完全燃焼し、一方
向周面に触媒が蒸着されていないガス流路4Bを流通す
る可燃ガスは自己着火しない。したがってガス流路4B
を流通する可燃ガスは、ガス通路4Bを通過する過程で
隣接するガス流路4A内の燃焼熱をハニカム状の担体2
を介して吸収する。ハニカム状の担体2の壁の厚さは約
1鶴以下に作製されているのでこの熱交換は容易である
In this catalytic burner, combustible gas consisting of a mixture of fuel such as BFG and air is uniformly supplied to gas passages 4A and 4B formed within the catalyst carrier frame 1 of each unit. At this time, the combustible gas flowing into the gas passages 4A with the catalyst 3 deposited on the inner peripheral surface is completely combusted in each gas passage 4A, and the gas passage 4B, on which the catalyst 3 is not deposited on the one-way peripheral surface, is completely combusted in each gas passage 4A. The circulating combustible gas will not self-ignite. Therefore, gas flow path 4B
In the process of passing through the gas passage 4B, the combustible gas flowing through the gas passage 4B transfers combustion heat in the adjacent gas passage 4A to the honeycomb-shaped carrier 2.
absorb through. Since the wall thickness of the honeycomb-shaped carrier 2 is made to be about 1 mm or less, this heat exchange is easy.

第4図はこのような熱交換の機構を模式的に示す図であ
る。第4図において、250℃に予熱されたBFGの可
燃ガスは触媒が蒸着されたガス通路4A内では燃焼触媒
3面で2点鎖線で示す温度に相当する燃焼熱を発生する
が、隣接する触媒が蒸着されていないガス通路4B内を
流通する可燃ガスに熱を放出し実際には実線で示すよう
に昇温し、触媒担体の耐熱許容温度の1200℃以下に
維持される。一方ガス通路4B側を流通する可燃ガスは
、ガス流路4B側には触媒がないので燃焼することなく
、ガス流路4A側の熱を吸収して500〜600℃程度
に昇温する。
FIG. 4 is a diagram schematically showing such a heat exchange mechanism. In Fig. 4, the combustible gas of the BFG preheated to 250°C generates combustion heat corresponding to the temperature shown by the two-dot chain line on the three surfaces of the combustion catalyst in the gas passage 4A where the catalyst is vapor-deposited. releases heat to the combustible gas flowing through the gas passage 4B on which it is not vapor-deposited, and the temperature actually rises as shown by the solid line, and is maintained at 1200° C. or lower, which is the allowable heat resistance temperature of the catalyst carrier. On the other hand, since there is no catalyst on the gas passage 4B side, the combustible gas flowing through the gas passage 4B absorbs heat from the gas passage 4A side and is heated to about 500 to 600° C. without being combusted.

このようにガス流路4Bを通過した可燃ガスは担体面を
出るまでに第5図に示すように着火寸前まで予熱され放
出されると同時にガス流路4Aから放出される1200
℃の触媒燃焼ガス5に囲まれるので直ちに引火して小フ
レーム6を形成する。
The combustible gas that has passed through the gas flow path 4B is preheated to the verge of ignition before exiting the carrier surface, as shown in FIG.
Since it is surrounded by the catalytic combustion gas 5 at a temperature of 0.degree. C., it immediately ignites and forms a small flame 6.

第12図に示す従来の触媒バーナ(全面触媒N)の場合
、無火炎面を形成するが、本実施例の場合、触媒が蒸着
されていないガス流路4B側から若干の火炎面を形成す
ることになる。
In the case of the conventional catalytic burner (full surface catalyst N) shown in FIG. 12, a flameless surface is formed, but in the case of this embodiment, a slight flame surface is formed from the gas flow path 4B side where the catalyst is not deposited. It turns out.

したがって、触媒バーナに供給される可燃ガスを250
℃に予熱した場合にも、触媒燃焼による触媒担体の昇温
は、その触媒担体の耐熱許容温度以下に維持できるので
、低空気過剰率(通常の1゜1〜1.2程度)の採用が
可能となり、また比較的高カロリーガスにも触媒燃焼方
式を採用することができる。
Therefore, the combustible gas supplied to the catalytic burner is
Even when preheated to ℃, the temperature rise of the catalyst carrier due to catalytic combustion can be maintained below the allowable heat resistance temperature of the catalyst carrier, so it is recommended to adopt a low excess air ratio (normally about 1°1 to 1.2). This makes it possible to use the catalytic combustion method even for relatively high-calorie gases.

