EP0646219B1 - Device for injecting a fuel gas mixture - Google Patents

Device for injecting a fuel gas mixture Download PDF

Info

Publication number
EP0646219B1
EP0646219B1 EP94911833A EP94911833A EP0646219B1 EP 0646219 B1 EP0646219 B1 EP 0646219B1 EP 94911833 A EP94911833 A EP 94911833A EP 94911833 A EP94911833 A EP 94911833A EP 0646219 B1 EP0646219 B1 EP 0646219B1
Authority
EP
European Patent Office
Prior art keywords
gas
valve
fuel
downstream
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94911833A
Other languages
German (de)
French (fr)
Other versions
EP0646219A1 (en
Inventor
Ferdinand Reiter
Heinz-Martin Krause
Martin Maier
Jürgen Buchholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0646219A1 publication Critical patent/EP0646219A1/en
Application granted granted Critical
Publication of EP0646219B1 publication Critical patent/EP0646219B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • F02M61/186Multi-layered orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/047Injectors peculiar thereto injectors with air chambers, e.g. communicating with atmosphere for aerating the nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/08Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the fuel being carried by compressed air into main stream of combustion-air

Definitions

  • the invention relates to a device for injecting a fuel-gas mixture according to the preamble of the main claim.
  • an injection valve for injecting a fuel-gas mixture (US Pat. No. 4,957,241), in which a spacer plate for influencing the air volume is installed between a nozzle body and a protective cap.
  • the spacer plate between the nozzle body and the protective cap has a central opening into which the downstream pin end of a valve needle is immersed.
  • the air supply to the fuel emerging from a fuel channel takes place via air channels and air chambers.
  • the radial air supply for tapping the valve needle is determined by the height of, for example, four spacer knobs formed on the spacer plate.
  • the amount and the composition of the fuel-air mixture is determined by the size of the annular gap extending in the axial direction between the pin of the valve needle and the circumference of the opening in the spacer plate.
  • the fuel is not one Gas includes so that there is no risk of the fuel jets moving towards each other.
  • injection valves US Pat. No. 4,982,716
  • a baffle is provided downstream of the single spray opening, which is hit by the only sprayed fuel jet and is directed in film form into two spray channels, an air jet being directed onto the fuel films formed after the impact is directed.
  • the device according to the invention for the injection of a fuel-gas mixture with the characterizing features of the main claim represents an easily assembled and easily adjustable possibility for improved preparation of fuel by supplying a fixed amount of gas while maintaining the desired double-jet.
  • the convex beam splitter acts as a flow resistance, which causes a backflow.
  • the ram flow is responsible for the dual radiation that is maintained despite the gas containment also downstream of the beam splitter and the good treatment effect of the gas containment due to an improved mixing of gas and fuel.
  • beam splitters with convex splitter surfaces that have circular, semicircular or elliptical cross sections.
  • the beam splitters have waist-shaped constrictions or bulges with convex divider surfaces.
  • a sheet-metal insert with spacers for example molded-on knobs
  • spacers for example molded-on knobs
  • the gas is metered for improved fuel preparation.
  • the sheet-metal insert is pressed against the spray-perforated disk by a section of the gas-enclosing body which tapers in the shape of a truncated cone upstream and abuts at least partially on a conical area of the sheet-metal insert.
  • the inserted sheet metal insert is pre-centered via tabs that lead radially outwards on the sheet metal insert. The fine adjustment is achieved by pressing the gas enclosing body.
  • a cone difference angle formed between the sheet metal insert and the gas encasing body ensures an axial tolerance compensation with respect to the sheet metal insert and the gas encasing body with respect to the spray hole disk. Because of this Jamming and the cone difference angle associated therewith a seal is achieved so that fuel cannot penetrate into gas-carrying channels and flow channels.
  • FIG. 1 shows a partially illustrated device for injecting a fuel-gas mixture according to a first exemplary embodiment according to the invention
  • FIG. 2 shows an enlarged detail from FIG. 1
  • FIG. 3 shows an effect of a beam splitter with a convex splitter surface
  • FIGS. 4 to 6 show exemplary embodiments for the design 4a to 6a top views of the spraying chambers shown in FIGS. 4 to 6, FIGS. 7 to 17 as middle cross sections, design examples for the formation of convex beam splitters, and FIGS. 7a to 17a top views of the beam splitters shown in FIGS. 7 to 17.
  • the injection valve has a tubular valve seat support 1, in which is concentric with one Longitudinal valve axis 2, a longitudinal opening 3 is formed.
  • an, for example, tubular valve needle 5 Arranged in the longitudinal opening 3 is an, for example, tubular valve needle 5, which is connected at its downstream end 6 to an, for example, spherical valve closing body 7, on the circumference of which, for example, five flats 8 are provided.
  • the injection valve is actuated in a known manner, for example electromagnetically.
  • An indicated electromagnetic circuit with a magnet coil 10, an armature 11 and a core 12 serves for the axial movement of the valve needle 5 and thus for opening against the spring force of a return spring (not shown) or closing the injection valve.
  • the armature 11 is facing away from the valve closing body 7 End of the valve needle 5 by, for example a weld seam is connected by means of a laser and aligned with the core 12.
  • the magnet coil 10 surrounds the core 12, which represents, for example, the end of an inlet connection piece (not shown in more detail) which surrounds the magnet coil 10 and which serves to supply the medium to be metered by means of the valve, here fuel.
  • a guide opening 15 of a valve seat body 16 serves to guide the valve closing body 7 during the axial movement.
  • the cylindrical valve seat body 16 In the downstream end of the valve seat carrier 1 facing away from the core, the cylindrical valve seat body 16 is tightly mounted in the longitudinal opening 3 concentric to the longitudinal axis 2 of the valve by welding.
  • the circumference of the valve seat body 16 has a slightly smaller diameter than the longitudinal opening 3 of the valve seat carrier 1.
  • the Valve closing body 7 facing away from the lower end face 17, the valve seat body 16 is concentrically and firmly connected to a bottom part 20 of a, for example, cup-shaped injection orifice plate 21, so that the bottom end face 20 of the bottom part 20 abuts the lower end face 17 of the valve seat body 16.
  • valve seat body 16 and spray perforated disk 21 takes place, for example, by means of a circumferential and tight first weld seam 22, formed for example by means of a laser, on the base part 20 , avoided by punching or eroding molded injection openings 25, which are located in a central region 24 of the bottom part 20.
  • a circumferential retaining edge 26 which extends in the axial direction away from the valve seat body 16 and is conically bent outwards up to its downstream end.
  • the holding edge 26 has a larger diameter at its end than the diameter of the longitudinal opening 3 of the valve seat carrier 1. Since the circumferential diameter of the valve seat body 16 is smaller than the diameter of the longitudinal opening 3 of the valve seat carrier 1, it lies only between the longitudinal opening 3 and the slightly conical outwardly bent holding edge 26 of the spray plate 21 a radial pressure.
  • the holding edge 26 exerts a radial spring action on the wall of the longitudinal opening 3.
  • the insertion depth of the valve seat part consisting of valve seat body 16 and cup-shaped spray orifice disk 21 into the longitudinal opening 3 determines the presetting of the stroke of the valve needle 5, since the one end position of the valve needle 5 when the solenoid coil 10 is not excited due to the valve closing body 7 resting on a valve seat surface 29 of the valve seat body 16 is set.
  • the other end position of the valve needle 5 is determined when the solenoid 10 is excited, for example by the armature 11 resting on the core 12. The path between these two end positions of the valve needle 5 thus represents the stroke.
  • the holding edge 26 of the spray plate 21 is connected to the wall of the longitudinal opening 3, for example by a circumferential and tight second weld seam 30.
  • the second weld 30 is formed like the first weld 22, for example by means of a laser. The parts to be welded are only slightly heated during laser welding and the process is safe and reliable.
  • a tight welding of the valve seat body 16 and the spray hole disk 21 and of the spray hole disk 21 and the valve seat support 1 is required so that the fuel does not pass between the longitudinal opening 3 of the valve seat support 1 and the circumference of the valve seat body 16 to the spray openings 25 or between the longitudinal opening 3 of the valve seat support 1 and the holding edge 26 of the cup-shaped spray perforated disk 21 therethrough can flow directly into an intake line of the internal combustion engine. Because of the two weld seams 22 and 30, there are consequently two fastening points on the cup-shaped spray perforated disk 21.
  • the spherical valve closing body 7 interacts with the valve seat surface 29 of the valve seat body 16 which tapers in the shape of a truncated cone in the flow direction and is formed in the axial direction between the guide opening 15 and the lower end face 17 of the valve seat body 16.
  • the valve seat body 16, facing the solenoid 10 has a valve seat body opening 33 which has a larger diameter than the guide opening 15 of the valve seat body 16.
  • a section 34 which adjoins the valve seat body opening 33 in the direction of the spray orifice disk 21 is distinguished by its frustoconical tapering up to the diameter of Guide opening 15 from.
  • valve seat body opening 33 with its subsequent frustoconical section 34 serves as a flow inlet so that a flow of the medium can take place from a valve interior 35 limited in the radial direction through the longitudinal opening 3 of the valve seat carrier 1 to the guide opening 15 of the valve seat body 16.
  • the diameter of the guide opening 15 is designed such that the spherical valve closing body 7 projects through the guide opening 15 outside of its flattened portions 8 with a small radial distance.
  • the valve seat support 1 is at least partially surrounded radially and axially by a stepped concentric gas-enclosing body 41.
  • the gas containment body 41 made of a plastic includes, for example, both the actual gas containment at the downstream end of the valve seat support 1 and a gas inlet channel, not shown, which serves to supply the gas into the gas containment body 41 and is, for example, formed in one piece with the gas containment body 41.
  • An axially extending, tubular section 43 of the gas encasing body 41 which is connected, for example, to a plastic encapsulation of the injection valve in the axial direction between the magnet coil 10 and the valve closing body 7 by ultrasonic welding, is followed by a section 44 tapering downstream.
  • This conical section 44 is, for example, also stepped.
  • the formation of the gas enclosing body 41 in this area can be varied in accordance with the spatial conditions of a valve receptacle, not shown.
  • the section 44 is followed downstream by an axially extending tubular section 45 of the gas enclosing body 41, which, however, is distinguished by a much smaller diameter than in the section 43.
  • the axial section 45 surrounds this downstream end of the valve seat support 1 both directly adjacent and at a radial distance from the supply of the gas up to the fuel emerging from the spray openings 25 of the spray plate 21.
  • the walls are therefore less strong than in the entire other peripheral area.
  • the reduction in the wall thickness of the gas containment body 41 in section 45 has the result that, for example, three to six gas inlet channels 48 are formed between the valve seat support 1 and the gas containment body 41, which, for example, regularly run axially at equal intervals around the circumference of the valve seat support 1, for example with three gas inlet channels 48 offset by 120 ° or with six gas inlet channels 48 offset by 60 °.
  • the section 45 of the gas enclosing body 41 is designed in such a way that first chamfers 49 are formed in the areas of the gas inlet channels 48 and extend axially over the entire length of the gas inlet channels 48.
  • the section 45 of the gas enclosing body 41 has second chamfers 50 at its upstream end, which are integrally formed only on the circumference outside the gas inlet channels 48 and which simplify assembly when the gas enclosing body 41 is pushed on from the downstream side onto the valve seat carrier 1 and thus onto the injection valve enable.
  • the axially extending section 45 has at its upstream and downstream ends a radially outward-facing circumferential shoulder 52, 53, which together with the outer wall of section 45 form an annular groove 55.
  • a sealing ring 56 is arranged in the annular groove 55, the Side surfaces are formed by the downstream side of the shoulder 52 and the upstream side of the shoulder 53 and the groove base 58 thereof by the outer wall of the section 45 of the gas encasing body 41.
  • the sealing ring 56 serves to seal between the circumference of the injection valve with the gas encasing body 41 and a valve receptacle, not shown, for example the intake line of the internal combustion engine or a so-called fuel and / or gas distribution line.
  • the valve seat carrier 1 has an outer circumferential taper 60 and an inner circumferential taper 61, against which no other components are in contact and which are intended to improve the assembly of the gas encasing body 41 on the injection valve, while on a downstream end face 62 of the valve seat carrier 1, the gas encasing body 41 with a radially extending section 63 in the areas outside the gas inlet channels 48.
  • the axially extending gas inlet channels 48 are followed, for example, by as many, for example three to six, radially extending flow channels 64 between the radially extending section 63 of the gas enclosing body 41 and the downstream end face 62 of the valve seat carrier 1 arise after the assembly of the gas enclosing body 41 and the gas flows radially through it.
  • the gas then flows axially upstream into an annular channel 65 between a last concentric section 68 of the gas enclosing body 41 which tapers in the shape of a truncated cone upstream and the wall of the longitudinal opening 3 in the valve seat support 1 until it is deflected Kung the flow at a lower end face 69 of the bottom part 20 of the spray plate 21 in the radial direction.
  • the gas-enclosing body 41 presses at least partially with an outer surface 70 of its section 68, which projects into the injection valve and thus into the valve seat support 1 in the direction of the orifice plate 21, against an inner surface 72 of a tapered and circumferential region 73 of a sheet metal insert 74, which in turn on the lower end face 69 of the bottom part 20 of the spray plate 21 with spacers, for example knobs 75, abuts.
  • spacers for example knobs 75
  • the sheet metal insert 74 is formed by a radial region 77 with a mixture spray opening 78 running in it centrally and concentrically to the longitudinal valve axis 2, the conical region 73 and thus obliquely to the longitudinal valve axis 2 and, for example, three radially outward-facing regions which adjoin the conical region 73 downstream Tabs 80 formed.
  • the knobs 75 are formed at at least three, then offset by 120 °, which have an axial extension in the direction of the spray-perforated disk 21 and touch them point-wise on their lower end face 69 after the installation of the gas-enclosing body 41.
  • knobs 75 of the sheet metal insert 74 With the knobs 75 of the sheet metal insert 74, an axial distance dimension between the lower end face 69 of the spray perforated disc 21 and an upper end face 81 of the radial region 77 of the sheet-metal insert 74 facing the perforated disk 21, which corresponds to the axial height of the knobs 75 and thus the axial extent of a gas ring gap 83 formed thereby.
  • the knobs 75 of the sheet metal insert 74 are introduced, for example, by embossing processes, since this allows desired, very small tolerances in the axial extent to be maintained.
  • the axial dimension of the extent of the gas ring gap 83 forms the metering cross section for the gas flowing in from the ring channel 65, for example treatment air.
  • the gas ring gap 83 serves to supply the gas to the fuel discharged through the spray openings 25 of the spray orifice plate 21 and to meter the gas.
  • the gas supplied through the gas inlet channels 48, the flow channels 64 and the ring channels 65 flows through the narrow gas ring gap 83 to the mixture spray opening 78 and meets the fuel discharged through the two or four spray openings 25, for example. Due to the small axial extent of the gas ring gap 83 predetermined by the knobs 75, the gas supplied is greatly accelerated and atomizes the fuel particularly finely.
  • the suction air diverted by a bypass in front of a throttle valve in the intake manifold of the internal combustion engine, air conveyed by an additional blower, but also recirculated exhaust gas from the internal combustion engine or a mixture of air and exhaust gas can be used as gas.
  • the mixture spray opening 78 in the radial region 77 of the sheet metal insert 74 has such a large diameter that it flows upstream from the spray openings 75 of the spray orifice plate 21 Escaping fuel, which the gas comes vertically from the gas ring gap 83 for better processing, can escape unhindered through the mixture spray opening 78 of the sheet metal insert 74.
  • the sheet-metal insert 74 is pressed against the spray-perforated disk 21 by the upstream frustoconical section 68 of the gas encasing body 41, which at least partially abuts the inner surface 72 of the conical region 73 of the sheet-metal insert 74.
  • FIG. 2 clearly illustrates this clamping area as an enlarged detail from FIG. 1.
  • the sheet metal insert 74 is designed in such a way that, for example, three tabs 80 (FIG. 1) adjoin the area 73 downstream, which serve to pre-center the sheet metal insert 74 in the valve seat support 1.
  • the tabs 80 have radial end surfaces 85, which are achieved, for example, by smooth stamping and are of good quality with regard to their surface roughness.
  • the pre-centered sheet metal insert 74 is finely adjusted with the help of the gas encasing body 41 pressing against the conical area 73 of the sheet metal insert 74. In this case, there is a line contact between the gas encasing body 41 and the sheet metal insert 74, which, upon further insertion of the frustoconical section 68 of the gas encasing body 41, is pushed upstream a surface contact. Between the outer surface 70 of the portion 68 of the gas containment body 41 and the inner surface 72 of the area 73 of the sheet metal insert 74 inevitably creates a cone difference angle ⁇ .
  • This cone difference angle ⁇ ensures an axial tolerance compensation with respect to the sheet metal insert 74 and the gas encasing body 41 with respect to the spray perforated disk 21.
  • a beam splitter 86 is provided in the gas containment body 41 downstream of the mixture spray opening 78 of the sheet metal insert 74.
  • the beam splitter 86 extends transversely through the longitudinal valve axis 2 and symmetrically divides a spray chamber 87 formed by the gas enclosing body 41 downstream of the mixture spray opening 78.
  • the spray chamber 87 can first be cylindrical in accordance with the design of the gas-enclosing body 41 in the flow direction and then conical, or it can be continuously cylindrical or elliptical.
  • the beam splitter 86 is located, for example, at the same height as the radially extending section 63 of the gas enclosing body 41, which thus also represents the connection of two points of the section 63 which are 180 ° apart.
  • the beam splitter 86 can both be part of the gas enclosing body 41 made of plastic as a web, and can also be installed, for example, as a pin made of another material.
  • Crucial in the design of the beam splitter 86 is the formation of an upper, upstream, convex splitter surface 88.
  • FIG. 3 is intended to illustrate the effect of the beam splitter 86 with its convex splitter surface 88 in the case of two-jet valves with gas enclosures.
  • Two or four fuel jets are generated through the two or four spray orifices 25 in the spray orifice plate 21 and are sprayed into areas formed on both sides of the beam splitter 86 in the spraying chamber 87.
  • the configuration of the jet splitter 86 according to the invention is useful not only in the case of individual fuel jets directed onto the jet splitter 86, but also when the fuel jets run past the jet splitter 86 or when they also move away from one another with increasing distance from the spray openings 25.
  • the fuel jets are hit vertically by the gas flowing out of the gas ring gap 83 immediately after they emerge from the spray openings 25.
  • the consequence of this is that the dual-jet nature of the fuel jets is endangered by the gas enclosure and the two fuel jets can even merge, since the gas moves the fuel jets towards one another, as indicated by the dotted lines 90.
  • gas is jammed in the beam splitters 86 with a convex splitter surface 88 above the splitter surface 88, the fuel jets being pushed outwards again by the back pressure of the gas, and thus a clear double-jet radiation remains.
  • the dash-dot lines 91 show fuel jet profiles in two-jet valves without gas containment.
  • the convex splitter surface 88 of the beam splitter 86 ensures that an equally good double radiation is created in the axial direction downstream from the beam splitter 86, despite the gas enclosure.
  • the transition from the dotted line 90 to the dash-dotted line 91 is intended to illustrate this.
  • FIGS. 4 to 6 and 4a to 6a schematically show exemplary embodiments for the design of the spray chamber 87 surrounded by the gas-enclosing body 41 with a beam splitter 86 which has a circular cross section.
  • the embodiment 4 illustrates a cylindrical spray chamber 87 in the area of the beam splitter 86
  • FIG. 5 shows a conical spray chamber 87, as can also be seen in FIGS. 1 and 3
  • FIG. 6 shows an elliptical spray chamber 87.
  • FIGS. 4a to 6a show top views the spraying chambers 87 shown in Figures 4 to 6.
  • some possible design variants of the convex beam splitters 86 are simplified and shown schematically as cross sections or top views.
  • the convex splitter surface 88 is decisive in the configuration of the beam splitter 86.
  • the variants shown allow different beam angles of the fuel-gas mixture.
  • beam splitters 86 are also conceivable, which have waist-shaped constrictions (FIGS. 9, 9a, 10, 10a, 14, 14a, 15, 15a) transverse to the flow, for example in their central region, for small beam angles or bulges (FIGS. 16, 16a, 17, 17a) for larger beam angles.

