JP2749108B2 - Fuel injection device - Google Patents

Fuel injection device

Info

Publication number
JP2749108B2
JP2749108B2 JP1066725A JP6672589A JP2749108B2 JP 2749108 B2 JP2749108 B2 JP 2749108B2 JP 1066725 A JP1066725 A JP 1066725A JP 6672589 A JP6672589 A JP 6672589A JP 2749108 B2 JP2749108 B2 JP 2749108B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
wedge
injection valve
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1066725A
Other languages
Japanese (ja)
Other versions
JPH02245470A (en
Inventor
利治 野木
宜茂 大山
照夫 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1066725A priority Critical patent/JP2749108B2/en
Publication of JPH02245470A publication Critical patent/JPH02245470A/en
Application granted granted Critical
Publication of JP2749108B2 publication Critical patent/JP2749108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸気ポート近くに配置された電
磁燃料噴射弁に関する。
Description: TECHNICAL FIELD The present invention relates to an electromagnetic fuel injection valve arranged near an intake port of an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来の多点燃料噴射方式の装置は、特開昭60−113065
号公報に記載のように、エンジンの吸気管壁に各気筒ご
との燃料噴射弁を設け、この燃料噴射弁から燃料を吸気
弁方向に供給していた。
A conventional multipoint fuel injection system is disclosed in
As described in Japanese Patent Application Laid-Open Publication No. H10-209, a fuel injection valve for each cylinder is provided on the intake pipe wall of the engine, and fuel is supplied from the fuel injection valve in the direction of the intake valve.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、吸気管内の空気流が燃料噴射弁から
噴出する噴霧に及ぼす影響について考慮しておらず、加
速時,高回転時などで吸気弁が開いているときに燃料を
噴射すると燃料の噴霧が曲げられ、シリンダ内に均一に
分散させることができず、シリンダ内に液膜が偏って流
入し、HC排出量の増大及び燃料がオイルだけに流入し、
燃料による潤滑油の希釈させる原因となっていた。
The above prior art does not consider the effect of the air flow in the intake pipe on the spray ejected from the fuel injection valve. When the fuel is injected when the intake valve is open during acceleration, high revolution, or the like, the fuel is injected. The spray is bent and cannot be evenly dispersed in the cylinder, the liquid film flows unevenly into the cylinder, the HC emission increases, and the fuel flows only into the oil,
This caused the lubricating oil to be diluted by the fuel.

本発明の目的は、燃料噴射弁から噴出する燃料をシリ
ンダ内に均一に分散させ、燃料の蒸発を促進し、シリン
ダ内の液膜を低減し、HCの増大、燃料による潤滑油の希
釈を防止することにある。
It is an object of the present invention to uniformly disperse fuel injected from a fuel injection valve in a cylinder, promote evaporation of the fuel, reduce a liquid film in the cylinder, increase HC, and prevent lubricating oil dilution by fuel. Is to do.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本願発明は、基本的には
次のように構成する。
In order to achieve the above object, the present invention is basically configured as follows.

第1の発明は、内燃機関の吸気ポート付近に燃料噴射
弁を設けた燃料噴射装置おいて、該燃料噴射弁の先端に
吸気管内へ突き出す筒状体を取付け、この筒状体の先端
に該筒状体を横切るようにして燃料衝突用の円筒部材を
設け、この円筒部材の直径Dtと燃料噴射弁のノズル直径
dNの比を、 0.5≦Dt/dN≦5 とし、且つ前記円筒部材の長さlt、円筒部材の直径Dtの
比を lt/Dt≧1.0 としてなることを特徴とする。
According to a first aspect of the present invention, in a fuel injection device provided with a fuel injection valve near an intake port of an internal combustion engine, a tubular body protruding into an intake pipe is attached to a tip of the fuel injection valve, and the tubular body is attached to a tip of the tubular body. A fuel collision cylindrical member is provided across the cylindrical body, and the diameter Dt of this cylindrical member and the nozzle diameter of the fuel injection valve
the ratio of d N, and 0.5 ≦ Dt / d N ≦ 5 , and characterized by comprising a length lt of the cylindrical member, the ratio of the diameter Dt of the cylindrical member as lt / Dt ≧ 1.0.

第2の発明は、燃料噴射弁の先端に対向して噴霧燃料
が衝突するようにくさび形部材を設け、このくさび形部
材はその先細りとなる先端側が平面にカットされた形状
を呈してこの先端カット面が前記燃料噴射弁の先端と対
向するよう配置され、このくさび形部材の先端カット面
と反対側の面のうち長手方向の辺と直交する幅l2と前記
燃料噴射弁のノズル直径dNの比を l2/dN≧1.0 とし、且つ、前記くさび形部材の先端カット面のうち長
手方向の辺と直交する幅l3とノズル直径dNの比を 0.5≦l3/dN≦2 としてなることを特徴とする。
According to a second aspect of the present invention, a wedge-shaped member is provided so that the sprayed fuel collides with the tip of the fuel injection valve. A cut surface is arranged so as to face the tip of the fuel injection valve, and a width l 2 orthogonal to a longitudinal side of a surface opposite to the tip cut surface of the wedge-shaped member and a nozzle diameter d of the fuel injection valve The ratio of N is l 2 / d N ≧ 1.0, and the ratio of the width l 3 perpendicular to the longitudinal side of the tip cut surface of the wedge-shaped member to the nozzle diameter d N is 0.5 ≦ l 3 / d N ≦ 2.