第6図及び第7図はそれぞれ本発明にかかる触媒燃焼装
置における触媒担体の他の例を示す全体構成図を示す、
第6図において、触媒担体枠7内        1に
ハニカム状の担体8が配置され、1列毎に触媒9が蒸着
されたガス流路10Aと触媒が蒸着されていないガス流
路10Bが形成されている。
FIG. 6 and FIG. 7 each show an overall configuration diagram showing another example of the catalyst carrier in the catalytic combustion device according to the present invention,
In FIG. 6, a honeycomb-shaped carrier 8 is arranged in a catalyst carrier frame 7, and a gas passage 10A in which a catalyst 9 is deposited and a gas passage 10B in which a catalyst is not deposited are formed in each row. There is.

第6図においても、触媒9が蒸着されたガス流路10A
は図解しやすいように特に斜線で示している。
Also in FIG. 6, the gas flow path 10A in which the catalyst 9 is deposited
are shown with diagonal lines for ease of illustration.

第7図において、円筒状の触媒担体枠11内に所定の間
隔をもって順次直径の小さい触媒担体12が同心円上に
配置され、各々の触媒担体12間に薄板状の触媒担体が
配置された構造となっている。そして環状のガス流路に
交互に触媒が蒸着されたガス流路(斜線部)13Aと、
触媒が蒸着されていないガス流路13Bが形成されてい
る。
In FIG. 7, catalyst carriers 12 having successively smaller diameters are arranged concentrically at predetermined intervals within a cylindrical catalyst carrier frame 11, and a thin plate-shaped catalyst carrier is arranged between each catalyst carrier 12. It has become. and a gas flow path (shaded area) 13A in which catalysts are alternately deposited in the annular gas flow path;
A gas flow path 13B is formed in which no catalyst is deposited.

第6図及び第7図に示す実施例においても、触媒が蒸着
されたガス流路10A、13Aではそれぞれ燃焼熱を隣
接するガス流路10B、13Bに放出し、触媒担体の耐
熱許容温度以下に維持できる。
In the embodiments shown in FIGS. 6 and 7 as well, the gas channels 10A and 13A in which the catalyst is vapor-deposited release combustion heat to the adjacent gas channels 10B and 13B, respectively, to lower the temperature below the allowable heat resistance temperature of the catalyst carrier. Can be maintained.

第6図に示す実施例では、触媒が蒸着されたガス流路1
0Aが多数個形成された層状担体と触媒が蒸着されてい
ないガス流路10Bが多数個形成された層状担体とを順
次交互に積層すればよいので触媒担体の製作が簡便とな
る。また第7図に示す実施例では、触媒が蒸着されたガ
ス流路13Aが多数個形成された環状担体と、触媒が蒸
着されていないガス流路13Bが多数個形成された環状
担体とを交互に嵌合すればよいので触媒担体の製作が簡
便となる。
In the embodiment shown in FIG.
The catalyst carrier can be manufactured easily because it is sufficient to sequentially and alternately stack a layered carrier in which a large number of 0A are formed and a layered carrier in which a large number of gas channels 10B in which no catalyst is vapor-deposited are formed. Further, in the embodiment shown in FIG. 7, an annular carrier in which a large number of gas channels 13A with a catalyst deposited thereon and an annular carrier in which a large number of gas channels 13B in which a catalyst is not deposited are alternately arranged. Since it is only necessary to fit the catalyst carrier, manufacturing of the catalyst carrier becomes simple.

第6図及び第7図において、触媒が蒸着されていないガ
ス流路は第6図においては1段おき、第7図においては
1環おきに配置されているが、少なくとも1段又は少な
くともl環おきであればよく、したがって各々のガス流
路の寸法によっては2段又は2環おきに触媒が蒸着され
ていないガス流路を配置してもよい。
In FIGS. 6 and 7, the gas flow paths in which the catalyst is not deposited are arranged in every other stage in FIG. 6 and every other ring in FIG. Therefore, depending on the dimensions of each gas flow path, a gas flow path in which no catalyst is deposited may be arranged every two stages or every two rings.