Abstract

Devices for injecting a fuel-gas mixture are known in which there is a gas chamber partially surrounding the downstream end of the injection valve radially and axially. Various embodiments of flow dividers or deflection surfaces are also known on which sprayed fuel is deflected without the addition of gas. The novel device has a flow divider (86) with a convex divider surface (88) facing the injection port plate (21). The convex flow divider (86) acts as a flow resistor producing a dynamic flow. The dynamic flow is responsible for the maintenance of the multi-jet system, despite gas inclusion, upstream of the flow divider (86) as well and the good preparation effect of the gas inclusion by improved mixing of gas and fuel. The proposed device for injecting a fuel-gas mixture is especially suitable for injection into the intake pipe of a mixture-compression spark-ignition internal combustion engine.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches nach der Gattung des Hauptanspruchs.The invention relates to a device for injecting a fuel-gas mixture according to the preamble of the main claim.

Es ist schon ein elektromagnetisch betätigbares Ventil zur Einspritzung eines Brennstoff-Gas-Gemisches in eine gemischverdichtende fremdgezündete Brennkraftmaschine bekannt (DE-OS 41 21 372), bei der eine Gasumfassungshülse einen Düsenkörper eines Brennstoffeinspritzventils umgibt. Die Gasumfassungshülse ist dabei so ausgeführt, daß ihr Bodenteil mit einer konzentrischen Durchlaßöffnung schräg zum Ventilende des Brennstoffeinspritzventils hin geformt ist. Auf diese Weise wird ein Gasringspalt zwischen einer Spritzlochscheibe und dem Bodenteil der Gasumfassungshülse gebildet. Der aus dem Gasringspalt austretende Gasstrom ist dabei radial auf die einzelnen aus der Spritzlochscheibe austretenden Brennstoffstrahlen gerichtet und führt zu einer Annäherung der Brennstoffstrahlen aneinander bis hin zu einer möglichen Vereinigung zu einem einzigen Brennstoffstrahl.There is already an electromagnetically actuated valve for injecting a fuel-gas mixture into a mixture-compressing spark-ignition internal combustion engine (DE-OS 41 21 372), in which a gas encasing sleeve surrounds a nozzle body of a fuel injector. The gas encasing sleeve is designed so that its bottom part is formed obliquely with a concentric passage opening towards the valve end of the fuel injector. In this way, a gas ring gap is formed between a spray orifice plate and the bottom part of the gas encasing sleeve. The one from the gas ring gap escaping gas flow is directed radially at the individual fuel jets emerging from the spray orifice plate and leads to the fuel jets coming closer to one another and possibly being combined into a single fuel jet.