第3の発明は、燃料噴射弁の先端に対向して噴霧燃料
が衝突するようにくさび形部材を設け、このくさび形部
材はその先細りとなる先端側が半径Rの曲面形状を呈し
てこの先端曲面が前記燃料噴射弁の先端と対向するよう
配置され、このくさび形部材の先端曲面と反対側の面の
うち長手方向の辺と直交する幅l2と前記燃料噴射弁のノ
ズル直径dNの比を l2/dN≧1.0 とし、且つ、前記くさび形部材の先端曲面の半径Rとノ
ズル直径dNとの関係を 0.5≦2R/dN≦2.5 としてなることを特徴とする。
According to a third aspect of the present invention, a wedge-shaped member is provided so that the sprayed fuel collides with the tip of the fuel injection valve. the ratio of but the arranged to the distal end facing the fuel injection valve, the nozzle diameter d N of the width l 2 and the fuel injection valve that is perpendicular to the longitudinal direction of the side of the tip curved surface opposite to the surface of the wedge-shaped member was a l 2 / d N ≧ 1.0, and characterized by comprising the relationship between the radius R and the nozzle diameter d N of the tip curved surface of the wedge-shaped member as 0.5 ≦ 2R / d N ≦ 2.5 .

〔作用〕[Action]

第1の発明の作用…吸気ポート付近に取付けられた燃
料噴射弁より噴出した燃料は、燃料噴射弁の先端に設け
た筒状体を通り、衝突部材に衝突し、微粒化する。それ
によって、噴射燃料は、吸気弁が開いているときに燃料
を噴出しても、吸気管内の空気流の影響を受けずに、シ
リンダ内に均一に分散させることができ、燃料の蒸発を
促進し、シリンダ内の液膜を低減し、HCの増大及び燃料
による潤滑油の希釈を防止できる。特に、試験の結果、
上記した燃料衝突用の円筒部材の直径Dtと燃料噴射弁の
ノズル直径dNの比を、0.5≦Dt/dN≦5とし、且つ前記円
筒部材の長さlt、円筒部材の直径Dtの比をlt/Dt≧1.0と
することで、一般に均質混合気を得るために必要な200
μm以下の粒径の噴霧形成が可能になった。
Operation of the first invention: The fuel injected from the fuel injection valve attached near the intake port passes through the cylindrical body provided at the tip of the fuel injection valve, collides with the collision member, and is atomized. As a result, the injected fuel can be evenly dispersed in the cylinder without being affected by the airflow in the intake pipe even if the fuel is ejected when the intake valve is open, and the fuel is promoted to evaporate. In addition, the liquid film in the cylinder can be reduced, and increase in HC and dilution of lubricating oil by fuel can be prevented. In particular,
The ratio of the above-mentioned ratio of the nozzle diameter d N of the diameter Dt and the fuel injection valve of the cylindrical member for the fuel collision, and 0.5 ≦ Dt / d N ≦ 5, and a length lt of the cylindrical member, the diameter Dt of the cylindrical member By setting lt / Dt ≧ 1.0, 200 required to obtain a homogeneous mixture is generally obtained.
Spray formation with a particle size of μm or less has become possible.

第2の発明の作用…燃料噴射弁より噴出した燃料は、
くさび形部材に衝突しくさび角によって任意方向に2つ
の噴霧を形成する。また、噴射燃料はくさび形部材の先
端カット面に衝突することで、燃料と衝突部材の衝突が
効率良く行われ、燃料の微粒化が図れる。特に、試験の
結果、くさび形部材の先端カット面と反対側の面のうち
長手方向の辺と直交する幅l2と前記燃料噴射弁のノズル
直径dNの比をl2/dN≧1.0とし、且つ、前記くさび形部材
の先端カット面のうち長手方向の辺と直交する幅l3とノ
ズル直径dNの比を0.5≦l3/dN≦2とすることで、燃料微
粒化の粒径の最小化を図り得る。
Operation of the Second Invention: Fuel injected from the fuel injection valve is:
Two sprays are formed in an arbitrary direction by collision with the wedge-shaped member and by a wedge angle. Further, the injected fuel collides with the cut end surface of the wedge-shaped member, so that the collision between the fuel and the collision member is efficiently performed, and the atomization of the fuel can be achieved. In particular, the results of the test, l 2 / d N ≧ 1.0 and the width l 2 perpendicular to the longitudinal direction of the side ratio of the nozzle diameter d N of the fuel injection valve of the front end cut surface opposite to the surface of the wedge-shaped member and then, and, by a 0.5 ≦ l 3 / d N ≦ 2 the ratio of the width l 3 and the nozzle diameter d N perpendicular to the longitudinal direction of the sides of the front end cut surface of the wedge-shaped member, the fuel atomization The particle size can be minimized.

第3の発明の作用…燃料噴射弁より噴出した燃料は、
第2の発明同様にくさび形部材に衝突しくさび角によっ
て任意方向に2つの噴霧を形成する。また、噴射燃料は
くさび形部材の先端曲面(半径R面)に衝突すること
で、燃料と衝突部材の衝突が効率良く行われ、燃料の微
粒化が図れる。特に、試験の結果、くさび形部材の先端
曲面と反対側の面のうち長手方向の辺と直交する幅l2
前記燃料噴射弁のノズル直径dNの比をl1/dN≧1.0とし、
且つ、前記くさび形部材の先端曲面の半径Rとノズル直
径dNとの関係を0.5≦2R/dN≦2.5とすることで、燃料微
粒化の粒径の最小化を図り得る。
Operation of the third invention: The fuel injected from the fuel injection valve is:
In the same manner as in the second invention, two sprays are formed in an arbitrary direction by colliding with the wedge-shaped member and depending on the wedge angle. In addition, the injected fuel collides with the tip curved surface (radius R surface) of the wedge-shaped member, so that the collision between the fuel and the collision member is efficiently performed, and the fuel can be atomized. In particular, results of the test, the tip curved surface of the wedge member and the width l 2 perpendicular to the longitudinal direction of the side of the opposite surface the ratio of the nozzle diameter d N of the fuel injection valve and l 1 / d N ≧ 1.0 ,
And, the relationship between the radius R and the nozzle diameter d N of the tip curved surface of the wedge-shaped member by a 0.5 ≦ 2R / d N ≦ 2.5 , may work to minimize the particle size of the fuel atomization.