第8図は本発明にかかる触媒燃焼装置の更に他の例を示
す概略的構成図、第9図は第8図における触媒バーナの
正面図、第10図は第9図に示す触媒バーナの一ユニッ
トを示す斜視図である。
FIG. 8 is a schematic configuration diagram showing still another example of the catalytic combustion device according to the present invention, FIG. 9 is a front view of the catalytic burner shown in FIG. 8, and FIG. 10 is an example of the catalytic burner shown in FIG. 9. It is a perspective view showing a unit.

第8図はコンバインドサイクル発電等に設置されるガス
タービン排気から熱回収するHR3G(Heat Re
covery Steam Generation) 
、即ち発熱ボイラである。第8図において、HR3GR
3上14内にはガス上流側より順次過熱器15、ボイラ
16およびエコノマイザ17が設置され、前記過熱器1
5のガス上流側に触媒バーナ18が設置されている。こ
の触媒バーナ18のガス上流側に助燃料供給管19から
の助燃料を燃料ヘッダ20を介して噴霧する燃料ノズル
21が設けられている。触媒バーナ18の燃料ノズル2
1に対向する面倒にはデビエーガ22が設置されている
Figure 8 shows the HR3G (HeatRe
covery Steam Generation)
, that is, a heat generating boiler. In Figure 8, HR3GR
A superheater 15, a boiler 16, and an economizer 17 are installed in the upper 14 in order from the gas upstream side, and the superheater 1
A catalytic burner 18 is installed on the gas upstream side of 5. A fuel nozzle 21 is provided on the gas upstream side of the catalytic burner 18 to spray the auxiliary fuel from the auxiliary fuel supply pipe 19 via a fuel header 20 . Fuel nozzle 2 of catalytic burner 18
A debiager 22 is installed on the side opposite to 1.

触媒バーナ18は、第9図に示すハニカム触媒ユニット
23が数列複数段積層された構造となっている。これら
のハニカム触媒ユニット23は、セラミックスセメント
により互いに接合固定されるか、又はセラミックスファ
イバで作製された緩衝材を挟んで積層されている。
The catalytic burner 18 has a structure in which several rows of honeycomb catalyst units 23 shown in FIG. 9 are stacked in multiple stages. These honeycomb catalyst units 23 are bonded and fixed to each other with ceramic cement, or are stacked with a buffer material made of ceramic fibers interposed therebetween.

ハニカム触媒ユニット23は、第10図に示す構造のハ
ニカム触媒体24が数列複数段積層されている。第9図
に示すハニカム触媒ユニット23内の24Aは触媒が蒸
着されたハニカム触媒体であり、24Bは触媒が蒸着さ
れていないハニカム触媒体である。第10図に示すハニ
カム触媒体24は一辺が約30〜100m5の正方形状
であり、第9図に示すハニカム触媒ユニット23はハニ
カム触媒体24が16個(4個×4個)設けられ、ハニ
カム触媒ユニット23の一辺(図中、aで示す)は12
0〜400mである。上記したハニカム触媒体24の寸
法及びハニカム触媒ユニット23内におけるハニカム触
媒体の個数は一例であり、その寸法及び個数は任意に選
定できる。
In the honeycomb catalyst unit 23, honeycomb catalyst bodies 24 having the structure shown in FIG. 10 are stacked in several rows and in multiple stages. In the honeycomb catalyst unit 23 shown in FIG. 9, 24A is a honeycomb catalyst body on which a catalyst is deposited, and 24B is a honeycomb catalyst body on which a catalyst is not deposited. The honeycomb catalyst body 24 shown in FIG. 10 has a square shape with a side of about 30 to 100 m5, and the honeycomb catalyst unit 23 shown in FIG. One side of the catalyst unit 23 (indicated by a in the figure) is 12
It is 0-400m. The dimensions of the honeycomb catalyst body 24 and the number of honeycomb catalyst bodies in the honeycomb catalyst unit 23 described above are merely examples, and the dimensions and number can be arbitrarily selected.