Bekannt ist außerdem ein Einspritzventil zur Einspritzung eines Brennstoff-Gas-Gemisches (US-PS 4 957 241), bei dem zwischen einem Düsenkörper und einer Schutzkappe eine Abstandsplatte zur Luftmengenbeeinflussung eingebaut ist. Die Abstandsplatte zwischen Düsenkörper und Schutzkappe besitzt eine zentrale Öffnung, in die das stromabwärtige Zapfenende einer Ventilnadel eintaucht. Die Luftzufuhr zu dem aus einem Brennstoffkanal austretenden Brennstoff erfolgt über Luftkanäle und Luftkammern. Dabei wird die radiale Luftzufuhr zum Zapfen der Ventilnadel durch die Höhe von beispielsweise vier an der Abstandsplatte angeformten Abstandsnoppen bestimmt. Letztlich wird allerdings durch die Größe des sich in axialer Richtung erstreckenden Ringspaltes zwischen dem Zapfen der Ventilnadel und dem Umfang der Öffnung in der Abstandsplatte die Menge und die Zusammensetzung des Brennstoff-Luft-Gemisches festgelegt.Also known is an injection valve for injecting a fuel-gas mixture (US Pat. No. 4,957,241), in which a spacer plate for influencing the air volume is installed between a nozzle body and a protective cap. The spacer plate between the nozzle body and the protective cap has a central opening into which the downstream pin end of a valve needle is immersed. The air supply to the fuel emerging from a fuel channel takes place via air channels and air chambers. The radial air supply for tapping the valve needle is determined by the height of, for example, four spacer knobs formed on the spacer plate. Ultimately, however, the amount and the composition of the fuel-air mixture is determined by the size of the annular gap extending in the axial direction between the pin of the valve needle and the circumference of the opening in the spacer plate.

Weiterhin sind aus der DE-OS 37 16 402 Einspritzventile mit einer Lochplatte, in die zwei Abspritzlöcher eingebracht sind, aus denen Brennstoffstrahlen austreten, die gezielt auf verschiedene Ablenkflächen eines prismatischen Ablenkkörpers treffen und dort in gewünschte Richtungen abgelenkt werden, bekannt. Der Brennstoff wird dabei allerdings nicht von einem Gas umfaßt, so daß keine Gefahr des Aufeinanderzubewegens der Brennstoffstrahlen besteht.Furthermore, from DE-OS 37 16 402 injection valves with a perforated plate, into which two spray holes are made, from which fuel jets emerge, which hit different deflecting surfaces of a prismatic deflecting body and are deflected there in desired directions. The fuel is not one Gas includes so that there is no risk of the fuel jets moving towards each other.

Bekannt sind ebenfalls Einspritzventile (US-PS 4 982 716), bei denen stromabwärts der einzigen Abspritzöffnung eine Prallfläche vorgesehen ist, auf die der einzige abgespritzte Brennstoffstrahl trifft und filmförmig in zwei Abspritzkanäle geleitet wird, wobei auf die nach dem Aufprall gebildeten Brennstoffilme gezielt ein Luftstrahl gerichtet ist.Also known are injection valves (US Pat. No. 4,982,716), in which a baffle is provided downstream of the single spray opening, which is hit by the only sprayed fuel jet and is directed in film form into two spray channels, an air jet being directed onto the fuel films formed after the impact is directed.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches mit den kennzeichnenden Merkmalen des Hauptanspruchs stellt eine leicht montierbare und einfach einstellbare Möglichkeit zur verbesserten Aufbereitung von Brennstoff durch Zuführung einer festgelegten Gasmenge unter Aufrechterhaltung der gewünschten Zweistrahligkeit dar. Dadurch ergibt sich der Vorteil, daß im Gegensatz zu keil- oder schneidenförmigen Strahlteilern bei Strahlteilern mit konvexer Teilerfläche oberhalb der Teilerfläche Gas gestaut wird, wobei durch den Staudruck des Gases die Brennstoffstrahlen nach außen voneinander weg gedrängt werden und damit die Zweistrahligkeit beibehalten bleibt. Der konvexe Strahlteiler wirkt als Strömungswiderstand, wodurch eine Stauströmung verursacht wird. Die Stauströmung ist verantwortlich für die trotz Gasumfassung aufrechterhaltene Zweistrahligkeit auch stromabwärts des Strahlteilers und die gute Aufbereitungswirkung der Gasumfassung durch eine verbesserte Durchmischung von Gas und Brennstoff.The device according to the invention for the injection of a fuel-gas mixture with the characterizing features of the main claim represents an easily assembled and easily adjustable possibility for improved preparation of fuel by supplying a fixed amount of gas while maintaining the desired double-jet. This results in the advantage that in In contrast to wedge-shaped or knife-shaped beam splitters in gas splitters with a convex splitter surface above the splitter surface, gas is stowed, whereby the fuel jets are pushed outwards from one another by the back pressure of the gas and the double radiation is thus maintained. The convex beam splitter acts as a flow resistance, which causes a backflow. The ram flow is responsible for the dual radiation that is maintained despite the gas containment also downstream of the beam splitter and the good treatment effect of the gas containment due to an improved mixing of gas and fuel.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Vorrichtung möglich.Advantageous further developments and improvements of the device specified in the main claim are possible through the measures listed in the subclaims.

Besonders vorteilhaft ist es, Strahlteiler mit konvexen Teilerflächen einzusetzen, die kreisförmige, halbkreisförmige oder elliptische Querschnitte besitzen. Für bestimmte gewünschte Strahlwinkel ist es von Vorteil, wenn die Strahlteiler taillenförmige Verengungen oder Aufbauchungen mit konvexen Teilerflächen aufweisen.It is particularly advantageous to use beam splitters with convex splitter surfaces that have circular, semicircular or elliptical cross sections. For certain desired beam angles, it is advantageous if the beam splitters have waist-shaped constrictions or bulges with convex divider surfaces.

Vorteilhaft ist es, ein Blecheinlegeteil mit Abstandskörpern, beispielsweise angeformten Noppen, zwischen einer Spritzlochscheibe und einem Gasumfassungskörper zu klemmen. Mit Hilfe des speziell geformten Blecheinlegeteils und der maßgenau angeformten Noppen erfolgt die Zumessung des Gases zur verbesserten Aufbereitung des Brennstoffs. Das Blecheinlegeteil wird durch einen sich stromaufwärts kegelstumpfförmig verjüngenden Abschnitt des Gasumfassungskörpers, der zumindest teilweise an einem kegeligen Bereich des Blecheinlegeteils anliegt, gegen die Spritzlochscheibe gedrückt. Über am Blecheinlegeteil radial nach außen führende Laschen erfolgt die Vorzentrierung des eingelegten Blecheinlegeteils. Die Feinjustierung wird durch das Drücken des Gasumfasssungskörpers erreicht. Ein zwischen dem Blecheinlegeteil und dem Gasumfassungskörper gebildeter Konusdifferenzwinkel gewährleistet einen axialen Toleranzausgleich bezüglich des Blecheinlegeteils und des Gasumfassungskörpers gegenüber der Spritzlochscheibe. Durch dieses Verklemmen und dem damit verbundenen Konusdifferenzwinkel wird eine Abdichtung erreicht, so daß Brennstoff nicht in gasführende Kanäle und Strömungskanäle eindringen kann.It is advantageous to clamp a sheet-metal insert with spacers, for example molded-on knobs, between a spray-perforated disk and a gas-enclosing body. With the help of the specially shaped sheet metal insert and the dimensionally formed knobs, the gas is metered for improved fuel preparation. The sheet-metal insert is pressed against the spray-perforated disk by a section of the gas-enclosing body which tapers in the shape of a truncated cone upstream and abuts at least partially on a conical area of the sheet-metal insert. The inserted sheet metal insert is pre-centered via tabs that lead radially outwards on the sheet metal insert. The fine adjustment is achieved by pressing the gas enclosing body. A cone difference angle formed between the sheet metal insert and the gas encasing body ensures an axial tolerance compensation with respect to the sheet metal insert and the gas encasing body with respect to the spray hole disk. Because of this Jamming and the cone difference angle associated therewith a seal is achieved so that fuel cannot penetrate into gas-carrying channels and flow channels.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine teilweise dargestellte Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches gemäß eines ersten erfindungsgemäßen Ausführungsbeispiels, Figur 2 einen vergrößerten Ausschnitt aus Figur 1, Figur 3 eine Wirkungsdarstellung eines Strahlteilers mit konvexer Teilerfläche, die Figuren 4 bis 6 Ausführungsbeispiele für die Gestaltung des von dem Gasumfassungskörper umgebenen Abspritzraums mit einem einen kreisförmigen Querschnitt aufweisenden Strahlteiler, die Figuren 4a bis 6a Draufsichten auf die in den Figuren 4 bis 6 gezeigten Abspritzräume, die Figuren 7 bis 17 als mittlere Querschnitte Gestaltungsbeispiele für die Ausbildung konvexer Strahlteiler und die Figuren 7a bis 17a Draufsichten auf die in den Figuren 7 bis 17 gezeigten Strahlteiler.Embodiments of the invention are shown in simplified form in the drawing and explained in more detail in the following description. FIG. 1 shows a partially illustrated device for injecting a fuel-gas mixture according to a first exemplary embodiment according to the invention, FIG. 2 shows an enlarged detail from FIG. 1, FIG. 3 shows an effect of a beam splitter with a convex splitter surface, and FIGS. 4 to 6 show exemplary embodiments for the design 4a to 6a top views of the spraying chambers shown in FIGS. 4 to 6, FIGS. 7 to 17 as middle cross sections, design examples for the formation of convex beam splitters, and FIGS. 7a to 17a top views of the beam splitters shown in FIGS. 7 to 17.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In der Figur 1 ist als ein Ausführungsbeispiel ein Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen teilweise und vereinfacht dargestellt. Das Einspritzventil hat einen rohrförmigen Ventilsitzträger 1, in dem konzentrisch zu einer Ventillängsachse 2 eine Längsöffnung 3 ausgebildet ist. In der Längsöffnung 3 ist eine z.B. rohrförmige Ventilnadel 5 angeordnet, die an ihrem stromabwärtigen Ende 6 mit einem z.B. kugelförmigen Ventilschließkörper 7, an dessen Umfang beispielsweise fünf Abflachungen 8 vorgesehen sind, verbunden ist.1 shows, as an exemplary embodiment, a valve in the form of an injection valve for fuel injection systems of mixed-compression spark-ignition internal combustion engines, partially and in simplified form. The injection valve has a tubular valve seat support 1, in which is concentric with one Longitudinal valve axis 2, a longitudinal opening 3 is formed. Arranged in the longitudinal opening 3 is an, for example, tubular valve needle 5, which is connected at its downstream end 6 to an, for example, spherical valve closing body 7, on the circumference of which, for example, five flats 8 are provided.