〔実施例〕〔Example〕

第1図に本発明の一実施例を示す。 FIG. 1 shows an embodiment of the present invention.

1は電磁式の燃料噴射弁で、ヨーク2,コア3,電磁コイ
ル4,プランジヤ5,ばね6,弁体7,ノズル8等で構成され
る。プランジヤ5及び弁体7は一体的に結合し、弁体7
先端がノズル8近傍にばね6の力で付勢される。
Reference numeral 1 denotes an electromagnetic fuel injection valve, which includes a yoke 2, a core 3, an electromagnetic coil 4, a plunger 5, a spring 6, a valve body 7, a nozzle 8, and the like. The plunger 5 and the valve body 7 are integrally connected, and the valve body 7
The tip is urged near the nozzle 8 by the force of the spring 6.

電磁コイル4を通電すると、ヨーク2,コア3,プランジ
ヤ5等で磁気回路を構成し、プランジヤ5がばね6の力
に抗して磁気吸引されて開弁する。
When the electromagnetic coil 4 is energized, a magnetic circuit is formed by the yoke 2, the core 3, the plunger 5, and the like. The plunger 5 is magnetically attracted against the force of the spring 6, and opens.

噴射弁1の先端に中空筒状のカバー(筒状体)9及び
カバー9の先端にカバーを横切るようにして衝突部材11
を設ける。カバー9は噴射弁にカシメ作業等により固定
されている。カバー9は、耐ガソリン性の金属又は樹脂
製の中空円筒で、その一部に通気孔10が設けてある。
A hollow cylindrical cover (tubular body) 9 is provided at the tip of the injection valve 1 and the collision member 11 is provided at the tip of the cover 9 so as to cross the cover.
Is provided. The cover 9 is fixed to the injector by caulking or the like. The cover 9 is a gasoline-resistant hollow cylinder made of metal or resin, and has a ventilation hole 10 in a part thereof.

第2図に示すように、本実施例の衝突部材11は断面が
円筒形のピン状(円筒部材)で燃料を衝突,微粒化させ
る。衝突部材11は、耐ガソリン性の金属(ステンレス
等)又は樹脂を用いる。
As shown in FIG. 2, the collision member 11 of this embodiment collides and atomizes the fuel in a pin shape (cylindrical member) having a cylindrical cross section. The collision member 11 uses gasoline-resistant metal (such as stainless steel) or resin.

第3図に衝突部材11の直径Dtと第4図に示す噴霧広が
り角θの関係を示す。衝突部材11の直径を大きくするの
に従い、噴霧広がり角θを大きくすることができる。第
3図に示すように、直径を変えることによって、任意の
θを得ることができる。
FIG. 3 shows the relationship between the diameter Dt of the collision member 11 and the spray spread angle θ shown in FIG. As the diameter of the collision member 11 increases, the spray spread angle θ can be increased. As shown in FIG. 3, an arbitrary θ can be obtained by changing the diameter.

第5図に燃料圧力を300kPaとして、衝突部材11とノズ
ル8までの距離Lを変えたときのθの変化を示す。Lが
大きくなると、衝突部材11に衝突するときの燃料速度が
空気との摩擦で小さくなるため、衝突力が小さくなり、
θが小さくなる。
FIG. 5 shows a change in θ when the fuel pressure is 300 kPa and the distance L between the collision member 11 and the nozzle 8 is changed. When L increases, the fuel velocity when colliding with the collision member 11 decreases due to friction with the air, so that the collision force decreases,
θ decreases.

第6図に燃料圧力Pfとθの関係を示す。Pfが大きくな
ると燃料速度が大きくなり、θが大きくなる。
FIG. 6 shows the relationship between the fuel pressure Pf and θ. As Pf increases, the fuel speed increases, and θ increases.

以上のように、衝突部材11の直径Dt,衝突部材11とノ
ズル8の距離L,燃圧Pfを選ぶことによって噴霧広がり角
θを変えることができる。しかし、上記の寸法によって
噴霧の粒径が大きく異なる。以下に一般に均質混合気を
得るために必要な200μm以下の粒径の噴霧を形成する
手段について述べる。
As described above, the spray spread angle θ can be changed by selecting the diameter Dt of the collision member 11, the distance L between the collision member 11 and the nozzle 8, and the fuel pressure Pf. However, the particle size of the spray varies greatly depending on the above dimensions. Hereinafter, means for forming a spray having a particle diameter of 200 μm or less, which is generally required to obtain a homogeneous mixture, will be described.

第7図に衝突部材11の直径Dと噴霧平均粒径の関係
を示す。ノズルのオリフイス径dN=φ0.7mmである。Dt
が0.4mm以下、3mm以上でが大きくなる。その理由は、
Dtが0.4mm以下では供給された燃料がすべて、衝突微粒
化されておらず、が大きくなる。また、Dtが3mm以上
では、衝突部材に燃料が付着し、粗大粒子を発生しやす
いためである。
FIG. 7 shows the relationship between the diameter D of the collision member 11 and the average spray particle diameter. The nozzle orifice diameter d N = φ0.7 mm. Dt
Is larger than 0.4 mm and larger than 3 mm. The reason is,
When Dt is 0.4 mm or less, all of the supplied fuel is not atomized by collision and becomes large. Further, when Dt is 3 mm or more, fuel adheres to the collision member, and coarse particles are easily generated.

