JPS5833019A - Method of reducing nitrogen oxides in combustion exhaust gas - Google Patents

Method of reducing nitrogen oxides in combustion exhaust gas

Info

Publication number
JPS5833019A
JPS5833019A JP13026181A JP13026181A JPS5833019A JP S5833019 A JPS5833019 A JP S5833019A JP 13026181 A JP13026181 A JP 13026181A JP 13026181 A JP13026181 A JP 13026181A JP S5833019 A JPS5833019 A JP S5833019A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
less
nitrogen oxides
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13026181A
Other languages
Japanese (ja)
Other versions
JPH0130044B2 (en
Inventor
Nobuaki Murakami
信明 村上
Kikuo Tokunaga
喜久男 徳永
Kazuhiro Takeda
竹田 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13026181A priority Critical patent/JPS5833019A/en
Publication of JPS5833019A publication Critical patent/JPS5833019A/en
Publication of JPH0130044B2 publication Critical patent/JPH0130044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To reduce NOx content in a waste combustion gas by a method wherein combustion waste gas and/or air is thrown in at an angle of 40 deg. or less with respect to a furnace wall so that oxygen concn. with respect to total waste gas becomes 0.5vol% or less. CONSTITUTION:A recirculated combustion waste gas introducing line 103 is provided in the middle between an additional hydrogen carbon fuel throwing line 102 and air throwing line 104 for eliminating unburnt components at a level where 0.5-1vol% of unburnt component exists. The amount of recirculated combustion waste gas to be thrown into the furnace is set so as to bring the oxygen concn. with respect to the total waste gas to 0.5vol% or less, particularly, to 0.3vol% or less. Further, the throwing angle of the gas is set to be 40 deg. or less with respect to the furnace wall. By this construction, the content of NOx can be reduced extremely.

Description

【発明の詳細な説明】 本発明は燃焼排ガス中の窒素酸化物(NOx)の低減法
の改良に関するもので、特にNOx発生を抑制しえ燃焼
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for reducing nitrogen oxides (NOx) in combustion exhaust gas, and particularly to an improvement in a combustion method that can suppress the generation of NOx.

gイラ勢よ)O燃焼排ガス中ONK)xの低減法として
は、周知Qように大別して、(l)燃焼改轡によ1低減
法、(至)炉内高温脱硝(アンモニア注入など)法、(
2)乾式触媒脱硝法、及び(4)11式吸収処理法など
O方法が現在各方爾で開発研究中であるが、−ずれの方
法も経済性、脱硝性能、運転安定性などの点で問題が1
に+/%とはいえない。
Methods for reducing ONK) x in combustion exhaust gas can be roughly divided into the following: (l) 1 reduction method by combustion modification, and (to) in-furnace high-temperature denitration (ammonia injection, etc.) method. ,(
2) Dry catalytic denitrification method and (4) Type 11 absorption treatment method and other O methods are currently under development and research, but the other methods are also lacking in terms of economic efficiency, denitrification performance, operational stability, etc. Problem 1
It cannot be said that it is +/%.

本発明は上記分IIK従えば、(00燃焼改善の範噂に
属し、簡便かつ効果的なNOx低減法を提供するもので
ある。
According to the above point IIK, the present invention belongs to the category of (00 combustion improvement) and provides a simple and effective NOx reduction method.

従来、NOx低減燃焼法としては、主燃焼後の1への存
在下のはぼ1(1gIn℃の領域の排ガス中に1メタン
、エタン、プ四パン、灯油、重油、アルコ−身類、アル
デヒド類などの炭化水素系燃料を添加して、とれら炭化
水素系燃料を排ガス中の残留酸素で不完全燃焼させて還
元雰囲気を形成し、排ガス中のNOxを凡、HCNある
いはNHstkどに変換し、更にそや後流に空気を投入
してco  eどO未燃分を除去する方法が採られてい
た。
Conventionally, as a NOx reduction combustion method, 1 methane, ethane, petroleum oil, kerosene, heavy oil, alcoholic compounds, aldehyde, etc. Adding a hydrocarbon fuel such as the following, the residual oxygen in the exhaust gas is used to incompletely burn the hydrocarbon fuel to form a reducing atmosphere, converting NOx in the exhaust gas to HCN or NHstk. In addition, a method was adopted in which unburned CO, e.g., O, was removed by injecting air into the wake of the exhaust.