このような触媒バーナ18を備えた廃熱ボイラにおいて
、5HRGダクト14に導入されるガスタービン排ガス
25の温度は500〜600’Cであり、この排ガス2
5は燃料ノズル21がら噴出される助燃料とともに触媒
バーナ18の各ガス流路内を流通する。そしてガスター
ビン排ガス25は触媒バーナ18における燃焼触媒によ
り、過熱器15でスチーム温度を確保できる温度(90
0、〜1000’C)よ、、□14.        
   1ガスタービン排ガス25には空気を導入しなく
とも十分な余剰の空気が存在する。ただし、ガスタービ
ン排ガス中の酸素濃度は、空気の21%に比べて12〜
16%と低いため、大量の排ガス中で燃焼させるのに触
媒バーナ18は有効である。
In a waste heat boiler equipped with such a catalytic burner 18, the temperature of the gas turbine exhaust gas 25 introduced into the 5HRG duct 14 is 500 to 600'C;
5 flows through each gas flow path of the catalytic burner 18 together with the auxiliary fuel ejected from the fuel nozzle 21. The gas turbine exhaust gas 25 is heated by the combustion catalyst in the catalytic burner 18 to a temperature at which the steam temperature can be maintained in the superheater 15 (90°C).
0,~1000'C),,□14.
1. There is sufficient surplus air in the gas turbine exhaust gas 25 even without introducing air. However, the oxygen concentration in gas turbine exhaust gas is 12-12% compared to 21% in air.
Since the combustion rate is as low as 16%, the catalytic burner 18 is effective for combustion in a large amount of exhaust gas.

触媒バーナ18では、触媒が蒸着されたハニカム触媒体
24Aと、触媒が蒸着されていないハニカム触媒体24
Bが交互(千鳥状)に配置されており、第5図に示した
ような火炎パターンが形成される。ただし、ハニカム触
媒体24A、24Bは、第5図に示されるようなガス流
路が集合したものであるので火炎は小炎ではなく、通常
のバーナによる火炎と同様のパターンの火炎が形成され
る。
In the catalytic burner 18, there are a honeycomb catalyst body 24A on which a catalyst is deposited, and a honeycomb catalyst body 24A on which a catalyst is not deposited.
B are arranged alternately (staggered), forming a flame pattern as shown in FIG. However, since the honeycomb catalyst bodies 24A and 24B are a collection of gas flow paths as shown in FIG. 5, the flame is not a small flame, but a flame pattern similar to that of a normal burner is formed. .

第8図〜第10図に示す実施例によれば、触媒バーナ1
8による燃焼熱は900〜1000℃程度であり、触媒
担体の耐熱許容温度を超えることがない。また触媒バー
ナ18は通常数十個〜数百価のハニカム触媒体24が取
り付けられたものであり、しかも燃焼触媒は高価な貴金
属を使用するものである。触媒が蒸着されたハニカム触
媒体24Aは触媒バーナ18全体の1/2設置されてい
るのみであるから、高価な貴金属からなる触媒の使用量
を1/2に低減できる。
According to the embodiment shown in FIGS. 8 to 10, the catalytic burner 1
The combustion heat of No. 8 is about 900 to 1000°C, and does not exceed the allowable heat resistance temperature of the catalyst carrier. Further, the catalytic burner 18 is usually equipped with several tens to hundreds of honeycomb catalyst bodies 24, and the combustion catalyst uses an expensive precious metal. Since the honeycomb catalyst body 24A on which the catalyst is vapor-deposited is installed in only 1/2 of the entire catalytic burner 18, the amount of the catalyst made of expensive precious metal used can be reduced to 1/2.

第9図では、触媒が蒸着されたハニカム触媒体24Aと
、触媒が蒸着されていないハニカム触媒体24Bとを交
互(千鳥状)に配置しているが、ハニカム触媒体の寸法
が小さければ、第6図に示すようにハニカム触媒体24
Aとハニカム触媒体24Bとを各段毎に交互に配置して
もよい。
In FIG. 9, honeycomb catalyst bodies 24A on which a catalyst is vapor-deposited and honeycomb catalyst bodies 24B on which a catalyst is not vapor-deposited are arranged alternately (in a staggered manner). As shown in Figure 6, the honeycomb catalyst body 24
A and the honeycomb catalyst bodies 24B may be arranged alternately in each stage.