Die Betätigung des Einspritzventils erfolgt in bekannter Weise, beispielsweise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 5 und damit zum Öffnen entgegen der Federkraft einer nicht dargestellten Rückstellfeder bzw. Schließen des Einspritzventils dient ein angedeuteter elektromagnetischer Kreis mit einer Magnetspule 10, einem Anker 11 und einem Kern 12. Der Anker 11 ist mit dem dem Ventilschließkörper 7 abgewandten Ende der Ventilnadel 5 durch z.B. eine Schweißnaht mittels eines Lasers verbunden und auf den Kern 12 ausgerichtet. Die Magnetspule 10 umgibt den Kern 12, der beispielsweise das sich durch die Magnetspule 10 umschließende Ende eines nicht näher gezeigten Einlaßstutzens darstellt, der der Zufuhr des mittels des Ventils zuzumessenden Mediums, hier Brennstoff, dient.The injection valve is actuated in a known manner, for example electromagnetically. An indicated electromagnetic circuit with a magnet coil 10, an armature 11 and a core 12 serves for the axial movement of the valve needle 5 and thus for opening against the spring force of a return spring (not shown) or closing the injection valve. The armature 11 is facing away from the valve closing body 7 End of the valve needle 5 by, for example a weld seam is connected by means of a laser and aligned with the core 12. The magnet coil 10 surrounds the core 12, which represents, for example, the end of an inlet connection piece (not shown in more detail) which surrounds the magnet coil 10 and which serves to supply the medium to be metered by means of the valve, here fuel.

Zur Führung des Ventilschließkörpers 7 während der Axialbewegung dient eine Führungsöffnung 15 eines Ventilsitzkörpers 16. In das stromabwärts liegende, dem Kern abgewandte Ende des Ventilsitzträgers 1 ist in der konzentrisch zur Ventillängsachse 2 verlaufenden Längsöffnung 3 der zylinderförmige Ventilsitzkörper 16 durch Schweißen dicht montiert. Der Umfang des Ventilsitzkörpers 16 weist einen geringfügig kleineren Durchmesser auf als die Längsöffnung 3 des Ventilsitzträgers 1. An seiner einen, dem Ventilschließkörper 7 abgewandten unteren Stirnseite 17 ist der Ventilsitzkörper 16 mit einem Bodenteil 20 einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 21 konzentrisch und fest verbunden, so daß das Bodenteil 20 mit seiner oberen Stirnseite 19 an der unteren Stirnseite 17 des Ventilsitzkörpers 16 anliegt. Die Verbindung von Ventilsitzkörper 16 und Spritzlochscheibe 21 erfolgt beispielsweise durch eine umlaufende und dichte, z.B. mittels eines Lasers ausgebildete erste Schweißnaht 22 am Bodenteil 20. Durch diese Art der Montage ist die Gefahr einer unerwünschten Verformung des Bodenteils 20 im Bereich seiner wenigstens zwei, beispielsweise vier, durch Stanzen oder Erodieren ausgeformten Abspritzöffnungen 25, die sich in einem zentralen Bereich 24 des Bodenteils 20 befinden, vermieden.A guide opening 15 of a valve seat body 16 serves to guide the valve closing body 7 during the axial movement. In the downstream end of the valve seat carrier 1 facing away from the core, the cylindrical valve seat body 16 is tightly mounted in the longitudinal opening 3 concentric to the longitudinal axis 2 of the valve by welding. The circumference of the valve seat body 16 has a slightly smaller diameter than the longitudinal opening 3 of the valve seat carrier 1. At its one, the Valve closing body 7 facing away from the lower end face 17, the valve seat body 16 is concentrically and firmly connected to a bottom part 20 of a, for example, cup-shaped injection orifice plate 21, so that the bottom end face 20 of the bottom part 20 abuts the lower end face 17 of the valve seat body 16. The connection of valve seat body 16 and spray perforated disk 21 takes place, for example, by means of a circumferential and tight first weld seam 22, formed for example by means of a laser, on the base part 20 , avoided by punching or eroding molded injection openings 25, which are located in a central region 24 of the bottom part 20.

An das Bodenteil 20 der topfförmigen Spritzlochscheibe 21 schließt sich ein umlaufender Halterand 26 an, der sich in axialer Richtung dem Ventilsitzkörper 16 abgewandt erstreckt und bis zu seinem stromabwärtigen Ende hin konisch nach außen gebogen ist. Dabei weist der Halterand 26 an seinem Ende einen größeren Durchmesser auf als den Durchmesser der Längsöffnung 3 des Ventilsitzträgers 1. Da der Umfangsdurchmesser des Ventilsitzkörpers 16 kleiner als der Durchmesser der Längsöffnung 3 des Ventilsitzträgers 1 ist, liegt nur zwischen der Längsöffnung 3 und dem leicht konisch nach außen gebogenen Halterand 26 der Spritzlochscheibe 21 eine radiale Pressung vor. Dabei übt der Halterand 26 eine radiale Federwirkung auf die Wandung der Längsöffnung 3 aus. Dadurch wird beim Einschieben des aus Ventilsitzkörper 16 und Spritzlochscheibe 21 bestehenden Ventilsitzteils in die Längsöffnung 3 des Ventilsitzträgers 1 eine Spanbildung am Ventilsitzteil und an der Längsöffnung 3 vermieden.At the bottom part 20 of the cup-shaped spray perforated disk 21 there is a circumferential retaining edge 26 which extends in the axial direction away from the valve seat body 16 and is conically bent outwards up to its downstream end. The holding edge 26 has a larger diameter at its end than the diameter of the longitudinal opening 3 of the valve seat carrier 1. Since the circumferential diameter of the valve seat body 16 is smaller than the diameter of the longitudinal opening 3 of the valve seat carrier 1, it lies only between the longitudinal opening 3 and the slightly conical outwardly bent holding edge 26 of the spray plate 21 a radial pressure. The holding edge 26 exerts a radial spring action on the wall of the longitudinal opening 3. As a result, when inserting the valve seat part consisting of valve seat body 16 and spray orifice plate 21 in the longitudinal opening 3 of the valve seat carrier 1, chip formation on the valve seat part and on the longitudinal opening 3 is avoided.

Die Einschubtiefe des aus Ventilsitzkörper 16 und topfförmiger Spritzlochscheibe 21 bestehenden Ventilsitzteils in die Längsöffnung 3 bestimmt die Voreinstellung des Hubs der Ventilnadel 5, da die eine Endstellung der Ventilnadel 5 bei nicht erregter Magnetspule 10 durch die Anlage des Ventilschließkörpers 7 an einer Ventilsitzfläche 29 des Ventilsitzkörpers 16 festgelegt ist. Die andere Endstellung der Ventilnadel 5 wird bei erregter Magnetspule 10 beispielsweise durch die Anlage des Ankers 11 an dem Kern 12 festgelegt. Der Weg zwischen diesen beiden Endstellungen der Ventilnadel 5 stellt somit den Hub dar.The insertion depth of the valve seat part consisting of valve seat body 16 and cup-shaped spray orifice disk 21 into the longitudinal opening 3 determines the presetting of the stroke of the valve needle 5, since the one end position of the valve needle 5 when the solenoid coil 10 is not excited due to the valve closing body 7 resting on a valve seat surface 29 of the valve seat body 16 is set. The other end position of the valve needle 5 is determined when the solenoid 10 is excited, for example by the armature 11 resting on the core 12. The path between these two end positions of the valve needle 5 thus represents the stroke.

An seinem stromabwärtigen Ende ist der Halterand 26 der Spritzlochscheibe 21 mit der Wandung der Längsöffnung 3 beispielsweise durch eine umlaufende und dichte zweite Schweißnaht 30 verbunden. Die zweite Schweißnaht 30 ist wie die erste Schweißnaht 22 z.B. mittels eines Lasers ausgebildet. Die Erwärmung der miteinander zu verschweißenden Teile ist beim Laserschweißen gering und das Verfahren sicher und zuverlässig. Eine dichte Verschweißung von Ventilsitzkörper 16 und Spritzlochscheibe 21 sowie von Spritzlochscheibe 21 und Ventilsitzträger 1 ist erforderlich, damit der Brennstoff nicht zwischen der Längsöffnung 3 des Ventilsitzträgers 1 und dem Umfang des Ventilsitzkörpers 16 hindurch zu den Abspritzöffnungen 25 oder zwischen der Längsöffnung 3 des Ventilsitzträgers 1 und dem Halterand 26 der topfförmigen Spritzlochscheibe 21 hindurch unmittelbar in eine Ansaugleitung der Brennkraftmaschine strömen kann. Aufgrund der zwei Schweißnähte 22 und 30 liegen folglich zwei Befestigungsstellen an der topfförmigen Spritzlochscheibe 21 vor.At its downstream end, the holding edge 26 of the spray plate 21 is connected to the wall of the longitudinal opening 3, for example by a circumferential and tight second weld seam 30. The second weld 30 is formed like the first weld 22, for example by means of a laser. The parts to be welded are only slightly heated during laser welding and the process is safe and reliable. A tight welding of the valve seat body 16 and the spray hole disk 21 and of the spray hole disk 21 and the valve seat support 1 is required so that the fuel does not pass between the longitudinal opening 3 of the valve seat support 1 and the circumference of the valve seat body 16 to the spray openings 25 or between the longitudinal opening 3 of the valve seat support 1 and the holding edge 26 of the cup-shaped spray perforated disk 21 therethrough can flow directly into an intake line of the internal combustion engine. Because of the two weld seams 22 and 30, there are consequently two fastening points on the cup-shaped spray perforated disk 21.

Der kugelförmige Ventilschließkörper 7 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 29 des Ventilsitzkörpers 16 zusammen, die in axialer Richtung zwischen der Führungsöffnung 15 und der unteren Stirnseite 17 des Ventilsitzkörpers 16 ausgebildet ist. Der Ventilsitzkörper 16 weist der Magnetspule 10 zugewandt eine Ventilsitzkörperöffnung 33 auf, die einen größeren Durchmesser besitzt als die Führungsöffnung 15 des Ventilsitzkörpers 16. Ein sich in Richtung der Spritzlochscheibe 21 an die Ventilsitzkörperöffnung 33 anschließender Abschnitt 34 zeichnet sich durch seine kegelstumpfförmige Verjüngung bis zum Durchmesser der Führungsöffnung 15 aus. Die Ventilsitzkörperöffnung 33 mit ihrem nachfolgenden kegelstumpfförmigen Abschnitt 34 dient als Strömungseinlaß, damit eine Strömung des Mediums von einem in radialer Richtung durch die Längsöffnung 3 des Ventilsitzträgers 1 begrenzten Ventilinnenraum 35 zu der Führungsöffnung 15 des Ventilsitzkörpers 16 erfolgen kann.The spherical valve closing body 7 interacts with the valve seat surface 29 of the valve seat body 16 which tapers in the shape of a truncated cone in the flow direction and is formed in the axial direction between the guide opening 15 and the lower end face 17 of the valve seat body 16. The valve seat body 16, facing the solenoid 10, has a valve seat body opening 33 which has a larger diameter than the guide opening 15 of the valve seat body 16. A section 34 which adjoins the valve seat body opening 33 in the direction of the spray orifice disk 21 is distinguished by its frustoconical tapering up to the diameter of Guide opening 15 from. The valve seat body opening 33 with its subsequent frustoconical section 34 serves as a flow inlet so that a flow of the medium can take place from a valve interior 35 limited in the radial direction through the longitudinal opening 3 of the valve seat carrier 1 to the guide opening 15 of the valve seat body 16.