本発明者らは、上記方法につき検討を加えてき九が、実
験室試験と異な如実際の大型燃焼器へ上記方法を適用し
た場合、その効果は期待するほど大きいものではなかつ
丸。これは主燃焼後の排ガスに炭化水素系燃料を添加し
九際に発生するHCN、NH3の相轟量が、後流での未
燃分消去用空気の投入によ#)NOxに再転換してしま
い、総合脱硝率として期待される値を示さず、またCO
2媒塵0残留も多かったためである。そこで本発明者ら
は上記方法を改善すべく、先に[主燃料の燃焼後の排ガ
スの高温部に炭化水素系燃料を添加して前記排ガス中の
酸素で不完全燃焼させて窒素酸化物を還元し、その後流
に空気を添加して燃料の未燃分を燃焼させる窒素酸化物
低減燃焼法において、窒素酸化物を還元した後で、かつ
未燃分を除去するに十分表置の空気を添加する前に1全
排ガス量に対し酸素濃度が[15体積−以下になるよう
燃焼排ガスと空気との少なくともどちらか一方を添加す
ることを特徴とする窒素酸化物低減燃焼法」を提案し丸
The inventors have conducted extensive studies on the above method, but when the method is applied to an actual large combustor, which is different from laboratory tests, the effect is not as great as expected. This is because hydrocarbon fuel is added to the exhaust gas after main combustion, and the amount of HCN and NH3 generated at the end of the main combustion is reconverted to NOx by the injection of air to eliminate unburned gas in the wake. The overall denitrification rate does not show the expected value, and the CO
This is because there was also a large amount of 0 residual dust particles. Therefore, in order to improve the above method, the present inventors first added a hydrocarbon fuel to the high temperature part of the exhaust gas after combustion of the main fuel and caused incomplete combustion with the oxygen in the exhaust gas to remove nitrogen oxides. In the nitrogen oxide reduction combustion method, which involves reducing the nitrogen oxides and adding air to its wake to burn the unburned components of the fuel, air is added to the surface sufficiently to remove the unburned components after reducing the nitrogen oxides. We proposed a combustion method for reducing nitrogen oxides, which is characterized by adding at least one of combustion exhaust gas and air so that the oxygen concentration becomes 15 volumes or less per total amount of exhaust gas before adding nitrogen oxides. .

(特願昭52−156409号参照) この上記提案方法は、炭化水素系燃料の不完全燃焼によ
って発生したHCN 、 NHs 典5〜1体積9go
未燃分(CO,炭化水嵩など)の存在下で、添加酸素量
が[15体積−以上であれば下記0式が優先し多量のN
Oxが再生し、それ以下、特にa5体積−以下では下記
0式が優先してNOxの再生が抑えられるという知見に
基づくものである。
(Refer to Japanese Patent Application No. 52-156409.) This proposed method eliminates HCN and NHs generated by incomplete combustion of hydrocarbon fuel.
In the presence of unburned matter (CO, hydrocarbon volume, etc.), if the amount of added oxygen is [15 volume or more], the following formula 0 takes priority and a large amount of N
This is based on the knowledge that Ox is regenerated and below that level, especially below a5 volume, the following formula 0 takes precedence and suppresses NOx regeneration.

NI(l 、 HCN+へ→No馬H,Oなど  ■N
Hs 、 HCN + Ox →N怠、 Ha Olk
ど   ■本発明者らは、上記提案方法11C)き更に
集機によ〉その操作条件につき鋭意研究の結果、燃焼排
ガス及び/又は空気の投入角度が重要な因子であること
を確認し、本発明を完成するに至った。
NI (l, to HCN+ → No horse H, O etc. ■N
Hs, HCN + Ox →N, Ha Olk
As a result of extensive research into the operating conditions of the proposed method 11C) above, the present inventors confirmed that the input angle of combustion exhaust gas and/or air is an important factor, The invention was completed.