上記した実施例において、触媒が蒸着されたガス流路の
例を示したが、ガス流路内周面に触媒が担持された状態
であればよく、蒸着は好適な一例を示すものである。
In the above-described embodiments, an example of a gas flow path in which a catalyst is vapor-deposited is shown, but the catalyst may be supported on the inner circumferential surface of the gas flow path, and vapor deposition is a preferable example.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、触媒担体の耐熱許容温度
を超えることなく、低過剰空気率で燃料を触媒燃焼する
ことができるので、燃料のカロリーによる制約がなく、
かつ低過剰空気率で触媒燃焼できることから通常のスタ
ックロスがなく、熱経済上有効であるとともにガスター
ビン廃熱ボイラ等の触媒バーナに適用することができる
As described above, according to the present invention, fuel can be catalytically burned at a low excess air ratio without exceeding the allowable heat resistance temperature of the catalyst carrier, so there is no restriction due to the calorie of the fuel.
In addition, since catalytic combustion can be performed at a low excess air ratio, there is no usual stack loss, which is effective from a thermoeconomic standpoint, and can be applied to catalytic burners such as gas turbine waste heat boilers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる触媒燃焼装置における触媒担体
の一例を示す全体構成図、第2図は第1図のA−A線断
面図、第3図は第1図の要部拡大断面図、第4図は第1
図〜第3図に示す触媒担体を用いた触媒バーナにおける
熱交換の機構を模式的に示す図、第5図は第1図〜第3
図に示す触媒担体を用いた触媒バーナの触媒面の火炎パ
ターンを示す図、第6図及び第7図はそれぞれ本発明に
かかる触媒燃焼装置における触媒担体の他の例を示す全
体構成図、第8図は本発明にかかる触媒燃焼装置の他の
例を示す概略的構成図、第9図は第8図における触媒バ
ーナの正面図、第10rfAは第9図に示す触媒バーナ
の一ユニットを示す斜視図、第11図はBFGを燃料と
する場合の燃焼温度と使用可能な燃焼空気の過剰率との
関係を示す図、第12図は従来の触媒バーナの概略的断
面図、第13図は従来の触媒バーナにおける触媒担体の
要部拡大断面図である。 1.7.11・・・・・・触媒担体枠、2,8.12・
・・・・・触媒担体、3.9・・・・・・触媒、4A、
IOA、13A・・・・・・ガス流路(触媒蒸着)、4
B、IOB。 13B・・・・・・ガス流路(触媒蒸着なし)、5・・
・・・・触媒燃焼ガス、6・・・・・・小フレーム、1
4・・・・・・HR3Gダクト、15・・・・・・過熱
器、16・・・・・・ボイラ、17・・・・・・エコノ
マイザ、18・・・・・・触媒バーナ、19・・・・・
・助燃料供給管、20・・・・・・燃料ヘッダ、21・
・・・・・燃料ノズル、22・旧・・デビューガ、23
・・・・・・ハニカム触媒ユニット、24・旧・・ハニ
カム触媒体、24A・・・・・・ハニカム触媒体(触媒
蒸着)、24B・・・・・・ハニカム触媒体(触媒蒸着
なし)、25・旧・・ガスタービン排ガス。
FIG. 1 is an overall configuration diagram showing an example of a catalyst carrier in a catalytic combustion device according to the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. 3 is an enlarged sectional view of the main part of FIG. 1. , Figure 4 is the first
Figure 5 is a diagram schematically showing the heat exchange mechanism in a catalytic burner using the catalyst carrier shown in Figures 1 to 3.
FIGS. 6 and 7 are diagrams showing flame patterns on the catalyst surface of a catalytic burner using the catalyst carrier shown in the figure, respectively. FIGS. Fig. 8 is a schematic configuration diagram showing another example of the catalytic combustion device according to the present invention, Fig. 9 is a front view of the catalytic burner in Fig. 8, and Fig. 10rfA shows one unit of the catalytic burner shown in Fig. 9. A perspective view, FIG. 11 is a diagram showing the relationship between the combustion temperature and the excess rate of usable combustion air when BFG is used as fuel, FIG. 12 is a schematic cross-sectional view of a conventional catalytic burner, and FIG. FIG. 2 is an enlarged sectional view of a main part of a catalyst carrier in a conventional catalytic burner. 1.7.11...Catalyst carrier frame, 2,8.12.
... Catalyst carrier, 3.9 ... Catalyst, 4A,
IOA, 13A... Gas flow path (catalyst vapor deposition), 4
B. IOB. 13B... Gas flow path (no catalyst vapor deposition), 5...
...Catalytic combustion gas, 6...Small frame, 1
4...HR3G duct, 15...Superheater, 16...Boiler, 17...Economizer, 18...Catalytic burner, 19.・・・・・・
・Auxiliary fuel supply pipe, 20...Fuel header, 21・
...Fuel nozzle, 22, old... debut gas, 23
...Honeycomb catalyst unit, 24 Old...Honeycomb catalyst body, 24A...Honeycomb catalyst body (catalyst vapor deposition), 24B...Honeycomb catalyst body (no catalyst vapor deposition), 25. Old gas turbine exhaust gas.