Damit die Strömung des Mediums auch die Abspritzöffnungen 25 der Spritzlochscheibe 21 erreicht, sind am Umfang des kugelförmigen Ventilschließkörpers 7 beispielsweise fünf Abflachungen 8 eingebracht. Die fünf kreisförmigen Abflachungen 8 ermöglichen das Durchströmen des Mediums im geöffneten Zustand des Einspritzventils vom Ventilinnenraum 35 bis zu den Abspritzöffnungen 25 der Spritzlochscheibe 21. Zur exakten Führung des Ventilschließkörpers 7 und damit der Ventilnadel 5 während der Axialbewegung ist der Durchmesser der Führungsöffnung 15 so ausgebildet, daß der kugelförmige Ventilschließkörper 7 außerhalb seiner Abflachungen 8 die Führungsöffnung 15 mit geringem radialen Abstand durchragt.So that the flow of the medium also reaches the spray openings 25 of the spray orifice plate 21, for example five flats 8 are introduced on the circumference of the spherical valve closing body 7. The five circular flats 8 allow the medium to flow through in the open state of the injection valve from the valve interior 35 to the spray openings 25 Spray hole disk 21. For the exact guidance of the valve closing body 7 and thus the valve needle 5 during the axial movement, the diameter of the guide opening 15 is designed such that the spherical valve closing body 7 projects through the guide opening 15 outside of its flattened portions 8 with a small radial distance.

An seinem stromabwärtigen Ende wird der Ventilsitzträger 1 von einem gestuften konzentrischen Gasumfassungskörper 41 zumindest teilweise radial und axial umschlossen. Zu dem Gasumfassungskörper 41 aus einem Kunststoff gehören beispielsweise sowohl die eigentliche Gasumfassung am stromabwärtigen Ende des Ventilsitzträgers 1 als auch ein nicht dargestellter Gaseintrittskanal, der der Zufuhr des Gases in den Gasumfassungskörper 41 dient und beispielsweise einteilig mit dem Gasumfassungskörper 41 ausgebildet ist. An einen axial verlaufenden, rohrförmigen Abschnitt 43 des Gasumfassungskörpers 41, der beispielsweise mit einer Kunststoffumspritzung des Einspritzventils in axialer Richtung zwischen der Magnetspule 10 und dem Ventilschließkörper 7 durch Ultraschallschweißen verbunden ist, schließt ein sich stromabwärts kegelig verjüngender Abschnitt 44 an. Dieser kegelige Abschnitt 44 ist beispielsweise ebenfalls gestuft ausgebildet. Die Ausbildung des Gasumfassungskörpers 41 in diesem Bereich kann entsprechend den räumlichen Bedingungen einer nicht gezeigten Ventilaufnahme variiert werden. Dem Abschnitt 44 folgt stromabwärts wieder ein axial verlaufender rohrförmiger Abschnitt 45 des Gasumfassungskörpers 41, der sich allerdings durch einen wesentlich kleineren Durchmesser als bei dem Abschnitt 43 auszeichnet. Der axiale Abschnitt 45 umgibt das stromabwärtige Ende des Ventilsitzträgers 1 sowohl unmittelbar anliegend als auch mit radialem Abstand zur Zufuhr des Gases bis zum aus den Abspritzöffnungen 25 der Spritzlochscheibe 21 austretenden Brennstoff. In beispielsweise drei bis sechs Bereichen des Abschnitts 45 des Gasumfassungskörpers 41 sind deshalb die Wandungen weniger stark ausgebildet als im gesamten anderen Umfangsbereich. Die Reduzierung der Wandstärke des Gasumfassungskörpers 41 im Abschnitt 45 hat zur Folge, daß beispielsweise drei bis sechs Gaseinlaßkanäle 48 zwischen dem Ventilsitzträger 1 und dem Gasumfassungskörper 41 gebildet werden, die beispielsweise regelmäßig in gleichen Abständen am Umfang des Ventilsitzträgers 1 axial verlaufen, z.B. bei drei Gaseinlaßkanälen 48 um jeweils 120° versetzt oder bei sechs Gaseinlaßkanälen 48 um jeweils 60° versetzt.At its downstream end, the valve seat support 1 is at least partially surrounded radially and axially by a stepped concentric gas-enclosing body 41. The gas containment body 41 made of a plastic includes, for example, both the actual gas containment at the downstream end of the valve seat support 1 and a gas inlet channel, not shown, which serves to supply the gas into the gas containment body 41 and is, for example, formed in one piece with the gas containment body 41. An axially extending, tubular section 43 of the gas encasing body 41, which is connected, for example, to a plastic encapsulation of the injection valve in the axial direction between the magnet coil 10 and the valve closing body 7 by ultrasonic welding, is followed by a section 44 tapering downstream. This conical section 44 is, for example, also stepped. The formation of the gas enclosing body 41 in this area can be varied in accordance with the spatial conditions of a valve receptacle, not shown. The section 44 is followed downstream by an axially extending tubular section 45 of the gas enclosing body 41, which, however, is distinguished by a much smaller diameter than in the section 43. The axial section 45 surrounds this downstream end of the valve seat support 1 both directly adjacent and at a radial distance from the supply of the gas up to the fuel emerging from the spray openings 25 of the spray plate 21. In, for example, three to six areas of section 45 of the gas-enclosing body 41, the walls are therefore less strong than in the entire other peripheral area. The reduction in the wall thickness of the gas containment body 41 in section 45 has the result that, for example, three to six gas inlet channels 48 are formed between the valve seat support 1 and the gas containment body 41, which, for example, regularly run axially at equal intervals around the circumference of the valve seat support 1, for example with three gas inlet channels 48 offset by 120 ° or with six gas inlet channels 48 offset by 60 °.

Der Abschnitt 45 des Gasumfassungskörpers 41 ist derart gestaltet, daß in den Bereichen der Gaseinlaßkanäle 48 erste Fasen 49 angeformt sind, die axial über die gesamte Länge der Gaseinlaßkanäle 48 verlaufen. Außerdem besitzt der Abschnitt 45 des Gasumfassungskörpers 41 an seinem stromaufwärtigen Ende zweite Fasen 50, die nur am Umfang außerhalb der Gaseinlaßkanäle 48 angeformt sind und die eine vereinfachte Montage beim Aufschieben des Gasumfassungskörpers 41 von der stromabwärtigen Seite her auf den Ventilsitzträger 1 und damit auf das Einspritzventil ermöglichen. Der axial verlaufende Abschnitt 45 weist an seinem stromaufwärtigen und stromabwärtigen Ende jeweils eine radial nach außen weisende umlaufende Schulter 52, 53 auf, die zusammen mit der äußeren Wandung des Abschnitts 45 eine Ringnut 55 bilden. Ein Dichtring 56 ist in der Ringnut 55 angeordnet, deren Seitenflächen durch die stromabwärtige Seite der Schulter 52 und die stromaufwärtige Seite der Schulter 53 sowie deren Nutgrund 58 durch die äußere Wandung des Abschnitts 45 des Gasumfassungskörpers 41 gebildet werden. Der Dichtring 56 dient zur Abdichtung zwischen dem Umfang des Einspritzventils mit dem Gasumfassungskörper 41 und einer nicht dargestellten Ventilaufnahme, beispielsweise der Ansaugleitung der Brennkraftmaschine oder einer sogenannten Brennstoff und/oder Gasverteilerleitung.The section 45 of the gas enclosing body 41 is designed in such a way that first chamfers 49 are formed in the areas of the gas inlet channels 48 and extend axially over the entire length of the gas inlet channels 48. In addition, the section 45 of the gas enclosing body 41 has second chamfers 50 at its upstream end, which are integrally formed only on the circumference outside the gas inlet channels 48 and which simplify assembly when the gas enclosing body 41 is pushed on from the downstream side onto the valve seat carrier 1 and thus onto the injection valve enable. The axially extending section 45 has at its upstream and downstream ends a radially outward-facing circumferential shoulder 52, 53, which together with the outer wall of section 45 form an annular groove 55. A sealing ring 56 is arranged in the annular groove 55, the Side surfaces are formed by the downstream side of the shoulder 52 and the upstream side of the shoulder 53 and the groove base 58 thereof by the outer wall of the section 45 of the gas encasing body 41. The sealing ring 56 serves to seal between the circumference of the injection valve with the gas encasing body 41 and a valve receptacle, not shown, for example the intake line of the internal combustion engine or a so-called fuel and / or gas distribution line.

An seinem stromabwärtigen Ende besitzt der Ventilsitzträger 1 eine äußere umlaufende Verjüngung 60 und eine innere umlaufende Verjüngung 61, an denen keine anderen Bauteile anliegen und die den Zusammenbau des Gasumfassungskörpers 41 am Einspritzventil verbessern sollen, während an einer stromabwärtigen Stirnseite 62 des Ventilsitzträgers 1 der Gasumfassungskörper 41 mit einem radial verlaufenden Abschnitt 63 in den Bereichen außerhalb der Gaseinlaßkanäle 48 anliegt. Um ein Einströmen des Gases in einen Zumeßquerschnitt zu gewährleisten, schließen sich an die axial verlaufenden Gaseinlaßkanäle 48 beispielsweise ebensoviele, also z.B. drei bis sechs radial verlaufende Strömungskanäle 64 an, die zwischen dem radial verlaufenden Abschnitt 63 des Gasumfassungskörpers 41 und der stromabwärtigen Stirnseite 62 des Ventilsitzträgers 1 nach der Montage des Gasumfassungskörpers 41 entstehen und radial vom Gas durchströmt werden. Danach strömt das Gas axial stromaufwärts in einen Ringkanal 65 zwischen einem letzten konzentrischen, sich stromaufwärts kegelstumpfförmig verjüngenden Abschnitt 68 des Gasumfassungskörpers 41 und der Wandung der Längsöffnung 3 im Ventilsitzträger 1 bis zur Umlen kung der Strömung an einer unteren Stirnfläche 69 des Bodenteils 20 der Spritzlochscheibe 21 in radialer Richtung.At its downstream end, the valve seat carrier 1 has an outer circumferential taper 60 and an inner circumferential taper 61, against which no other components are in contact and which are intended to improve the assembly of the gas encasing body 41 on the injection valve, while on a downstream end face 62 of the valve seat carrier 1, the gas encasing body 41 with a radially extending section 63 in the areas outside the gas inlet channels 48. In order to ensure that the gas flows into a metering cross section, the axially extending gas inlet channels 48 are followed, for example, by as many, for example three to six, radially extending flow channels 64 between the radially extending section 63 of the gas enclosing body 41 and the downstream end face 62 of the valve seat carrier 1 arise after the assembly of the gas enclosing body 41 and the gas flows radially through it. The gas then flows axially upstream into an annular channel 65 between a last concentric section 68 of the gas enclosing body 41 which tapers in the shape of a truncated cone upstream and the wall of the longitudinal opening 3 in the valve seat support 1 until it is deflected Kung the flow at a lower end face 69 of the bottom part 20 of the spray plate 21 in the radial direction.

Der Gasumfassungskörper 41 drückt dabei zumindest teilweise mit einer Außenfläche 70 seines Abschnitts 68, der in das Einspritzventil und damit in den Ventilsitzträger 1 in Richtung Spritzlochscheibe 21 hineinragt, gegen eine Innenfläche 72 eines kegelig verlaufenden und umlaufenden Bereichs 73 eines Blecheinlegeteils 74, das wiederum an der unteren Stirnfläche 69 des Bodenteils 20 der Spritzlochscheibe 21 mit Abstandskörpern, beispielsweise Noppen 75, anliegt. Mit Hilfe des speziell geformten Blecheinlegeteils 74 und der an diesem maßgenau angeformten Noppen 75 erfolgt letztlich die Zumessung des Gases zur verbesserten Aufbereitung des aus den Abspritzöffnungen 25 der Spritzlochscheibe 21 austretenden Brennstoffs. Das Blecheinlegeteil 74 wird durch einen Radialbereich 77 mit einer in ihm mittig und konzentrisch zur Ventillängsachse 2 verlaufenden Gemischabspritzöffnung 78, den kegelig und damit schräg zur Ventillängsachse 2 verlaufenden Bereich 73 und beispielsweise drei radial nach außen weisende und sich an den kegelig verlaufenden Bereich 73 stromabwärts anschließende Laschen 80 gebildet. An dem Radialbereich 77 des Blecheinlegeteils 74 sind an wenigstens drei, dann um 120° versetzten Stellen die Noppen 75 angeformt, die eine axiale Ausdehnung in Richtung Spritzlochscheibe 21 besitzen und diese an ihrer unteren Stirnfläche 69 nach der Montage des Gasumfassungskörpers 41 jeweils punktförmig berühren.The gas-enclosing body 41 presses at least partially with an outer surface 70 of its section 68, which projects into the injection valve and thus into the valve seat support 1 in the direction of the orifice plate 21, against an inner surface 72 of a tapered and circumferential region 73 of a sheet metal insert 74, which in turn on the lower end face 69 of the bottom part 20 of the spray plate 21 with spacers, for example knobs 75, abuts. With the aid of the specially shaped sheet-metal insert 74 and the knobs 75 molded onto it with dimensional accuracy, the gas is ultimately metered in for improved treatment of the fuel emerging from the spray openings 25 of the spray nozzle 21. The sheet metal insert 74 is formed by a radial region 77 with a mixture spray opening 78 running in it centrally and concentrically to the longitudinal valve axis 2, the conical region 73 and thus obliquely to the longitudinal valve axis 2 and, for example, three radially outward-facing regions which adjoin the conical region 73 downstream Tabs 80 formed. On the radial region 77 of the sheet-metal insert 74, the knobs 75 are formed at at least three, then offset by 120 °, which have an axial extension in the direction of the spray-perforated disk 21 and touch them point-wise on their lower end face 69 after the installation of the gas-enclosing body 41.

Mit den Noppen 75 des Blecheinlegeteils 74 wird ein axiales Abstandsmaß zwischen der unteren Stirnfläche 69 der Spritzlochscheibe 21 und einer der Spritzlochscheibe 21 zugewandten oberen Stirnfläche 81 des Radialbereichs 77 des Blecheinlegeteils 74, das der axialen Höhe der Noppen 75 und damit der axialen Ausdehnung eines hierdurch gebildeten Gasringspaltes 83 entspricht, fest eingestellt. Die Noppen 75 des Blecheinlegeteils 74 werden beispielsweise durch Prägeverfahren eingebracht, da hiermit gewünschte, sehr geringe Toleranzen der axialen Erstreckung eingehalten werden können. Das axiale Maß der Erstreckung des Gasringspalts 83 bildet den Zumeßquerschnitt für das aus dem Ringkanal 65 einströmende Gas, beispielsweise Aufbereitungsluft. Der Gasringspalt 83 dient zur Zufuhr des Gases zu dem durch die Abspritzöffnungen 25 der Spritzlochscheibe 21 abgegebenen Brennstoff und zur Zumessung des Gases. Das durch die Gaseinlaßkanäle 48, die Strömungskanäle 64 und die Ringkanäle 65 zugeführte Gas strömt durch den engen Gasringspalt 83 zu der Gemischabspritzöffnung 78 und trifft dort auf den durch die beispielsweise zwei oder vier Abspritzöffnungen 25 abgegebenen Brennstoff. Durch die geringe axiale Erstreckung des durch die Noppen 75 vorgegebenen Gasringspalts 83 wird das zugeführte Gas stark beschleunigt und zerstäubt den Brennstoff besonders fein. Als Gas kann z.B. die durch einen Bypass vor einer Drosselklappe in dem Saugrohr der Brennkraftmaschine abgezweigte Saugluft, durch ein Zusatzgebläse geförderte Luft, aber auch rückgeführtes Abgas der Brennkraftmaschine oder eine Mischung aus Luft und Abgas verwendet werden.With the knobs 75 of the sheet metal insert 74, an axial distance dimension between the lower end face 69 of the spray perforated disc 21 and an upper end face 81 of the radial region 77 of the sheet-metal insert 74 facing the perforated disk 21, which corresponds to the axial height of the knobs 75 and thus the axial extent of a gas ring gap 83 formed thereby. The knobs 75 of the sheet metal insert 74 are introduced, for example, by embossing processes, since this allows desired, very small tolerances in the axial extent to be maintained. The axial dimension of the extent of the gas ring gap 83 forms the metering cross section for the gas flowing in from the ring channel 65, for example treatment air. The gas ring gap 83 serves to supply the gas to the fuel discharged through the spray openings 25 of the spray orifice plate 21 and to meter the gas. The gas supplied through the gas inlet channels 48, the flow channels 64 and the ring channels 65 flows through the narrow gas ring gap 83 to the mixture spray opening 78 and meets the fuel discharged through the two or four spray openings 25, for example. Due to the small axial extent of the gas ring gap 83 predetermined by the knobs 75, the gas supplied is greatly accelerated and atomizes the fuel particularly finely. For example, the suction air diverted by a bypass in front of a throttle valve in the intake manifold of the internal combustion engine, air conveyed by an additional blower, but also recirculated exhaust gas from the internal combustion engine or a mixture of air and exhaust gas can be used as gas.

Die Gemischabspritzöffnung 78 im Radialbereich 77 des Blecheinlegeteils 74 hat einen solch großen Durchmesser, daß der stromaufwärts aus den Abspritzöffnungen 75 der Spritzlochscheibe 21 austretende Brennstoff, auf den zur besseren Aufbereitung das Gas senkrecht aus dem Gasringspalt 83 kommend trifft, ungehindert durch die Gemischabspritzöffnung 78 des Blecheinlegeteils 74 austreten kann.The mixture spray opening 78 in the radial region 77 of the sheet metal insert 74 has such a large diameter that it flows upstream from the spray openings 75 of the spray orifice plate 21 Escaping fuel, which the gas comes vertically from the gas ring gap 83 for better processing, can escape unhindered through the mixture spray opening 78 of the sheet metal insert 74.

Das Blecheinlegeteil 74 wird durch den sich stromaufwärts kegelstumpfförmig verjüngenden Abschnitt 68 des Gasumfassungskörpers 41, der zumindest teilweise an der Innenfläche 72 des kegeligen Bereichs 73 des Blecheinlegeteils 74 anliegt, gegen die Spritzlochscheibe 21 gedrückt. Die Figur 2 verdeutlicht als vergrößerter Ausschnitt aus der Figur 1 anschaulich diesen Klemmbereich. Das Blecheinlegeteil 74 ist so gestaltet, daß sich an den Bereich 73 stromabwärts beispielsweise drei Laschen 80 (Figur 1) anschließen, die der Vorzentrierung des Blecheinlegeteils 74 im Ventilsitzträger 1 dienen. Die Laschen 80 besitzen radiale Endflächen 85, die beispielsweise durch Glattstanzen erzielt werden und von guter Qualität bezüglich ihrer Oberflächenrauheit sind. Damit wird gewährleistet, daß die Laschen 80 mit ihren radialen Endflächen 85 möglichst genau an der Wandung der Längsöffnung 3 im Ventilsitzträger 1 anliegen können. Mit Hilfe des gegen den kegeligen Bereich 73 des Blecheinlegeteils 74 drückenden Gasumfassungskörpers 41 erfolgt die Feinjustierung des vorzentrierten Blecheinlegeteils 74. Dabei liegt zwischen dem Gasumfassungskörper 41 und dem Blecheinlegeteil 74 eine Linienberührung vor, die beim weiteren stromaufwärts gerichteten Einschieben des kegelstumpfförmigen Abschnitts 68 des Gasumfassungskörpers 41 zu einer Flächenberührung wird. Zwischen der Außenfläche 70 des Abschnitts 68 des Gasumfassungskörpers 41 und der Innenfläche 72 des Bereichs 73 des Blecheinlegeteils 74 entsteht zwangsläufig ein Konusdifferenzwinkel α. Dieser Konusdifferenzwinkel α gewährleistet einen axialen Toleranzausgleich bezüglich des Blecheinlegeteils 74 und des Gasumfassungskörpers 41 gegenüber der Spritzlochscheibe 21. Durch das Klemmen der beiden Bauteile Blecheinlegeteil 74 und Gasumfassungskörper 41 und dem damit verbundenen Konusdifferenzwinkel α wird eine Abdichtung erreicht, so daß Brennstoff nicht in die gasführenden Ringkanäle 65 und Strömungskanäle 64 eintreten kann.The sheet-metal insert 74 is pressed against the spray-perforated disk 21 by the upstream frustoconical section 68 of the gas encasing body 41, which at least partially abuts the inner surface 72 of the conical region 73 of the sheet-metal insert 74. FIG. 2 clearly illustrates this clamping area as an enlarged detail from FIG. 1. The sheet metal insert 74 is designed in such a way that, for example, three tabs 80 (FIG. 1) adjoin the area 73 downstream, which serve to pre-center the sheet metal insert 74 in the valve seat support 1. The tabs 80 have radial end surfaces 85, which are achieved, for example, by smooth stamping and are of good quality with regard to their surface roughness. This ensures that the tabs 80 with their radial end faces 85 can rest as precisely as possible on the wall of the longitudinal opening 3 in the valve seat support 1. The pre-centered sheet metal insert 74 is finely adjusted with the help of the gas encasing body 41 pressing against the conical area 73 of the sheet metal insert 74. In this case, there is a line contact between the gas encasing body 41 and the sheet metal insert 74, which, upon further insertion of the frustoconical section 68 of the gas encasing body 41, is pushed upstream a surface contact. Between the outer surface 70 of the portion 68 of the gas containment body 41 and the inner surface 72 of the area 73 of the sheet metal insert 74 inevitably creates a cone difference angle α. This cone difference angle α ensures an axial tolerance compensation with respect to the sheet metal insert 74 and the gas encasing body 41 with respect to the spray perforated disk 21. By clamping the two components sheet metal insert 74 and gas encasing body 41 and the cone difference angle α associated therewith, a seal is achieved so that fuel does not enter the gas-carrying ring channels 65 and flow channels 64 can occur.

