JPS605645B2 - Low NOx type heat treatment furnace - Google Patents

Low NOx type heat treatment furnace

Info

Publication number
JPS605645B2
JPS605645B2 JP9895277A JP9895277A JPS605645B2 JP S605645 B2 JPS605645 B2 JP S605645B2 JP 9895277 A JP9895277 A JP 9895277A JP 9895277 A JP9895277 A JP 9895277A JP S605645 B2 JPS605645 B2 JP S605645B2
Authority
JP
Japan
Prior art keywords
chamber
preheating chamber
heat treatment
gas
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9895277A
Other languages
Japanese (ja)
Other versions
JPS5433210A (en
Inventor
和夫 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9895277A priority Critical patent/JPS605645B2/en
Publication of JPS5433210A publication Critical patent/JPS5433210A/en
Publication of JPS605645B2 publication Critical patent/JPS605645B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は公害防止のためN○×(窒素酸化物)の排出を
低減し得るようにした低N○×型熱処理炉に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low N○× type heat treatment furnace capable of reducing the emission of N○× (nitrogen oxides) in order to prevent pollution.

従来より金属性帯状材料の熱処理には第1図に示したよ
うなローフーハース型の連続炉が多く採用されている。
BACKGROUND OF THE INVENTION Conventionally, a continuous loft hearth furnace as shown in FIG. 1 has been widely used for heat treatment of metallic strip materials.

即ちこの熱処理炉は、被熱物1の進行方向の順に子熱室
2、加熱室3、冷却室4が設けられていて、加熱室3の
バーナ5で燃料を燃焼させ被熱物1を所定温度まで加熱
するもので、6は予熱室2の前部に設けられた煙道を示
す。加熱室3で発生した燃焼ガスは予熱室2に導びかれ
て被熱物1を子熱し、さらに煙道6に介設された熱交換
器7により排ガス中の熱量が回収される。このように従
来の熱処理炉は熱エネルギーを有効利用する点について
は既に考慮していたものの、加熱室3で発生したN○×
の処理については全く考慮しておらずそのまま大気中に
排出していたので大気汚染の原因となっていた。そこで
本発明は、熱の有効利用を損うことなくNO広の排出を
抑制できるようにした低N○×型熱処理炉を提供しよう
とするもので、その特徴とするところは、予熱室に触媒
層を設け、該触媒層によって子熟室内を煙道側の一次子
熱室と加熱室側の二次子熱室とに区画し、加熱室内の雰
囲気ガスの成分が還元性の場合は前記一次予熱室に空気
を導入し、加熱室内の雰囲気ガスの成分が酸化性の場合
は前記一次予熱室に空気を導入すると同時に前記二次予
熱室に還元性ガス又は燃料を導入するようにしたことに
ある。
That is, this heat treatment furnace is provided with a subheating chamber 2, a heating chamber 3, and a cooling chamber 4 in the order of the traveling direction of the object 1 to be heated, and burns fuel with a burner 5 in the heating chamber 3 to heat the object 1 to a predetermined position. 6 indicates a flue provided at the front of the preheating chamber 2. Combustion gas generated in the heating chamber 3 is guided to the preheating chamber 2 and heats the object 1 to be heated, and the heat exchanger 7 installed in the flue 6 recovers the amount of heat in the exhaust gas. In this way, although the conventional heat treatment furnace has already taken into consideration the effective use of thermal energy,
No consideration was given to the treatment of the waste, and it was released into the atmosphere as is, causing air pollution. Therefore, the present invention aims to provide a low N○× type heat treatment furnace that can suppress NO emissions without impairing the effective use of heat. The catalyst layer divides the ripening chamber into a primary heating chamber on the flue side and a secondary heating chamber on the heating chamber side. Air is introduced into the preheating chamber, and if the component of the atmospheric gas in the heating chamber is oxidizing, reducing gas or fuel is introduced into the secondary preheating chamber at the same time as the air is introduced into the primary preheating chamber. be.

次に本発明の一実施例を第2図乃至第4図に従い説明す
る。
Next, one embodiment of the present invention will be described with reference to FIGS. 2 to 4.