第8図に衝突部材直径Dとノズル直径dNの関係を示
す。粒径を小さくするためには、 0.5≦Dt/dN≦5 のように、Dt及びdNを選ぶ。一般にdNは噴霧弁の最大流
量で決まるため、dNに合わせて、Dtを選ぶ。
Shows the relationship between the collision member diameter D and the nozzle diameter d N in FIG. 8. In order to reduce the particle size, as 0.5 ≦ Dt / d N ≦ 5 , pick Dt and d N. Since generally d N depends on the maximum flow rate of the spray valve, in accordance with the d N, pick Dt.

第9図に衝突部材11の長さltと衝突部材直径Dtの比と
粒径dの関係を示す。ltが小さいと、衝突部材に衝突し
た燃料が衝突部材の支持部10aに付着しやすく、粒径が
大きくなる。小さな粒径を得るためには、 lt/Dt≧1.0 とする。
FIG. 9 shows the relationship between the ratio of the length lt of the collision member 11 to the diameter Dt of the collision member and the particle diameter d. When lt is small, the fuel that has collided with the collision member easily adheres to the support portion 10a of the collision member, and the particle size increases. In order to obtain a small particle size, lt / Dt ≧ 1.0.

第10図に衝突部材11とノズル8の距離Lと粒径の関
係を示す。Lが大きくなると、衝突部材に衝突するとき
の燃料速度が小さくなるので、が大きくなりやすい。
燃圧Pfが300kPaではLを50mm以下とする。Pfが500kPaで
は60mm以下とする。
FIG. 10 shows the relationship between the distance L between the collision member 11 and the nozzle 8 and the particle size. When L increases, the fuel velocity at the time of collision with the collision member decreases, so that L tends to increase.
When the fuel pressure Pf is 300 kPa, L is set to 50 mm or less. When Pf is 500 kPa, it should be 60 mm or less.

となるようにL又はPfを選ぶことによって小さな粒径を
得ることができる。
A small particle size can be obtained by selecting L or Pf such that

第11図に本発明の他の実施例を示す。本実施例は、衝
突部材11をカバー9より突き出した支持部10aで支持す
る。
FIG. 11 shows another embodiment of the present invention. In this embodiment, the collision member 11 is supported by a support portion 10a protruding from the cover 9.

第12図に支持部10aの長さlと粒径の関係を示す。l
が小さいと、衝突部材11に衝突した燃料がはね返りカバ
ー9の内壁に付着するため、が大きくなりやすい。は
ね返りによるの増大は燃圧Pfによって異なる。小さな
粒径を得るためには、 とする。Pfが300kPaではたとえばl≧2mmとする。
FIG. 12 shows the relationship between the length 1 of the support portion 10a and the particle size. l
If is small, the fuel that has collided with the collision member 11 rebounds and adheres to the inner wall of the cover 9, and therefore tends to increase. The increase due to the rebound depends on the fuel pressure Pf. To get a small particle size, And When Pf is 300 kPa, for example, l ≧ 2 mm.

第13図に上記実施例と型式の異なる噴射弁の断面図、
第14図にそのノズル部の拡大図を示す。なお、符号中、
前述の各実施例と同一符号は同一或いは共通する要素を
示す。ノズルより噴出した燃料を有効に衝突部材に衝突
させるため、ノズル直径dNと長さLNを選ぶ必要がある。
本例は、図示しないがノズル8から距離Lのところに衝
突部材が配置される。
FIG. 13 is a cross-sectional view of a different type of injection valve from the above-described embodiment,
FIG. 14 shows an enlarged view of the nozzle portion. Note that in the code,
The same reference numerals as those in the above-described embodiments indicate the same or common elements. For impinging enable collision member fuel jetted from the nozzle, it is necessary to select a nozzle diameter d N and length L N.
In this example, although not shown, the collision member is arranged at a distance L from the nozzle 8.

第15図にノズルLN/dNと噴霧広がり角θの関係を示
す。LN/dNを大きくするとθを小さくすることができ
る。これは、ノズル8より噴出した燃料が助走区間によ
って整流されるためである。ノズル8と衝突部材の距離
Lが約70mmの場合、LN/dNを3以上とすることによっ
て、衝突部材に効率よく衝突させることができる。また
カバーの内壁面への燃料の付着を防止することができ
る。カバーの内径がφ10mm以上など大きいとき、長さL
が短かいときにはLN/dNを3以上としてもよい。
FIG. 15 shows the relationship between the nozzle L N / d N and the spray divergence angle θ. Increasing L N / d N can decrease θ. This is because the fuel ejected from the nozzle 8 is rectified by the approach section. When the distance L between the nozzle 8 and the collision member is about 70 mm, it is possible to efficiently collide with the collision member by setting L N / d N to 3 or more. Further, it is possible to prevent fuel from adhering to the inner wall surface of the cover. When the inner diameter of the cover is large such as φ10mm or more, the length L
Is shorter, L N / d N may be 3 or more.

第16図に本発明の他の実施例を示す。ピントル型噴射
弁の弁体7先端にオリフイス12a付きのアダプタ12を装
着することによって、棒状噴霧を形成することができ
る。
FIG. 16 shows another embodiment of the present invention. By attaching the adapter 12 with the orifice 12a to the tip of the valve element 7 of the pintle type injection valve, a rod-shaped spray can be formed.

第17図にカバーの長さLと噴霧粒径の関係を示す。
Lが大きくなるにしたがい、燃料の衝突速度が小さくな
り、またカバー内壁に燃料が付着しやすくなるため、
が大きくなる。
FIG. 17 shows the relationship between the cover length L and the spray particle size.
As L increases, the collision speed of the fuel decreases, and the fuel easily adheres to the inner wall of the cover.
Becomes larger.