In dem Gasumfassungskörper 41 ist stromabwärts der Gemischabspritzöffnung 78 des Blecheinlegeteils 74 ein Strahlteiler 86 vorgesehen. Der Strahlteiler 86 verläuft quer durch die Ventillängsachse 2 und teilt einen durch den Gasumfassungskörper 41 gebildeten Abspritzraum 87 stromabwärts der Gemischabspritzöffnung 78 symmetrisch auf. Der Abspritzraum 87 kann entsprechend der Gestaltung des Gasumfassungskörpers 41 in Strömungsrichtung zunächst zylindrisch und daran anschließend konisch ausgebildet sein oder durchgehend zylindrisch bzw. elliptisch sein. In axialer Richtung gesehen befindet sich der Strahlteiler 86 beispielsweise in gleicher Höhe wie der radial verlaufende Abschnitt 63 des Gasumfassungskörpers 41, der damit auch die Verbindung zweier um 180° entfernt liegender Stellen des Abschnitts 63 darstellt. Der Strahlteiler 86 kann sowohl als Steg Teil des Gasumfassungskörpers 41 aus Kunststoff sein als auch beispielsweise als Stift aus einem anderen Material zusätzlich eingebaut werden. Entscheidend bei der Gestaltung des Strahlteilers 86 ist die Ausbildung einer oberen, stromaufwärts gerichteten, konvexen Teilerfläche 88.A beam splitter 86 is provided in the gas containment body 41 downstream of the mixture spray opening 78 of the sheet metal insert 74. The beam splitter 86 extends transversely through the longitudinal valve axis 2 and symmetrically divides a spray chamber 87 formed by the gas enclosing body 41 downstream of the mixture spray opening 78. The spray chamber 87 can first be cylindrical in accordance with the design of the gas-enclosing body 41 in the flow direction and then conical, or it can be continuously cylindrical or elliptical. Viewed in the axial direction, the beam splitter 86 is located, for example, at the same height as the radially extending section 63 of the gas enclosing body 41, which thus also represents the connection of two points of the section 63 which are 180 ° apart. The beam splitter 86 can both be part of the gas enclosing body 41 made of plastic as a web, and can also be installed, for example, as a pin made of another material. Crucial in the design of the beam splitter 86 is the formation of an upper, upstream, convex splitter surface 88.

Die Figur 3 soll die Wirkung des Strahlteilers 86 mit seiner konvexen Teilerfläche 88 bei Zweistrahlventilen mit Gasumfassung verdeutlichen. Durch die zwei bzw. vier Abspritzöffnungen 25 in der Spritzlochscheibe 21 werden zwei bzw. vier Brennstoffstrahlen erzeugt und verteilt auf beiderseits des Strahlteilers 86 gebildete Gebiete in den Abspritzraum 87 abgespritzt. Die erfindungsgemäße Ausbildung des Strahlteilers 86 ist nicht nur zweckmäßig bei auf den Strahlteiler 86 gerichteten einzelnen Brennstoffstrahlen, sondern auch dann, wenn die Brennstoffstrahlen am Strahlteiler 86 vorbei gerichtet verlaufen oder wenn sie sich mit zunehmender Entfernung von den Abspritzöffnungen 25 auch voneinander entfernen. Die Brennstoffstrahlen werden von dem aus dem Gasringspalt 83 ausströmenden Gas unmittelbar nach ihrem Austritt aus den Abspritzöffnungen 25 senkrecht getroffen. Dies hat zur Folge, daß die Zweistrahligkeit der Brennstoffstrahlen durch die Gasumfassung gefährdet ist und es sogar zu einer Vereinigung beider Brennstoffstrahlen kommen kann, da das Gas die Brennstoffstrahlen aufeinanderzubewegt, wie es die Punktlinien 90 andeuten. Im Gegensatz zu keil- oder schneidenförmigen Strahlteilern wird bei den Strahlteilern 86 mit konvexer Teilerfläche 88 oberhalb der Teilerfläche 88 Gas gestaut, wobei durch den Staudruck des Gases die Brennstoffstrahlen wieder nach außen auseinandergedrückt werden und damit eine deutliche Zweistrahligkeit beibehalten bleibt. Diese Wirkung des Staudrucks des Gases tritt nur bei einem Strahlteiler 86 mit konvexer Teilerfläche 88 auf, während bei einem keil- bzw. schneidenförmigen Strahlteiler ein sich eventuell bildender Staudruck vernachlässigbar klein ist. Der konvexe Strahlteiler 86 wirkt als Strömungswiderstand, wodurch eine Stauströmung verursacht wird. Die Stauströmung ist verantwortlich für die sehr kompakte Strahlteilung im Bereich des Strahlteilers 86 und die gute Aufbereitungswirkung der Gasumfassung durch eine verbesserte Durchmischung von Gas und Brennstoff. Mit keil- oder schneidenförmigen Strahlteilern wird keine ordentliche Zweistrahligkeit bei Gasumfassung erzielt, da sich die Brennstoffstrahlen stromabwärts des Strahlteilers wieder aufeinanderzubewegen. Erst in Strömungsrichtung sehr lange Strahlteiler mit keil- oder schneidenförmigem Querschnitt erreichen den gleichen Effekt wie die in axialer Richtung eine kleine Erstreckung aufweisenden konvexen Strahlteiler 86. Die Strich-Punkt-Linien 91 zeigen Brennstoffstrahlverläufe bei Zweistrahlventilen ohne Gasumfassung. Durch die konvexe Teilerfläche 88 des Strahlteilers 86 wird erreicht, daß in axialer Richtung stromabwärts ab dem Strahlteiler 86 trotz der Gasumfassung eine gleich gute Zweistrahligkeit geschaffen ist. Der Übergang der Punktlinie 90 in die Strich-Punkt-Linie 91 soll dies verdeutlichen.FIG. 3 is intended to illustrate the effect of the beam splitter 86 with its convex splitter surface 88 in the case of two-jet valves with gas enclosures. Two or four fuel jets are generated through the two or four spray orifices 25 in the spray orifice plate 21 and are sprayed into areas formed on both sides of the beam splitter 86 in the spraying chamber 87. The configuration of the jet splitter 86 according to the invention is useful not only in the case of individual fuel jets directed onto the jet splitter 86, but also when the fuel jets run past the jet splitter 86 or when they also move away from one another with increasing distance from the spray openings 25. The fuel jets are hit vertically by the gas flowing out of the gas ring gap 83 immediately after they emerge from the spray openings 25. The consequence of this is that the dual-jet nature of the fuel jets is endangered by the gas enclosure and the two fuel jets can even merge, since the gas moves the fuel jets towards one another, as indicated by the dotted lines 90. In contrast to wedge-shaped or knife-shaped beam splitters, gas is jammed in the beam splitters 86 with a convex splitter surface 88 above the splitter surface 88, the fuel jets being pushed outwards again by the back pressure of the gas, and thus a clear double-jet radiation remains. This effect of the dynamic pressure of the gas only occurs in the case of a beam splitter 86 with a convex splitter surface 88, while in the case of a wedge-shaped or cutting-shaped beam splitter a dynamic pressure which may form is negligibly small. The convex beam splitter 86 works as flow resistance, which causes a ram flow. The ram flow is responsible for the very compact beam splitting in the area of the beam splitter 86 and the good treatment effect of the gas enclosure due to an improved mixing of gas and fuel. With wedge-shaped or knife-shaped beam splitters, no proper double-jet radiation is achieved when the gas is enclosed, since the fuel jets move towards one another again downstream of the beam splitter. It is only in the direction of flow that very long beam splitters with a wedge-shaped or knife-shaped cross-section achieve the same effect as the convex beam splitters 86 which have a small extension in the axial direction. The dash-dot lines 91 show fuel jet profiles in two-jet valves without gas containment. The convex splitter surface 88 of the beam splitter 86 ensures that an equally good double radiation is created in the axial direction downstream from the beam splitter 86, despite the gas enclosure. The transition from the dotted line 90 to the dash-dotted line 91 is intended to illustrate this.

Indem Gasumfassungskörper 41 mit unterschiedlicher Geometrie des Abspritzraums 87 und der Strahlteiler 86 verwendet werden, lassen sich die verschiedensten Strahlwinkel der Einspritzventile erzielen. Nur durch Variationen des Gasumfassungskörpers 41 bzw. des Strahlteiles 86 ergeben sich eine Vielzahl von Möglichkeiten der Geometrie des abgespritzten Brennstoff-Gas-Gemisches. Die Figuren 4 bis 6 bzw. 4a bis 6a zeigen schematisch Ausführungsbeispiele für die Gestaltung des von dem Gasumfassungskörper 41 umgebenen Abspritzraums 87 mit einem Strahlteiler 86, der einen kreisförmigen Querschnitt besitzt. Das Ausführungsbeispiel in Figur 4 verdeutlicht einen zylindrischen Abspritzraum 87 im Bereich des Strahlteilers 86, Figur 5 zeigt einen konischen Abspritzraum 87, wie er auch in den Figuren 1 und 3 erkennbar ist, und Figur 6 einen elliptischen Abspritzraum 87. Die Figuren 4a bis 6a stellen Draufsichten auf die in den Figuren 4 bis 6 gezeigten Abspritzräume 87 dar.By using gas containment body 41 with different geometry of the spray chamber 87 and the jet splitter 86, the most varied jet angles of the injection valves can be achieved. Only through variations of the gas enclosing body 41 or the jet part 86 are there a multitude of possibilities for the geometry of the sprayed-off fuel-gas mixture. FIGS. 4 to 6 and 4a to 6a schematically show exemplary embodiments for the design of the spray chamber 87 surrounded by the gas-enclosing body 41 with a beam splitter 86 which has a circular cross section. The embodiment 4 illustrates a cylindrical spray chamber 87 in the area of the beam splitter 86, FIG. 5 shows a conical spray chamber 87, as can also be seen in FIGS. 1 and 3, and FIG. 6 shows an elliptical spray chamber 87. FIGS. 4a to 6a show top views the spraying chambers 87 shown in Figures 4 to 6.

In den Figuren 7 bis 17 bzw. 7a bis 17a sind einige mögliche Gestaltungsvarianten der konvexen Strahlteiler 86 als Querschnitte bzw. Draufsichten vereinfacht und schematisch dargestellt. Entscheidend bei der Ausbildung der Strahlteiler 86 ist die konvexe Teilerfläche 88. Die gezeigten Varianten ermöglichen unterschiedliche Strahlwinkel des Brennstoff-Gas-Gemisches. Neben Strahlteilern 86 mit kreisförmigen (Figuren 7, 7a), halbkreisförmigen (Figuren 8, 8a), elliptischen (Figuren 12, 12a) bzw. halbelliptischen (Figuren 11, 11a) oder anderen abgerundeten Querschnitten (Figuren 9, 9a, 13, 13a, 15, 15a) sind auch Strahlteiler 86 denkbar, die quer zur Strömung beispielsweise in ihrem mittleren Bereich taillenförmige Verengungen (Figuren 9, 9a, 10, 10a, 14, 14a, 15, 15a) für kleine Strahlwinkel oder Aufbauchungen (Figuren 16, 16a, 17, 17a) für größere Strahlwinkel aufweisen.7 to 17 and 7a to 17a, some possible design variants of the convex beam splitters 86 are simplified and shown schematically as cross sections or top views. The convex splitter surface 88 is decisive in the configuration of the beam splitter 86. The variants shown allow different beam angles of the fuel-gas mixture. In addition to beam splitters 86 with circular (FIGS. 7, 7a), semicircular (FIGS. 8, 8a), elliptical (FIGS. 12, 12a) or semi-elliptical (FIGS. 11, 11a) or other rounded cross sections (FIGS. 9, 9a, 13, 13a, 15, 15a), beam splitters 86 are also conceivable, which have waist-shaped constrictions (FIGS. 9, 9a, 10, 10a, 14, 14a, 15, 15a) transverse to the flow, for example in their central region, for small beam angles or bulges (FIGS. 16, 16a, 17, 17a) for larger beam angles.