Claims (5)

【特許請求の範囲】[Claims] (1)多数個のガス流路が形成された触媒担体を備えた
触媒燃焼装置において、内周面に触媒を有するガス流路
と、このガス流路に隣接するとともに触媒を有しないガ
ス流路とを設けたことを特徴とする触媒燃焼装置。
(1) In a catalytic combustion device equipped with a catalyst carrier in which a large number of gas passages are formed, there is a gas passage having a catalyst on its inner peripheral surface, and a gas passage adjacent to this gas passage and having no catalyst. A catalytic combustion device characterized by comprising:
(2)前記触媒担体がハニカム状に形成されるとともに
前記内周面に触媒を有するガス流路を前記触媒担体内に
千鳥状に配置した特許請求の範囲第1項記載の触媒燃焼
装置。
(2) The catalytic combustion device according to claim 1, wherein the catalyst carrier is formed in a honeycomb shape, and gas flow paths having catalysts on the inner peripheral surface are arranged in a staggered manner within the catalyst carrier.
(3)前記触媒担体がハニカム状に形成されるとともに
前記内周面に触媒を有するガス流路を前記触媒担体内に
少なくとも1段おきに配置した特許請求の範囲第1項記
載の触媒燃焼装置。
(3) The catalytic combustion device according to claim 1, wherein the catalyst carrier is formed in a honeycomb shape, and gas flow paths having a catalyst on the inner circumferential surface are arranged at least every other stage within the catalyst carrier. .
(4)前記触媒担体が、同心円状の多数の環状のガス流
路を有し、これらの環状のガス流路の少なくとも1環お
きに内周面に触媒を有するガス流路を配置した特許請求
の範囲第1項記載の触媒燃焼装置。
(4) A patent claim in which the catalyst carrier has a large number of concentric annular gas passages, and a gas passage having a catalyst is arranged on the inner peripheral surface of at least every other ring of these annular gas passages. The catalytic combustion device according to item 1.
(5)前記内周面に触媒を有するガス流路が、そのガス
流路の内周面に触媒が蒸着されている特許請求の範囲第
1項記載乃至第4項記載の触媒燃焼装置。
(5) The catalytic combustion device according to any one of claims 1 to 4, wherein the gas flow path having a catalyst on the inner peripheral surface has a catalyst deposited on the inner peripheral surface of the gas flow path.
JP60100997A 1985-05-13 1985-05-13 Catalyst combustion device Pending JPS61259013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60100997A JPS61259013A (en) 1985-05-13 1985-05-13 Catalyst combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100997A JPS61259013A (en) 1985-05-13 1985-05-13 Catalyst combustion device

Publications (1)

Publication Number Publication Date
JPS61259013A true JPS61259013A (en) 1986-11-17

Family

ID=14288935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100997A Pending JPS61259013A (en) 1985-05-13 1985-05-13 Catalyst combustion device

Country Status (1)

Country Link
JP (1) JPS61259013A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467531A (en) * 1987-08-24 1989-03-14 Westinghouse Electric Corp Stationary type combustion turbine catalyst combustion apparatus unit
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5202303A (en) * 1989-02-24 1993-04-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5328359A (en) * 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
US5577906A (en) * 1993-12-22 1996-11-26 Kabushiki Kaisha Toshiba Catalyst for combustion
US5593299A (en) * 1991-01-09 1997-01-14 Pfefferle; William C. Catalytic method
US6174159B1 (en) * 1999-03-18 2001-01-16 Precision Combustion, Inc. Method and apparatus for a catalytic firebox reactor
WO2001075364A1 (en) * 2000-03-31 2001-10-11 Precision Combustion, Inc. Method and apparatus for a catalytic firebox reactor
WO2002092212A3 (en) * 2001-05-15 2004-02-12 Precision Combustion Inc Conduit positioner
CN110186045A (en) * 2019-06-27 2019-08-30 吉林晟航科技发展有限公司 A kind of combustion head and the burner including it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136140A (en) * 1983-01-25 1984-08-04 Babcock Hitachi Kk Catalyst body for combustion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136140A (en) * 1983-01-25 1984-08-04 Babcock Hitachi Kk Catalyst body for combustion