第18図にカバーの長さLとカバーの長径Dcの比と粒径
の関係を示す。LN/dNが大きくなると、カバー内壁に
燃料が付着しやすくなり、が大きくなる。ノズルのLN
/dNを大きくすると、ノズルより噴出する燃料の広がり
が小さくなるので、内壁に燃料が付着しにくくなる。
FIG. 18 shows the relationship between the ratio of the cover length L to the cover long diameter Dc and the particle diameter. When L N / d N increases, the fuel tends to adhere to the inner wall of the cover, and the value increases. Nozzle L N
When / d N be increased, since the spread of the fuel jet from the nozzle is reduced, the fuel becomes unlikely to adhere to the inner wall.

すなわち、L/DC≦4又はLN/dN≧3を満足すれば、燃
料と衝突部材の衝突を有効に行ない、粒径を小さくでき
る。
That is, if L / D C ≦ 4 or L N / d N ≧ 3 is satisfied, the collision between the fuel and the collision member can be effectively performed, and the particle diameter can be reduced.

第19図に第22図に示す本発明の他の実施例の契機とな
った技術を示す。この例では、衝突部材11を断面がくさ
び形の部材11−1とし、カバー9に衝突部材の保持部材
11aと共に圧入する。衝突部材11を円筒形とすると、そ
の円筒形の直径いかんによっては、衝突部材11に燃料が
付着しやすく、ノズルから噴出する燃料量が小さい場合
では、燃料の供給が不連続となったり、粗大粒子を発生
しやすい。くさび形11−1とすることによって上記の問
題を解決できる。またくさび角によって任意の方向に2
つの噴霧を形成することができる。しかしながら、円筒
形に比べ、燃料量が多い場合での衝突微粒化によって形
成される噴霧の粒径は大きくなる。これは、衝突によっ
て燃料の方向が円筒形部材の方が大きく変えられ、燃料
が微粒化されやすいためである。そこで、次に述べるよ
うな工夫を施した。
FIG. 19 shows a technique which triggered another embodiment of the present invention shown in FIG. In this example, the collision member 11 is a member 11-1 having a wedge-shaped cross section, and a holding member for the collision member is provided on the cover 9.
Press in with 11a. When the collision member 11 has a cylindrical shape, depending on the diameter of the cylindrical shape, fuel easily adheres to the collision member 11, and when the amount of fuel ejected from the nozzle is small, the fuel supply becomes discontinuous or coarse. Easy to generate particles. The wedge shape 11-1 can solve the above problem. 2 in any direction depending on wedge angle
Two sprays can be formed. However, compared to the cylindrical shape, the particle size of the spray formed by the atomization by collision when the fuel amount is large is large. This is because the direction of the fuel is largely changed in the cylindrical member due to the collision, and the fuel is easily atomized. Therefore, the following measures were taken.

第20図にくさび形衝突部材11−1の底面(くさび形部
材の先端カット面と反対側の面)のうち長手方向の辺と
直交する幅l2とノズル直径dNの比と粒径の関係を示
す。l2/dNが小さくなると、ノズルより噴出した燃料が
衝突部材で微粒化しきれず、が大きくなる。粒径を小
さくするためには、 l2/dN≧1.0 とする必要がある。また開口部長さl4を開口部9aの断面
積が燃料ノズルのオリフイス断面積の2倍以上とするこ
とによって燃料計量誤差をなくす。
Figure 20 in a wedge-shaped collision member 11-1 bottom width l 2 and the nozzle diameter d N perpendicular to the longitudinal direction of the side of (the tip cut surface of the wedge-shaped member surface opposite) ratio and the particle size Show the relationship. When l 2 / d N becomes small, the fuel ejected from the nozzle cannot be atomized by the collision member, and becomes large. In order to reduce the particle size, it is necessary to satisfy l 2 / d N ≧ 1.0. Also eliminate fuel metering errors by an opening length l 4 is the cross-sectional area of the opening 9a is more than twice the orifice cross-sectional area of the fuel nozzle.

さらに、第21図,第22図に示すように、燃料噴射弁の
噴射口に対向するくさび形衝突部材11−1の先端(先細
りとなる側)11′を第22図(a)に示す如く平面にカッ
トする。くさび形部材11−1の先端カット面のうち長手
方向の辺と直交する幅をl3、ノズル直径dNとした場合の
l3/dNと粒径の関係を第23図(b)に示す。
Further, as shown in FIGS. 21 and 22, the front end (tapered side) 11 'of the wedge-shaped collision member 11-1 facing the injection port of the fuel injection valve, as shown in FIG. 22 (a). Cut to a plane. A width perpendicular to the longitudinal direction of the sides of the front end cut surface of the wedge-shaped member 11-1 l 3, in the case where the nozzle diameter d N
FIG. 23 (b) shows the relationship between l 3 / d N and the particle size.

l/dNを1付近とすることによってが小さくできる。
これは、平面部(先端カット面)11′によって燃料と衝
突部材の衝突が効率良く行われるためである。l3/dN
小さいと、燃料が衝突しきれず、又l3/dNが大きいと平
面部11′に燃料が付着し、が大きくなる。そのため、
小さな粒径を得るために、0.5≦l3/dN≦2とする。
By making l / d N close to 1, it can be reduced.
This is because the collision between the fuel and the collision member is efficiently performed by the flat portion (tip cut surface) 11 '. When l 3 / d N is small, the fuel does not completely collide, and when l 3 / d N is large, the fuel adheres to the flat portion 11 ′ and becomes large. for that reason,
In order to obtain a small particle size, 0.5 ≦ l 3 / d N ≦ 2.

また第22図(b)のようにくさび先端11′を曲面とし
ても良い。その場合、曲面の半径をRとすれば、 0.5≦2R/dN≦2.5 とすることによって小さな粒径の噴霧を形成できる。
The wedge tip 11 'may be curved as shown in FIG. 22 (b). In this case, if the radius of the curved surface is R, a spray having a small particle diameter can be formed by satisfying 0.5 ≦ 2R / d N ≦ 2.5.