すなわち、本発明は主燃料の燃焼後の排ガスO高温部に
1炭化水素系燃料を添加して前記排ガス中の酸素で、不
完全燃焼させて窒素酸化物を還元し、その後流に空気を
添加して燃料0未燃分を燃焼させる窒素酸化物低減燃焼
#&K>いて、窒素酸化物を還元した俵で、かつ未燃分
を除去するに十分な量の空気を添加する前に、全排ガス
量に対し酸素濃度がa5体積−以下になるように燃焼排
ガス及び/又は、空気を1ケ所又は多数ケ所よシ炉壁に
対して40度以下の角度で投入することを特徴とする燃
焼排ガス中の窒素酸化物低減法を要旨とするものである
That is, the present invention adds a hydrocarbon fuel to the high-temperature part of the exhaust gas after the combustion of the main fuel, performs incomplete combustion with the oxygen in the exhaust gas to reduce nitrogen oxides, and adds air to the trailing stream. Nitrogen Oxide Reduction Combustion #&K> to burn the unburned matter and reduce the amount of nitrogen oxides, and before adding a sufficient amount of air to remove the unburned matter. Combustion exhaust gas characterized by injecting combustion exhaust gas and/or air into one or multiple locations at an angle of 40 degrees or less to the furnace wall so that the oxygen concentration is less than a5 volume relative to the amount of combustion exhaust gas. This paper focuses on methods for reducing nitrogen oxides.

本発明は工業用大型燃焼器の低NOx燃焼法として棲め
て優れ先方法であるばか)でなく、還元ガスにさらされ
易い炉壁管O腐食に対する保腰をも兼ね、工業的に極め
て効果ある燃焼法である。
The present invention is not only an excellent low-NOx combustion method for large-scale industrial combustors, but also has an extremely effective industrial effect as it also protects against corrosion of furnace wall tubes that are easily exposed to reducing gas. This is a certain combustion method.

以下、本発明を第1図、第2図を参照しながら詳述する
。第1図は本発明方法を適用しうるようにした通常の発
電ボイラの立面図でIh)、第2図は、燃焼排ガスの添
加レベルの平両閑である。それぞれの図において、10
1は主バーナ、102は添加炭化水素系燃料投入ライン
、105は再循環燃焼排ガス投入ライン及び104は未
燃分消去用空気投入ラインである。この第1図、第2図
、においては、添加炭化水素系燃料投又ツイン102と
再循環燃焼排ガス投入ツイン103が完全に別なレベル
にある場合が示されているが、再循環燃焼排ガス投入ラ
イン1a3は、添加炭化水素系燃料投入ツイン102と
未燃分消去用空気投入ライン104の中間であって、未
燃分がIIs〜1稗積チ存在しているところならばどζ
で4よく1.極端表場合は、嫌げ同ニレベルでもよい、
この際重1!表点は再循環燃焼排ガスの投入量を、全排
ガス量に対し酸素濃度がa5体積−以下、特KrLs体
積参以下Ktkるようkすることと、その投入角度−を
火炉炉壁に対して40度以下になるようにする仁とであ
ゐ。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 and 2. FIG. 1 is an elevational view of a normal power generation boiler to which the method of the present invention can be applied, and FIG. 2 shows the level of addition of combustion exhaust gas. In each figure, 10
1 is a main burner, 102 is an added hydrocarbon fuel input line, 105 is a recirculation combustion exhaust gas input line, and 104 is an air input line for eliminating unburned matter. 1 and 2, the added hydrocarbon fuel input twin 102 and the recirculated flue gas input twin 103 are shown at completely different levels, but the recirculated flue gas input The line 1a3 is located between the added hydrocarbon fuel input twin 102 and the air input line 104 for eliminating unburned components, and if the unburned components are present in an amount of IIs to 1.
So 4 well 1. In the case of an extreme table, it is okay to dislike the same level,
At this time, heavy 1! The points in the table are that the input amount of recirculated combustion exhaust gas should be adjusted so that the oxygen concentration is less than a5 volume and Ktk less than KrLs volume relative to the total amount of exhaust gas, and that the input angle should be set at 40 degrees with respect to the furnace wall. I'm with Jin who tries to keep things under control.