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467531A (en) * 1987-08-24 1989-03-14 Westinghouse Electric Corp Stationary type combustion turbine catalyst combustion apparatus unit
US5437099A (en) * 1989-02-24 1995-08-01 W. R. Grace & Co.-Conn. Method of making a combustion apparatus for high-temperature environment
US5346389A (en) * 1989-02-24 1994-09-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
US5202303A (en) * 1989-02-24 1993-04-13 W. R. Grace & Co.-Conn. Combustion apparatus for high-temperature environment
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
WO1992009365A1 (en) * 1990-11-26 1992-06-11 Catalytica, Inc. A catalyst structure having integral heat exchange (ii)
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5232357A (en) * 1990-11-26 1993-08-03 Catalytica, Inc. Multistage process for combusting fuel mixtures using oxide catalysts in the hot stage
US5183401A (en) * 1990-11-26 1993-02-02 Catalytica, Inc. Two stage process for combusting fuel mixtures
US5720606A (en) * 1991-01-09 1998-02-24 Pfefferle; William C. Catalytic method
US5593299A (en) * 1991-01-09 1997-01-14 Pfefferle; William C. Catalytic method
US5720605A (en) * 1991-01-09 1998-02-24 Pfefferle; William C. Catalytic method
US5406704A (en) * 1992-05-19 1995-04-18 W. R. Grace & Co.-Conn. Method for making an ignition stage for a high temperature combustor
US5328359A (en) * 1992-05-19 1994-07-12 W. R. Grace & Co.-Conn. Ignition stage for a high temperature combustor
US5577906A (en) * 1993-12-22 1996-11-26 Kabushiki Kaisha Toshiba Catalyst for combustion
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
US6174159B1 (en) * 1999-03-18 2001-01-16 Precision Combustion, Inc. Method and apparatus for a catalytic firebox reactor
WO2001075364A1 (en) * 2000-03-31 2001-10-11 Precision Combustion, Inc. Method and apparatus for a catalytic firebox reactor
WO2002092212A3 (en) * 2001-05-15 2004-02-12 Precision Combustion Inc Conduit positioner
CN110186045A (en) * 2019-06-27 2019-08-30 吉林晟航科技发展有限公司 A kind of combustion head and the burner including it

Similar Documents

Publication Publication Date Title
CN208108077U (en) A kind of gas combustion apparatus of near zero pollutant discharge
JPS61259013A (en) Catalyst combustion device
US4459126A (en) Catalytic combustion process and system with wall heat loss control
EP0356092A1 (en) Gas turbine combustor
US6588213B2 (en) Cross flow cooled catalytic reactor for a gas turbine
JP3922115B2 (en) Low NOx combustion method for gas turbine and low NOx combustor
JP2000249427A (en) LOW NOx SYSTEM IN HIGH TEMPERATURE REGENERATOR FOR ABSORPTION TYPE COLD/HOT WATER HEATER
JPH0252930A (en) Gas turbine burner
CN211551592U (en) Flameless burner or flameless burner group with heat exchange system
JP2840534B2 (en) Thermal storage radiant tube burner
JPS5918302A (en) Combustion apparatus with catalyst type heat exchanger for heat recovery
JPS5977208A (en) Combustion method
JPS6243084B2 (en)
JPS60202206A (en) Low nox combustion apparatus
JPH0222285B2 (en)
CN113074360B (en) Flame water cooling method and water cooling boiler system
JPS59109712A (en) Poor calorie gas burner
JPS5849817A (en) Catalytic combustor
CN106949467A (en) A kind of gas instantaneous water heater burner of fractional combustion
JPS6260605B2 (en)
JPS62197663A (en) Heat engine using reformed fuel
JPH06288510A (en) Catalyst combustion type boiler system
JP2761030B2 (en) Low calorie gas burner
JPH07117202B2 (en) Combustion method and combustion apparatus for boiler with pre-combustion chamber
RU2148217C1 (en) Gaseous-fuel fired boiler