第24図に本発明の他の実施例を示す。本例はカバー9
の先端に第21図,第22図(a)同様のくさび形衝突部材
11を設けるほかに、カバーの内筒9−1の外側に空気通
路15を設ける。本実施例では、くさび形部材11を支持す
るカバー9を二重構造としてカバー9−1とカバー9−
2との間に空気通路15を設け、この空気通路15にエンジ
ン吸気系の絞り弁上流より空気を導き、この空気通路15
の出口17より噴出する空気をくさび形部材11に衝突させ
るように設定してある。これによって、衝突部材11に衝
突した燃料をさらに、空気によって微粒化できる。特
に、絞り弁上下流の圧力差が大きいアイドル付近では、
空気通路15に流れる空気流速を速くして噴霧の粒径の微
粒化促進を図り、燃焼を良くすることができる。
FIG. 24 shows another embodiment of the present invention. In this example, the cover 9
21 and 22 (a) similar wedge-shaped collision members
In addition to providing 11, an air passage 15 is provided outside the inner cylinder 9-1 of the cover. In the present embodiment, the cover 9 supporting the wedge-shaped member 11 has a double structure, and the cover 9-1 and the cover 9-
An air passage 15 is provided between the air passage 15 and the air passage 15 and air is introduced into the air passage 15 from the throttle valve upstream of the engine intake system.
The air ejected from the outlet 17 is set to collide with the wedge-shaped member 11. Thereby, the fuel that has collided with the collision member 11 can be further atomized by air. In particular, near idle where the pressure difference upstream and downstream of the throttle valve is large,
By increasing the flow velocity of the air flowing through the air passage 15, the atomization of the particle diameter of the spray can be promoted, and the combustion can be improved.

第25図にエンジン回転数1000rpmのときに、吸気管内
圧力PBを変化させたときの、噴霧粒径を示す。衝突部材
のみの場合で、PBが小さい場合には、燃料量が少なく、
衝突部材へ燃料が付着し、粒径が大きくなる。アシスト
エアのみの場合には、PBが大きくなると、空気の流れが
なくなり、アシストエアによる微粒化が行えなくなる。
そのためPBが大きいほど、粒径が大きくなる。衝突部材
とアシストエアを組合せることによって、PBにかかわら
ず小さな粒径の噴霧を形成できる。すなわち、良い燃焼
を達成できる。
When the engine speed 1000rpm in FIG. 25, when changing the intake pipe pressure P B, shows the spray particle size. In the case of only collision members, if PB is small, the fuel amount is small,
Fuel adheres to the collision member and the particle size increases. If only the assist air is, when P B increases, eliminates the air flow, atomization can not be performed by the assist air.
The larger this reason P B, the particle diameter increases. By combining the collision member and the assist air to form a spray of small particle size regardless of the P B. That is, good combustion can be achieved.

第27図に本発明を吸気ポート噴射エンジンに適用した
例を示す。第26図の従来例と比較した場合、従来例の噴
射弁では、吸気管内の空気によって燃料噴霧が流れやす
く、また粒径も200μmと大きいため、シリンダ内で燃
料の分布が均一でなく、HC排出量が増大したり、シリン
ダ壁面に付着した燃料が多くなる。これに対し、第27図
のように、カバー9を設け、衝突部材11で燃料を微粒化
すると、吸気管内の空気流速の影響を受けずに、吸気弁
まわり、シリンダ内に均一に燃料を分散させることがで
きる。
FIG. 27 shows an example in which the present invention is applied to an intake port injection engine. In comparison with the conventional example in FIG. 26, in the conventional injection valve, the fuel spray is easy to flow due to the air in the intake pipe, and the particle size is as large as 200 μm. The amount of discharge increases and the amount of fuel attached to the cylinder wall increases. On the other hand, when the cover 9 is provided and the fuel is atomized by the collision member 11 as shown in FIG. 27, the fuel is uniformly dispersed around the intake valve and in the cylinder without being affected by the air flow velocity in the intake pipe. Can be done.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シリンダ内に燃料を均一に分散でき
るので、シリンダ内で燃料の蒸発が促進され、燃料の液
膜を低減するので、HC排出量の低減及び燃料による潤滑
油の希釈を防止する効果がある。
According to the present invention, the fuel can be uniformly dispersed in the cylinder, so that the evaporation of the fuel is promoted in the cylinder and the liquid film of the fuel is reduced, so that the HC emission is reduced and the lubricating oil is not diluted by the fuel. Has the effect of doing