再循環燃焼排ガスの投入量、をζOように嶽定するとと
によって、前述したように発生し九HCN、 Nus 
 の大部分1d NOx K再転換する仁と社なく凡と
P&OK変換し、後流での未燃分の完全燃焼による消去
に際し多量ONOxの再発生が防止でき、またその投入
角度を40度以下にすることKよって投入されえ再循環
燃焼排ガスは炉壁に沿うように流れる0で、通常の鳩舎
流体混合が劣悪な炉壁近傍の流れを改善し希薄な酸素濃
度ゾーンが生成され易<1kb、上記の反応をより効率
的にすることができ、同時に還元性ガスにさらされ易い
炉壁管の腐食に対する保膜作用を奏する。
If the input amount of recirculated flue gas is set as ζO, then 9HCN, Nus
Most of the 1d NOx K is converted into P&OK without being reconverted, and the re-generation of a large amount of ONOx can be prevented when the unburned content is completely combusted in the wake, and the injection angle can be kept below 40 degrees. Therefore, the recirculated flue gas that can be injected flows along the furnace wall, and normal pigeonhouse fluid mixing improves the poor flow near the furnace wall and tends to create a lean oxygen concentration zone <1 kb. The above reaction can be made more efficient, and at the same time, it has a film-preserving effect against corrosion of the furnace wall tubes, which are easily exposed to reducing gases.

上記の説明では、再循環燃焼排ガスを使用した場合につ
いて説明したが、燃焼排ガスの代りに空気を添加した燃
焼排ガス、ま九は空気その4のを使用しても同様である
ことは容易に理解されることであろう。
In the above explanation, we have explained the case where recirculated flue gas is used, but it is easy to understand that the same effect can be obtained by using flue gas with air added instead of flue gas. It will probably be done.

実施例 微粉炭を主燃料とする小型燃焼炉よりの排ガスについて
本発明の有用性を確認するために試験を実施した。
EXAMPLE A test was conducted to confirm the usefulness of the present invention on exhaust gas from a small combustion furnace using pulverized coal as the main fuel.

試験装置O概略図を第5図に示す。第3図において20
1は炉体(1−OX 4 III)、202は微粉炭と
主燃焼用空気O供給ライン、tosIi添加炭化水素系
燃料供給ツイン、204は再循環燃焼排ガス投入ライン
、205は未燃分消去用空気投入ラインである。
A schematic diagram of the test apparatus O is shown in FIG. 20 in Figure 3
1 is the furnace body (1-OX 4 III), 202 is the pulverized coal and main combustion air O supply line, tosIi-added hydrocarbon fuel supply twin, 204 is the recirculation combustion exhaust gas input line, 205 is for eliminating unburned matter This is the air injection line.

主燃焼での使用量は国内炭(0分47%、N分tas、
灰分10チ)であ)、主燃焼後の排ガス中の01濃度は
1%である。ま九本発明の脱硝操作を施ヒし先後の排ガ
ス中の03濃度は4−になるように設定し、再循環燃焼
排ガスの使用量は全排ガスの!−とし、添加炭化水素系
燃料貴社発熱量ペースで主燃焼燃料0171 @ とじ
た。
The amount used in the main combustion is domestic coal (0 min 47%, N min tas,
The ash content is 10 g), and the 01 concentration in the exhaust gas after main combustion is 1%. After performing the denitrification operation of the present invention, the 03 concentration in the exhaust gas before and after is set to 4-4, and the amount of recirculated combustion exhaust gas used is equal to or less than the total exhaust gas. -, and the main combustion fuel 0171 @ was closed at the calorific value pace of your company's additive hydrocarbon fuel.