Claims (18)

  1. Device for injecting a fuel/gas mixture, with an injection valve, especially an electromagnetically actuable fuel injection valve, for fuel injection systems of internal combustion engines, with a valve longitudinal axis (2), with a movable valve-closing body (7), with a valve-seat body (16) which is provided at the downstream end of the injection valve and has a valve-seat surface that interacts with the valve-closing body, with a perforated spray disc (21) which is arranged downstream of the valve-seat surface and has at least two spray openings (25), with a gas jacketing body (41) which surrounds the downstream end of the injection valve together with the perforated spray disc at least partially in the axial direction and at least partially in the radial direction, with a mixture spray opening (78) for the emergence of the fuel/gas mixture, characterized in that a jet divider (86) is provided downstream of the mixture spray opening (78), this jet divider having a convex divider surface (88) which extends transversely to the valve longitudinal axis (2) and through the latter, faces the perforated spray disc (21) and causes a stagnation-region flow, whereby, despite the gas jacketing, the separation of the fuel jets sprayed out of the spray openings (25) is maintained even downstream of the jet divider (86).
  2. Device according to Claim 1, characterized in that the mixture spray opening (78) is formed in a sheet-metal insert (74) which represents a component that is separate from the gas jacketing body (41).
  3. Device according to Claim 2, characterized in that the sheet-metal insert (74) is of frustoconical design, the mixture spray opening (78) being arranged in a radial area (77) and the radial area (77) being adjoined in the downstream direction by a conically extending area (73) which tapers towards the perforated spray disc (21).
  4. Device according to Claim 2, characterized in that, facing the perforated spray disc (21) in the axial direction, the sheet-metal insert (74) has knobs (75) by means of the axial height of which an annular gas gap (83) which serves as a metering cross-section for the gas supplied is formed between the perforated spray disc (21) and the sheet-metal insert (74).
  5. Device according to Claim 3, characterized in that the sheet-metal insert (74) is clamped between the gas jacketing body (41) and the perforated spray disc (21).
  6. Device according to Claim 5, characterized in that the clamping of the sheet-metal insert (74) in the conically extending area (73) is performed by the gas jacketing body (41).
  7. Device according to Claim 1, characterized in that the jet divider (86) is a web which forms part of the gas jacketing body (41).
  8. Device according to Claim 1, characterized in that the jet divider (86) forms a separate component and is secured in the gas jacketing body (41).
  9. Device according to Claim 1, characterized in that the jet divider (86) has a circular cross-section.
  10. Device according to Claim 1, characterized in that the jet divider (86) has a semi-circular cross-section.
  11. Device according to Claim 1, characterized in that the jet divider (86) has an elliptical cross-section.
  12. Device according to Claim 1, characterized in that the jet divider (86) has a semi-elliptical cross-section.
  13. Device according to Claim 1, characterized in that the jet divider (86) has at least one waist-shaped constriction.
  14. Device according to Claim 1, characterized in that the jet divider (86) has at least one bulge.
  15. Device according to Claim 1, characterized in that downstream of the mixture spray opening (78) is a spraying space (87) which is of cylindrical configuration in the direction of flow and in which the jet divider (86) is arranged.
  16. Device according to Claim 1, characterized in that downstream of the mixture spray opening (78) there is a spraying space (87) which is of widening configuration in the direction of flow and in which the jet divider (86) is arranged.
  17. Device according to Claim 1, characterized in that downstream of the mixture spray opening (78) there is a spraying space (87) which is of elliptical configuration in the direction of flow and in which the jet divider (86) is arranged.
  18. Device according to Claim 1, characterized in that downstream of the mixture spray opening (78) there is a spraying space (87) which is surrounded by the gas jacketing body (41).
EP94911833A 1993-04-20 1994-04-07 Device for injecting a fuel gas mixture Expired - Lifetime EP0646219B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4312756 1993-04-20
DE4312756A DE4312756A1 (en) 1993-04-20 1993-04-20 Device for injecting a fuel-gas mixture
PCT/DE1994/000386 WO1994024434A1 (en) 1993-04-20 1994-04-07 Device for injecting a fuel gas mixture

Publications (2)

Publication Number Publication Date
EP0646219A1 EP0646219A1 (en) 1995-04-05
EP0646219B1 true EP0646219B1 (en) 1997-02-12

Family

ID=6485835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911833A Expired - Lifetime EP0646219B1 (en) 1993-04-20 1994-04-07 Device for injecting a fuel gas mixture

Country Status (7)

Country Link
US (1) US5540387A (en)
EP (1) EP0646219B1 (en)
JP (1) JP3523256B2 (en)
KR (1) KR100327077B1 (en)
BR (1) BR9405166A (en)
DE (2) DE4312756A1 (en)
WO (1) WO1994024434A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1050649C (en) * 1993-12-21 2000-03-22 罗伯特·博施有限公司 Venturi filter and fuel injection valve with a venturi filter
DE4435270A1 (en) * 1994-10-01 1996-04-04 Bosch Gmbh Robert Fuel injector
DE19505886A1 (en) * 1995-02-21 1996-08-22 Bosch Gmbh Robert Device for injecting a fuel-gas mixture
US5772122A (en) 1995-04-27 1998-06-30 Nippondenso Co., Ltd. Fuel injection apparatus for an internal combustion engine
DE19625059A1 (en) * 1996-06-22 1998-01-02 Bosch Gmbh Robert Injection valve, in particular for injecting fuel directly into a combustion chamber of an internal combustion engine
US5878960A (en) * 1997-02-28 1999-03-09 Rimrock Corporation Pulse-wave-modulated spray valve
DE19724075A1 (en) * 1997-06-07 1998-12-10 Bosch Gmbh Robert Method for producing a perforated disk for an injection valve and perforated disk for an injection valve and injection valve
US5934567A (en) * 1997-07-21 1999-08-10 Ford Motor Company Air assisted fuel injector
US6299079B1 (en) * 1998-06-18 2001-10-09 Robert Bosch Gmbh Fuel injector
DE19855568A1 (en) * 1998-12-02 2000-06-08 Bosch Gmbh Robert Fuel injector
US6131824A (en) * 1999-05-17 2000-10-17 Ford Motor Company Air assisted fuel injector
US6575382B1 (en) * 1999-09-13 2003-06-10 Delphi Technologies, Inc. Fuel injection with air blasted sheeted spray
DE10059420A1 (en) * 2000-11-30 2002-06-06 Bosch Gmbh Robert Fuel injector
DE10130684A1 (en) * 2001-06-26 2003-02-06 Bosch Gmbh Robert Fuel injector
US6851657B2 (en) * 2002-04-19 2005-02-08 Pinnacle Cng Systems, Llc High pressure gaseous fuel solenoid valve
US7021570B2 (en) * 2002-07-29 2006-04-04 Denso Corporation Fuel injection device having injection hole plate
WO2013046073A1 (en) * 2011-09-29 2013-04-04 Beltran Corona Jose Maria Petrol injection control and strategies
CN105658950B (en) * 2013-11-11 2018-11-06 恩普乐斯股份有限公司 The installation constitution of fuel injection device nozzle plate
DE102015226769A1 (en) * 2015-12-29 2017-06-29 Robert Bosch Gmbh Fuel injector
US20190093038A1 (en) * 2017-09-22 2019-03-28 Leonard Ortiz System for Gasification on Demand

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8611950D0 (en) * 1986-05-16 1986-06-25 Lucas Ind Plc Gasoline injector
JPS6350667A (en) * 1986-08-19 1988-03-03 Aisan Ind Co Ltd Nozzle structure for electromagnetic type fuel injection valve
US4982716A (en) * 1988-02-19 1991-01-08 Toyota Jidosha Kabushiki Kaisha Fuel injection valve with an air assist adapter for an internal combustion engine
FR2635827B1 (en) * 1988-08-30 1993-11-26 Solex FUEL INJECTION DEVICE WITH AERATION CHAMBER
DE3841142C2 (en) * 1988-12-07 1994-09-29 Bosch Gmbh Robert Injector
JP2749108B2 (en) * 1989-03-18 1998-05-13 株式会社日立製作所 Fuel injection device
US5016819A (en) * 1989-07-20 1991-05-21 Siemens-Bendix Automotive Electronics L.P. Electromagnetic fuel injector having split stream flow director
DE4112150C2 (en) * 1990-09-21 1998-11-19 Bosch Gmbh Robert Perforated body and valve with perforated body
US5100102A (en) * 1990-10-15 1992-03-31 Ford Motor Company Compact electronic fuel injector
DE4104020A1 (en) * 1991-02-09 1992-08-13 Bosch Gmbh Robert DEVICE FOR INJECTING A FUEL-GAS MIXTURE
DE4121372A1 (en) 1991-05-31 1992-12-03 Bosch Gmbh Robert DEVICE FOR INJECTING A FUEL-GAS MIXTURE
DE4129834A1 (en) 1991-09-07 1993-03-11 Bosch Gmbh Robert DEVICE FOR INJECTING A FUEL-GAS MIXTURE
US5174505A (en) * 1991-11-01 1992-12-29 Siemens Automotive L.P. Air assist atomizer for fuel injector

Also Published As

Publication number Publication date
JP3523256B2 (en) 2004-04-26
US5540387A (en) 1996-07-30
KR100327077B1 (en) 2002-06-28
DE59401799D1 (en) 1997-03-27
BR9405166A (en) 1999-06-15
WO1994024434A1 (en) 1994-10-27
JPH07508334A (en) 1995-09-14
EP0646219A1 (en) 1995-04-05
DE4312756A1 (en) 1994-10-27

Similar Documents

Publication Publication Date Title
EP0646219B1 (en) Device for injecting a fuel gas mixture
EP0720691B1 (en) Valve needle for an electromagnetic valve and method of producing the same
EP0944769B1 (en) Fuel injection valve
DE4307159B4 (en) Spray orifice plate for a valve and method of manufacture
EP1073838B1 (en) Fuel injection valve
EP0934459A1 (en) Fuel injection valve
DE19739850A1 (en) Electromagnetically actuated valve
EP0515810B1 (en) Fuel/gas mixture injection device
EP0935707A1 (en) Fuel injection valve
DE10059007A1 (en) Fuel injector
DE19636396A1 (en) Fuel injector valve for IC engine
DE4304804A1 (en) Device for the injection of a fuel-gas mixture
EP0786049A1 (en) Fuel injection valve
EP0675283B1 (en) Injection valve
EP0728942B1 (en) Apparatus for injecting fuel-gas mixture
DE4131499C1 (en) IC engine fuel injection valve - has ring gap between downstream continuation of sealing and seating surfaces of nozzle
EP0925441B1 (en) Electromagnetically actuated valve
EP0844386B1 (en) Device for injecting a mixture of fuel and gas
DE4236491A1 (en) Injector for fuel-gas mixture - uses base plate of gas jacket body to adjust gas volume before installation of body
DE10360329A1 (en) Fuel injection valve for internal combustion engines has a perforated disk inserted in an intermediate disk and a rose opening with an arc structure
DE4432076A1 (en) Fuel injection valve for IC engine
WO2004101986A1 (en) Fuel injection valve
DE4424463A1 (en) Fuel injection valve with closure element acting on seat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960725

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59401799

Country of ref document: DE

Date of ref document: 19970327

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030417

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060426

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401799

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140408