なおこれらの実施例図中、第1図と同一符号は同一部分
を示す。本発明では、予熱室2の略中間部に該予熱室2
を煙道6側の一次子熱室2aと加熱室3側の二次予熱室
2bとに分割する隔壁8を設け、該隔壁8の内周にニッ
ケル、クローム等の触媒層9を設ける。10は加熱室3
内の雰囲気ガスを採取するパイプ、11はその採取され
た雰囲気ガス中の未燃分(C○、比)の濃度を測定する
分析器、12は同じく採取された雰囲気ガス中の02濃
度を測定する分析器、13は前記一次予熱室2aに空気
を供給する給気管、14は該給気管13に設けられた絞
り弁、15は前記二次予熱室2bにC○、日2等の可燃
性の還元性ガス或いは天然ガス、メタン、灯油等の炭化
水素系燃料を供給する給ガス管、16は該給ガス管15
に設けられた絞り弁である。
Note that in these embodiment figures, the same reference numerals as in FIG. 1 indicate the same parts. In the present invention, the preheating chamber 2 is located approximately in the middle of the preheating chamber 2.
A partition wall 8 is provided that divides the heating chamber into a primary heating chamber 2a on the flue 6 side and a secondary preheating chamber 2b on the heating chamber 3 side, and a catalyst layer 9 of nickel, chrome, etc. is provided on the inner periphery of the partition wall 8. 10 is heating chamber 3
11 is an analyzer that measures the concentration of unburned components (C○, ratio) in the sampled atmospheric gas; 12 measures the 02 concentration in the sampled atmospheric gas. 13 is an air supply pipe that supplies air to the primary preheating chamber 2a, 14 is a throttle valve provided in the air supply pipe 13, and 15 is a flammable gas such as C○, Day 2, etc. in the secondary preheating chamber 2b. 16 is the gas supply pipe 15 for supplying a reducing gas or a hydrocarbon fuel such as natural gas, methane, or kerosene;
This is a throttle valve installed in the

しかして被熱物1を無酸化状態で所謂光輝熱処理する際
は、周知のように加熱室3はバーナ5で燃料を空燃比0
.95塁度で燃焼用空気不足の状態で不完全燃焼させて
C○、日2等の未燃分を0.5〜4.0%含んだ還元性
の雰囲気ガスによって充満されている。従ってこの場合
には分析器11はCO、均を検出し、分析器12は02
を全く検出しない。そこでこの還元性の雰囲気ガスを先
ず二次予熱室2bに導びし、て被熱物1の子熱に供し、
次いで触媒層9を通過させることでこの雰囲気ガス中に
含まれていたN○×をC○、日2に反応させてNO広濃
度を低減させ、続いて一次子熱室2aでは給気管13か
ら空気を導入して残っているC○、日2等の未燃分を完
全燃焼させ、その際発生する燃焼熱も一次予熱室2aに
おける被熱物1の予熱に利用するものである。また、被
熱物1はその材料の如何によっては必ずしも無酸化状態
で熱処理する必要がないが、その場合、加熱室3はバー
ナ5で燃料を空燃比1以上(1.05〜1.19里度)
で燃焼させその雰囲気ガス中に02が残存する。従って
分析器11はC○、日2を殆んど検出せず、分析器12
は02を検出する。そこでこの酸化性の雰囲気ガスは先
ず二次子熱室2bに導びかれてここで被熱物1の子熱に
供されると同時に給ガス管15からC○、日2等の還元
性ガスが導入されこれのC○、QとNO広とが触媒層9
を通過する際に反応するようにしN○皮濃度を低減させ
る。また、天然ガス、メタン、灯油等の炭化水素系の燃
料を導入した場合にはこの燃料が雰囲気ガス中の残存0
2と燃焼反応しCOおよび日2を生ずるようにしこのC
Oおよび日2とN○×とが触媒層9を通過する際に反応
するようにしN○x濃度を低減させる。そして一次予熱
室2aでは前記と同様給気管13から空気を導入して残
っているC○、Q等を完全燃焼させその燃焼熱を被熱物
1の予熱に利用するものである。なお一次子熱室2aに
おける未燃ガスの再燃暁の際には雰囲気ガスの温度が加
熱室3よりもすでに低くなっているためこの−−次子熱
室2aにおける燃焼でN○×を再び発生させるようなこ
とはない。また同様に加熱室3内の雰囲気ガスが触媒層
9に到達する間には該雰囲気ガスの温度が被熱物1との
接触によってすでにある程度低くなっているため、触媒
層9の過熱が防止される。給気管13の絞り弁14及び
給ガス管15の絞り弁16は夫々分析器11,12から
の指令で自動的に関度が調節されるように構成すること
も従来技術を応用することで容易に達成でき、その場合
分析器11が示すC0、日2濃度に比例的に絞り弁14
の関度を大きくして給気量を増すと共に、分析器12が
示す02濃度に比例的に絞り弁16の開度を大きくして
給ガス量を増すようにするものである。本発明の低N○
×型熱処理炉は以上実施例について説明したように、加
熱室内の雰囲気ガスが還元性、酸化性の如何に拘らず、
発生したN○×を子熱室内の触媒層によってC○、日2
と反応させられその反応によってN○kが従来の1′2
乃至1′3にも低減できるため大気中に排出するも汚染
の程度が許容し得る範囲内に抑えられ公害防止上有益で
あると共に、熱エネルギーが予熱室において被熱物に有
効に回収されて熱効率もよい等幾多の優れた効果を持つ
ものである。
When the object to be heated 1 is subjected to so-called bright heat treatment in a non-oxidized state, as is well known, the heating chamber 3 is heated with a burner 5 to supply fuel at an air-fuel ratio of 0.
.. It is filled with a reducing atmosphere gas containing 0.5 to 4.0% of unburned matter such as C○, Day 2, etc., which is caused by incomplete combustion at 95 degrees Celsius and a lack of air for combustion. Therefore, in this case, the analyzer 11 detects CO, and the analyzer 12 detects 02
is not detected at all. Therefore, this reducing atmospheric gas is first led to the secondary preheating chamber 2b, and is subjected to the child heat of the object to be heated 1.
Next, by passing through the catalyst layer 9, the NOx contained in this atmospheric gas is caused to react with C○, reducing the NO concentration. Air is introduced to completely combust the remaining unburned matter such as C○, 2, etc., and the combustion heat generated at this time is also used for preheating the object to be heated 1 in the primary preheating chamber 2a. Furthermore, depending on the material of the object 1, it is not necessarily necessary to heat treat it in a non-oxidized state; Every time)
02 remains in the atmospheric gas. Therefore, the analyzer 11 hardly detects C○, Day 2, and the analyzer 12
detects 02. Therefore, this oxidizing atmospheric gas is first led to the secondary heat chamber 2b, where it is supplied to the heat of the object 1 to be heated, and at the same time, reducing gas such as C○, Day 2, etc. is supplied from the gas supply pipe 15. is introduced, and its C○, Q and NO wide form the catalyst layer 9.
reacts as it passes through, reducing the concentration of N○ skin. In addition, if hydrocarbon fuel such as natural gas, methane, or kerosene is introduced, this fuel will remain in the atmospheric gas at zero.
The combustion reaction with 2 produces CO and 2, and this C
O, Day 2, and N○x react with each other when they pass through the catalyst layer 9, thereby reducing the N○x concentration. In the primary preheating chamber 2a, air is introduced from the air supply pipe 13 in the same way as described above to completely burn the remaining CO, Q, etc., and the combustion heat is used to preheat the object to be heated 1. Note that when the unburned gas reburns in the primary heat chamber 2a, the temperature of the atmospheric gas is already lower than that in the heating chamber 3, so this combustion in the secondary heat chamber 2a generates N○× again. There's no way I'll let you do that. Similarly, by the time the atmospheric gas in the heating chamber 3 reaches the catalyst layer 9, the temperature of the atmospheric gas has already been lowered to some extent due to contact with the object to be heated 1, so overheating of the catalyst layer 9 is prevented. Ru. By applying conventional technology, the throttle valve 14 of the air supply pipe 13 and the throttle valve 16 of the gas supply pipe 15 can be configured so that their relative values are automatically adjusted based on commands from the analyzers 11 and 12, respectively. can be achieved, in which case the throttle valve 14 is adjusted proportionally to the C0, day 2 concentration indicated by the analyzer 11.
In addition, the opening degree of the throttle valve 16 is increased in proportion to the 02 concentration indicated by the analyzer 12 to increase the amount of gas supplied. Low N○ of the present invention
As explained in the above embodiments, the x-type heat treatment furnace can
The generated N○× is converted into C○ by the catalyst layer in the subheating chamber.
As a result of this reaction, N○k changes from the conventional 1'2
Since the heat energy can be reduced to 1 to 1'3, even if it is emitted into the atmosphere, the degree of pollution is suppressed within an acceptable range, which is useful for pollution prevention, and the thermal energy is effectively recovered to the heated object in the preheating chamber. It has many excellent effects such as good thermal efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱処理炉の縦断面図、第2図は本発明の
一実施例を示した低N○×型熱処理炉の縦断面図、第3
図は第2図の×−X線断面図、第4図は第2図のY−Y
線断面図である。 1・・・・・・被熱物、2・・・・・・子熱室、2a・
・・・・・一次子熱室、2b・・・・・・二次予熱室、
3・…・・加熱室、5…・・・バーナ、6・・…・煙道
、9・・・・・・触媒層、11,12・・・・・・分析
器、13・・・・・・給気管し 15……給ガス管。 第1図 第2図 第3図 第4図
FIG. 1 is a vertical cross-sectional view of a conventional heat treatment furnace, FIG. 2 is a vertical cross-sectional view of a low N○× type heat treatment furnace showing an embodiment of the present invention, and FIG.
The figure is an
FIG. 1... Heated object, 2... Child heating chamber, 2a.
...Primary heating chamber, 2b...Secondary preheating chamber,
3... Heating chamber, 5... Burner, 6... Flue, 9... Catalyst layer, 11, 12... Analyzer, 13... ...Air supply pipe 15...Gas supply pipe. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 加熱室内の雰囲気ガスが導びかれる予熱室を形成し
、該予熱室内に設けられた触媒層によって該予熱室内を
煙道側の一次予熱室と加熱室側の二次予熱室とに区画し
、加熱室内の雰囲気ガスの成分が還元性の場合は、前記
一次予熱室に空気を導入し、加熱室内の雰囲気ガスの成
分が酸化性の場合は前記一次予熱室に空気を導入すると
同時に前記二次予熱室に還元性ガス又は燃料を導入する
ようにしたことを特徴とする低NOx型熱処理炉。
1. A preheating chamber is formed to which the atmospheric gas in the heating chamber is guided, and the preheating chamber is divided into a primary preheating chamber on the flue side and a secondary preheating chamber on the heating chamber side by a catalyst layer provided in the preheating chamber. If the component of the atmospheric gas in the heating chamber is reducing, air is introduced into the primary preheating chamber, and if the component of the atmospheric gas in the heating chamber is oxidizing, air is introduced into the primary preheating chamber at the same time as the secondary preheating chamber. A low NOx type heat treatment furnace characterized in that a reducing gas or fuel is introduced into a sub-preheating chamber.
JP9895277A 1977-08-18 1977-08-18 Low NOx type heat treatment furnace Expired JPS605645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895277A JPS605645B2 (en) 1977-08-18 1977-08-18 Low NOx type heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895277A JPS605645B2 (en) 1977-08-18 1977-08-18 Low NOx type heat treatment furnace

Publications (2)

Publication Number Publication Date
JPS5433210A JPS5433210A (en) 1979-03-10
JPS605645B2 true JPS605645B2 (en) 1985-02-13

Family

ID=14233421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895277A Expired JPS605645B2 (en) 1977-08-18 1977-08-18 Low NOx type heat treatment furnace

Country Status (1)

Country Link
JP (1) JPS605645B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613428A (en) * 1979-07-09 1981-02-09 Daido Steel Co Ltd Burning method in direct flame nonoxidizing heating furnace
JPS59143018A (en) * 1983-02-04 1984-08-16 Daido Youro Kk Heat treatment of steel material
JPS61177316A (en) * 1985-01-31 1986-08-09 Chugai Ro Kogyo Kaisha Ltd Continuous heat treating furnace for metallic material
JPS6244524A (en) * 1985-08-21 1987-02-26 Nippon Steel Corp Manufacture of cold-rolled steel sheet excellent in baking finish hardenability and workability

Also Published As

Publication number Publication date
JPS5433210A (en) 1979-03-10

Similar Documents

Publication Publication Date Title
US4728282A (en) Method and apparatus for conducting a substantially isothermal combustion process in a combustor
JPH07502104A (en) Low NO↓x combustion induced by low NO↓x pilot burner
JPS605645B2 (en) Low NOx type heat treatment furnace
JP2014190692A (en) Method and apparatus for burning hydrocarbons and other liquids and gases
US4145178A (en) Method and apparatus for decreasing nitrogen oxides and unburnt hydrocarbons when burning hydrocarbon fuels
JPH0222285B2 (en)
JPS61143608A (en) Heater
JPS59167621A (en) Catalyst burner
JPS5833019A (en) Method of reducing nitrogen oxides in combustion exhaust gas
JP3212002B2 (en) Low-nitrogen oxide alternating combustion method
JP2748131B2 (en) Pottery furnace
JPS5888506A (en) Double combustion type burner
JPS5838206B2 (en) Method for reducing nitrogen oxides in combustion exhaust gas
JP4422705B2 (en) Switchable combustion device with improved carbon dioxide concentration
JPH0248803B2 (en) TEINO10BIFUNTANBAANA
JPS60215716A (en) Burning method for heating furnace
KR950009060Y1 (en) Second combustion device of boiler
TWI255323B (en) A burner
JPH0777302A (en) Low nitrogen oxide generating boiler
JPH0122522B2 (en)
Shoffstall Burner design criteria for control of NOx from natural gas combustion. Volume 1: Data analysis and summary of conclusions
JPS5585807A (en) Low nox burner device
JPS61231318A (en) Catalytic burner
SU842337A1 (en) Fuel burning method
Becker et al. Catalyst design for emission control of carbon monoxide and hydrocarbons from gas engines.