主燃焼直後の排ガス温度は1430℃、ライン265か
もの炭化水素系燃料の添加点の排ガス温度1350℃、
ツイン2・4からの再循環燃焼排ガスの添加点O#ガス
温度1530℃、ライン2 D 、!Sからの未燃分消
去用空気の添加点の排ガス温度は1300℃としえ。を
九この際使用再循環燃焼排ガス量(全排ガスの!−)の
うち、袖は主燃焼の微粉炭のキャリャガスとして使用し
、残ヤの−をツイン104から投入するために使用しえ
。本発IjIO効果を確認するために行った試験は全て
の上記の条件を守って行った。なお、単に上記微粉炭を
燃焼させた直後の排ガス中のNOx濃度は148 pp
mであつ九。
The exhaust gas temperature immediately after the main combustion is 1430℃, the exhaust gas temperature at the addition point of the hydrocarbon fuel on line 265 is 1350℃,
Addition point of recirculated combustion exhaust gas from twins 2 and 4 O# Gas temperature 1530°C, line 2 D,! The exhaust gas temperature at the point of addition of air for eliminating unburned gas from S shall be 1300°C. Of the amount of recirculated combustion exhaust gas (!- of the total exhaust gas) used at this time, the sleeve is used as a carrier gas for the pulverized coal in the main combustion, and the remainder - is used for inputting from the twin 104. The tests conducted to confirm the effects of the IjIO of the present invention were conducted under all of the above conditions. In addition, the NOx concentration in the exhaust gas immediately after simply burning the pulverized coal is 148 pp.
m and nine.

試験は、第2図に模式的に示し丸ように4ケ所から再循
環燃焼排ガスを投入して行つ九。炉壁に対して再循環燃
焼排ガスO役人角度−を種々変えて炉出口でのNOx計
側結果は、下表の通りであった。
The test was conducted by injecting recirculated combustion exhaust gas from four locations as schematically shown in Figure 2.9. The results on the NOx meter side at the furnace outlet when the angle of the recirculated combustion exhaust gas relative to the furnace wall was varied are shown in the table below.

02からの添加微粉炭のキャリアガスとして利用した場
合である。
This is the case where it is used as a carrier gas for the pulverized coal added from 02.

t ft NOxと1時K Co の排出量を計測し九
が、全一の条件で10 ppfl以下であつ九。
Measurements of t ft NOx and 1 hour K Co emissions were less than 10 ppfl under all conditions.

角度(θ)が大きいと、燃焼中16部の火炎を乱して望
ましくないが、40度以下に設定す^ば、本発明の方法
が脱硝率向上に有効であることが判る。
If the angle (θ) is large, it will disturb the flame during combustion, which is undesirable, but if it is set to 40 degrees or less, it can be seen that the method of the present invention is effective in improving the denitrification rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用しうるようにした発電ボイラO
立面図、第2図は第1図の燃焼排ガス添加レベルの模式
的平面図、第5図は本発明の効果を確認する九めに行っ
た実験小型炉の模式図を示す。 復代理人  内 1)  明 復代理人  藪 原 亮 −
Figure 1 shows a power generation boiler O to which the present invention can be applied.
FIG. 2 is a schematic plan view of the flue gas addition level shown in FIG. 1, and FIG. 5 is a schematic diagram of a small experimental reactor that was conducted for the ninth time to confirm the effects of the present invention. Sub-agents 1) Meifu agent Ryo Yabuhara -

Claims (1)

【特許請求の範囲】[Claims] 主燃料の燃焼後の排ガスの高温部に、炭化水素系燃料を
添加して前記排ガス中の酸素で不完全燃焼させて窒素酸
化物を還元し、その後流に空気を添加して燃料O未燃分
を燃焼させる窒素酸化物低減法焼法において、窒素酸化
物を還元した後で、かつ未燃分を除去するに十分な量の
空気を添加する前に、全排ガス量に対し酸素一度がaS
体積嘔以下になるように燃焼排ガス及び/又は、空気を
1ケ所又は多数ケ所よ)炉壁に対して40度以下の角度
で投入することを特徴とする燃焼排ガス中の窒素酸化物
低減法。
Hydrocarbon fuel is added to the high temperature part of the exhaust gas after the combustion of the main fuel, and the oxygen in the exhaust gas causes incomplete combustion to reduce nitrogen oxides. In the nitrogen oxide reduction method, which burns the nitrogen oxides, the amount of oxygen per total exhaust gas amount is aS after reducing the nitrogen oxides and before adding sufficient air to remove the unburned
A method for reducing nitrogen oxides in flue gas, which comprises injecting flue gas and/or air at one or more locations at an angle of 40 degrees or less with respect to a furnace wall so that the volume of the flue gas is less than or equal to 100 degrees.
JP13026181A 1981-08-21 1981-08-21 Method of reducing nitrogen oxides in combustion exhaust gas Granted JPS5833019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13026181A JPS5833019A (en) 1981-08-21 1981-08-21 Method of reducing nitrogen oxides in combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13026181A JPS5833019A (en) 1981-08-21 1981-08-21 Method of reducing nitrogen oxides in combustion exhaust gas

Publications (2)

Publication Number Publication Date
JPS5833019A true JPS5833019A (en) 1983-02-26
JPH0130044B2 JPH0130044B2 (en) 1989-06-15

Family

ID=15030031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13026181A Granted JPS5833019A (en) 1981-08-21 1981-08-21 Method of reducing nitrogen oxides in combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPS5833019A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392752B2 (en) 2002-12-26 2008-07-01 Hitachi, Ltd. Solid fuel boiler and method of operating combustion apparatus
US7922480B2 (en) 2002-12-12 2011-04-12 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus and wind box
EP2860447A3 (en) * 2013-10-08 2015-07-08 RJM Corporation (EC) Ltd Air injection systems for combustion chambers
US9599334B2 (en) 2013-04-25 2017-03-21 Rjm Corporation (Ec) Limited Nozzle for power station burner and method for the use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322126B1 (en) * 2020-04-13 2021-11-04 국방과학연구소 Photonic-based FMCW Radar System Using Optical Signal Delay Module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534050U (en) * 1976-06-30 1978-01-14
JPS5469835A (en) * 1977-11-14 1979-06-05 Mitsubishi Heavy Ind Ltd Combustion method with reduced nitrogen oxides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534050U (en) * 1976-06-30 1978-01-14
JPS5469835A (en) * 1977-11-14 1979-06-05 Mitsubishi Heavy Ind Ltd Combustion method with reduced nitrogen oxides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922480B2 (en) 2002-12-12 2011-04-12 Babcock-Hitachi Kabushiki Kaisha Combustion apparatus and wind box
US7392752B2 (en) 2002-12-26 2008-07-01 Hitachi, Ltd. Solid fuel boiler and method of operating combustion apparatus
US9599334B2 (en) 2013-04-25 2017-03-21 Rjm Corporation (Ec) Limited Nozzle for power station burner and method for the use thereof
EP2860447A3 (en) * 2013-10-08 2015-07-08 RJM Corporation (EC) Ltd Air injection systems for combustion chambers

Also Published As

Publication number Publication date
JPH0130044B2 (en) 1989-06-15

Similar Documents

Publication Publication Date Title
RU2299758C2 (en) Device and the method of control over nitrogen dioxide ejections from the boilers burning the carbonic fuels without usage of the external reactant
JPS6225927B2 (en)
US5022226A (en) Low NOx cogeneration process and system
CN104696949A (en) Two-stage process denitrification method of coal fired boiler
JPS5833019A (en) Method of reducing nitrogen oxides in combustion exhaust gas
CN112642275A (en) Organic waste pyrolysis, gasification, combustion, co-sintering and denitration integrated system and method
KR101139575B1 (en) The de-nox system and the method for exhaust gas at low temperature
CN105838453A (en) Method for in-situ removal of nitrogen pollutants in biomass fuel gas in biomass gasifier
CN111836997A (en) Heat production method of power device
JPH026961B2 (en)
CN102240505A (en) Method for reducing NO by using iron catalyst
JP3940551B2 (en) Ammonia decomposition treatment apparatus for gasified fuel and ammonia decomposition treatment system provided with the same
CN204478025U (en) Fire coal boiler fume two-phase method denitrification apparatus
CN212204595U (en) Pulverized coal partial gasification and denitration system
JP7153327B2 (en) combustion system
CN211176766U (en) System for reducing content of nitrogen oxides in tail gas of natural gas boiler
Straitz III et al. Combat NOx with better burner design
JPS5819928B2 (en) Nitrogen oxide reduction combustion method
JPS5858132B2 (en) Method for reducing nitrogen oxides in exhaust gas
JPS5934245B2 (en) Low NOx combustion method
JP2582139B2 (en) NOx reduction treatment method for coal gasified fuel
JPS6155412B2 (en)
CN212565819U (en) Sulfur recovery unit tail gas treatment system
JPS5827974B2 (en) Treatment method for nitrogen oxides in exhaust gas
JPS5836620B2 (en) Method for reducing nitrogen oxides in combustion exhaust gas