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す断面図、第2図は第
1実施例の動作説明図、第3図は第1実施例に用いる衝
突部材の直径Dtと噴霧広がり角の関係を示す図、第4図
は第1実施例の衝突部材の直径を変えた場合の動作説明
図、第5図は衝突部材とノズルまでの距離Lと噴霧広が
り角θの関係を示す図、第6図は燃料圧力Pfと噴霧広が
り角θの関係を示す図、第7図は衝突部材直径Dtと噴霧
平均粒径の関係を示す図、第8図はDt/dNとの関係
を示す図、第9図はlt/Dtとの関係を示す図、第10図
はカバーの長さLとの関係を示す図、第11図は本発明
の第2実施例を示す断面図、第12図は第2実施例の支持
部長さlとの関係を示す図、第13図は本発明の第3実
施例に用いる噴射弁の断面図、第14図は第3実施例のノ
ズル部を示す断面図、第15図は第3実施例のLN/dNとθ
の関係を示す図、第16図は噴射ノズル部断面図、第17図
はLとの関係を示す図、第18図はL/Dcとの関係を示
す図、第19図は本発明の第4実施例を示す要部断面図、
第20図はl2/dNとの関係を示す図、第21図は本発明の
第5実施例を示す要部説明図、第22図は第5実施例の衝
突部材の形状を示す断面図、第23図は衝突部材の大きさ
との関係を示す図、第24図は本発明の第6実施例を示
す要部断面図、第25図は吸気圧力PBとの関係を示す
図、第26図は従来の燃料噴射弁をエンジンに適用した
図、第27図は本発明の燃料噴射弁をエンジンに適用した
図である。 1……燃料噴射弁、9……カバー(筒状体)、11……衝
突部材、19……空気通路、20……吸気弁。
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is an explanatory view of the operation of the first embodiment, and FIG. 3 is a relationship between the diameter Dt of the collision member used in the first embodiment and the spray divergence angle. FIG. 4 is an explanatory diagram of the operation when the diameter of the collision member of the first embodiment is changed, FIG. 5 is a diagram showing the relationship between the distance L to the collision member and the nozzle and the spray spread angle θ 6 figure shows the relationship between the fuel pressure Pf and the spray divergence angle theta, Figure 7 Figure showing the relationship between the collision member diameter Dt and the spray average particle diameter, FIG. FIG. 8 is showing the relationship between the Dt / d N , FIG. 9 is a diagram showing a relationship with lt / Dt, FIG. 10 is a diagram showing a relationship with a cover length L, FIG. 11 is a sectional view showing a second embodiment of the present invention, FIG. FIG. 13 is a view showing the relationship with the support portion length 1 of the second embodiment, FIG. 13 is a sectional view of an injection valve used in a third embodiment of the present invention, and FIG. 14 is a sectional view showing a nozzle part of the third embodiment. Fig. 15 shows the third embodiment. L N / d N and θ
FIG. 16 is a sectional view of the injection nozzle portion, FIG. 17 is a diagram showing the relationship with L, FIG. 18 is a diagram showing the relationship with L / Dc, and FIG. Main part sectional view showing 4 Examples,
FIG. 20 is a diagram showing the relationship with l 2 / d N , FIG. 21 is an explanatory view of a main part showing a fifth embodiment of the present invention, and FIG. 22 is a cross section showing the shape of the collision member of the fifth embodiment. figures, FIG. FIG. 23 showing the relationship between the magnitude of the collision member, FIG. 24 sixth cross sectional view showing an embodiment of the present invention, FIG. FIG. 25 is showing a relationship between the intake pressure P B, FIG. 26 is a diagram in which a conventional fuel injection valve is applied to an engine, and FIG. 27 is a diagram in which a fuel injection valve of the present invention is applied to an engine. 1 ... fuel injection valve, 9 ... cover (tubular body), 11 ... collision member, 19 ... air passage, 20 ... intake valve.

フロントページの続き (56)参考文献 特開 昭60−113065(JP,A) 実開 昭59−194569(JP,U) 実開 昭60−100569(JP,U) 実開 昭59−45241(JP,U)Continuation of front page (56) References JP-A-60-113065 (JP, A) JP-A-59-194569 (JP, U) JP-A-60-100569 (JP, U) JP-A-59-45241 (JP) , U)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の吸気ポート付近に燃料噴射弁を
設けた燃料噴射装置において、該燃料噴射弁の先端に吸
気管内へ突き出す筒状体を取付け、この筒状体の先端に
該筒状体を横切るようにして燃料衝突用の円筒部材を設
け、この円筒部材の直径Dtと前記燃料噴射弁のノズル直
径dNの比を、 0.5≦Dt/dN≦5 とし、且つ前記円筒部材の長さlt、円筒部材の直径Dtの
比を lt/Dt≧1.0 としてなることを特徴とする燃料噴射装置。
In a fuel injection device provided with a fuel injection valve near an intake port of an internal combustion engine, a cylindrical body protruding into an intake pipe is attached to a tip of the fuel injection valve, and a cylindrical body is provided at a tip of the cylindrical body. so as to traverse the body is provided a cylindrical member for the fuel collision, the ratio of the nozzle diameter d N of the fuel injection valve and the diameter Dt of the cylindrical member, and 0.5 ≦ Dt / d N ≦ 5, and of the cylindrical member A fuel injection device wherein a ratio of a length lt and a diameter Dt of a cylindrical member is lt / Dt ≧ 1.0.
【請求項2】前記燃料噴射弁のノズル先端から前記衝突
部材の距離Lと燃料圧力の平方 としてなる請求項1記載の燃料噴射装置。
2. The distance L between the collision member from the nozzle tip of the fuel injection valve and the square of the fuel pressure. 2. The fuel injection device according to claim 1, wherein:
【請求項3】前記燃料噴射弁のノズルの直径dNと長さLN
の比を、 LN/dN3≧ としてなる請求項1又は請求項2記載の燃料噴射装置。
Wherein the diameter of the nozzle of the fuel injection valve d N and length L N
3. The fuel injection device according to claim 1, wherein a ratio of L N / d N 3 ≧ 3 is satisfied.
【請求項4】前記筒状体の内径DCと長さLの比を L/DC≦4 としてなる請求項1ないし請求項3のいずれか1項記載
の燃料噴射装置。
Wherein said tubular body inner diameter D C and comprising the ratio of the length L as L / D C ≦ 4 claim 1 to a fuel injection system of any one of claims 3 to.
【請求項5】燃料噴射弁の先端に対向して噴射燃料が衝
突するようにくさび形部材を設け、このくさび形部材は
その先細りとなる先端側が平面にカットされた形状を呈
してこの先端カット面が前記燃料噴射弁の先端と対向す
るよう配置され、このくさび形部材の先端カット面と反
対側の面のうち長手方向の辺と直交する幅l2と前記燃料
噴射弁のノズル直径dN比を l2/dN≧1.0 とし、且つ、前記くさび形部材の先端カット面のうち長
手方向の辺と直交する幅l3とノズル直径dNの比を 0.5≦l3/dN≦2 としてなることを特徴とする燃料噴射装置。
5. A wedge-shaped member is provided so that the injected fuel collides with the front end of the fuel injection valve. surface is disposed so as to face the tip of the fuel injection valve, the nozzle diameter d N of the width l 2 and the fuel injection valve that is perpendicular to the longitudinal direction of the sides of the front end cut surface opposite to the surface of the wedge-shaped member The ratio is l 2 / d N ≧ 1.0, and the ratio of the width l 3 orthogonal to the longitudinal side of the cut end face of the wedge-shaped member to the nozzle diameter d N is 0.5 ≦ l 3 / d N ≦ 2. A fuel injection device, characterized in that:
【請求項6】燃料噴射弁の先端に対向して噴射燃料が衝
突するようにくさび形部材を設け、このくさび形部材は
その先細りとなる先端側が半径Rの曲面形状を呈してこ
の先端曲面が前記燃料噴射弁の先端と対向するよう配置
され、このくさび形部材の先端曲面と反対側の面のうち
長手方向の辺と直交する幅l2と前記燃料噴射弁のノズル
直径dNの比を l2/dN≧1.0 とし、且つ、前記くさび形部材の先端曲面の半径Rとノ
ズル直径dNとの関係を 0.5≦2R/dN≦2.5 としてなることを特徴とする燃料噴射装置。
6. A wedge-shaped member is provided so that the injected fuel collides with the tip of the fuel injection valve, and the wedge-shaped member has a tapered tip side having a curved surface with a radius R. is arranged so as to face the tip of the fuel injection valve, the ratio of the nozzle diameter d N of the width l 2 and the fuel injection valve that is perpendicular to the longitudinal direction of the side of the tip curved surface opposite to the surface of the wedge-shaped member and l 2 / d N ≧ 1.0, and a fuel injection apparatus characterized by comprising a relationship between the radius R and the nozzle diameter d N of the tip curved surface of the wedge-shaped member as 0.5 ≦ 2R / d N ≦ 2.5 .
【請求項7】前記くさび形部材を支持する部材には、エ
ンジン吸気系の絞り弁上流より導いた空気を前記くさび
形部材に向けて噴出させる通路を設け、この通路出口よ
り噴出する空気を該くさび形部材に衝突させるよう設定
してある請求項5又は請求項6記載の燃料噴射装置。
7. A member for supporting the wedge-shaped member is provided with a passage through which air introduced from an upstream of a throttle valve of an engine intake system is jetted toward the wedge-shaped member. 7. The fuel injection device according to claim 5, wherein the fuel injection device is set to collide with a wedge-shaped member.
JP1066725A 1989-03-18 1989-03-18 Fuel injection device Expired - Fee Related JP2749108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1066725A JP2749108B2 (en) 1989-03-18 1989-03-18 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1066725A JP2749108B2 (en) 1989-03-18 1989-03-18 Fuel injection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25091297A Division JPH1073061A (en) 1997-09-16 1997-09-16 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JPH02245470A JPH02245470A (en) 1990-10-01
JP2749108B2 true JP2749108B2 (en) 1998-05-13

Family

ID=13324164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066725A Expired - Fee Related JP2749108B2 (en) 1989-03-18 1989-03-18 Fuel injection device

Country Status (1)

Country Link
JP (1) JP2749108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2996525B2 (en) * 1991-03-20 2000-01-11 株式会社日立製作所 Fuel injection valve
DE4312756A1 (en) * 1993-04-20 1994-10-27 Bosch Gmbh Robert Device for injecting a fuel-gas mixture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945241U (en) * 1982-09-18 1984-03-26 マツダ株式会社 Fuel injection system for rotary piston engine
JPS59194569U (en) * 1983-06-10 1984-12-24 トヨタ自動車株式会社 Air-assisted fuel injection valve
JPS60100569U (en) * 1983-12-15 1985-07-09 トヨタ自動車株式会社 Fuel injection valve for double intake engine

Also Published As

Publication number Publication date
JPH02245470A (en) 1990-10-01

Similar Documents

Publication Publication Date Title
JP3183156B2 (en) Fluid injection nozzle
CA2115819C (en) Fluid injection nozzle
US4771948A (en) Combination of a fuel injection valve and a nozzle
JP2996525B2 (en) Fuel injection valve
JPH1170347A (en) Fluid jet nozzle
US5516047A (en) Electromagnetically actuated fuel injection valve
US10280885B2 (en) Fluid injection valve and spray generator
JP2778292B2 (en) Fuel injection device for internal combustion engine
JPH08218986A (en) Fuel injection device
JP2749108B2 (en) Fuel injection device
JPH03160151A (en) Electromagnetic type fuel injection valve
JPH1073061A (en) Electromagnetic fuel injection valve
JP2004270683A (en) Spray control to sector part with non-oblique orifice in fuel injection metering disc
JP2015078603A (en) Fuel injection valve
JPH08177689A (en) Fuel supply device for internal combustion engine
JP3572591B2 (en) Fluid injection nozzle and electromagnetic fuel injection valve using the same
JP3726830B2 (en) Fuel injection nozzle and fuel supply device
KR100419183B1 (en) Fluid injection nozzle
JPS60111057A (en) Solenoid-operated type fuel injection valve
JP3838089B2 (en) Fuel injection valve for internal combustion engine
JP3165552B2 (en) Fluid injection nozzle
JP2865677B2 (en) Gasoline engine fuel supply system
JP2822847B2 (en) Fuel injection valve
JP2564373B2 (en) Electromagnetic fuel injection valve
JP3129188B2 (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees