EP0645781B1 - Energiekabel mit verbesserter dielektrischen Festigkeit - Google Patents

Energiekabel mit verbesserter dielektrischen Festigkeit Download PDF

Info

Publication number
EP0645781B1
EP0645781B1 EP94402053A EP94402053A EP0645781B1 EP 0645781 B1 EP0645781 B1 EP 0645781B1 EP 94402053 A EP94402053 A EP 94402053A EP 94402053 A EP94402053 A EP 94402053A EP 0645781 B1 EP0645781 B1 EP 0645781B1
Authority
EP
European Patent Office
Prior art keywords
dielectric layer
polymer
cable
doped
polymer matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402053A
Other languages
English (en)
French (fr)
Other versions
EP0645781B2 (de
EP0645781A1 (de
Inventor
Hakim Janah
José Bezille
Jean Becker
Jean-Claude Assier
Bernard Aladenize
Alain Le Mehaute
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans France SAS
Original Assignee
Alcatel Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26230605&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0645781(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9311117A external-priority patent/FR2710184B1/fr
Application filed by Alcatel Cable SA filed Critical Alcatel Cable SA
Publication of EP0645781A1 publication Critical patent/EP0645781A1/de
Publication of EP0645781B1 publication Critical patent/EP0645781B1/de
Application granted granted Critical
Publication of EP0645781B2 publication Critical patent/EP0645781B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • H01B9/027Power cables with screens or conductive layers, e.g. for avoiding large potential gradients composed of semi-conducting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients

Definitions

  • the present invention relates to high voltage power cables and direct or alternating current. It relates more particularly to such an energy cable with improved dielectric strength.
  • This power cable includes a polymeric insulation, preferably extruded.
  • the insulation covers an internal semiconductor screen, itself covering the conductive core of the cable, and is covered with an external semiconductor screen.
  • This polymeric insulator has a high intrinsic dielectric strength. Its practical dielectric strength, obtained on the cable, is less than its intrinsic stiffness. This difference is mainly due to the presence of impurities or cavities, which are introduced or formed before and / or during the use of the insulation on the cable, give rise to local concentrations of electric field in the insulation and are the source of possible electrical faults through the cable insulation.
  • Document JP-A-2-18811 describes an energy cable with polymeric insulation containing from 0.2 to 1.5% by mass of carbon black.
  • the insulation thus modified can be implemented directly on the conductive core of the cable.
  • the small quantity of carbon black which it contains reduces the risks of electrical faults which may be due to peripheral irregularities of the core and to impurities or internal cavities of the insulator, by improving the homogeneity of distribution of the electric field and therefore cable reliability. It gives the insulator a slight electrical conductivity, as such weak but not zero.
  • This conductivity is constant and directly linked to the intrinsic electrical conductivity of carbon black, typically from 10 to 100 S / cm, contained in the insulator. It promotes leakage currents in the insulation and increases its dielectric losses. It reduces the intrinsic dielectric strength of the insulation thus modified and by there its practical dielectric rigidity on the cable, this independently of the presence or not of irregularities or internal cavities.
  • the present invention aims to produce an energy cable whose polymeric insulation is of high dielectric strength, which only adapts locally to possible impurities or cavities.
  • a direct current energy cable with improved dielectric strength comprising an electrical core and a first polymeric dielectric layer for insulating said core, characterized in that said first dielectric layer consists of an insulating polymer matrix containing at least one conductive polymer, incorporated in said polymer matrix with a mass rate such that the electrical conductivity resulting from said first dielectric layer is less than 10 -14 S / cm.
  • an AC power cable with improved dielectric strength comprising an electrical core and a first polymeric dielectric layer for insulating said core, characterized in that said first dielectric layer consists of an insulating polymer matrix containing at least one conductive polymer, incorporated into said polymer matrix with a mass rate such that the resulting electrical conductivity of said first dielectric layer is less than 10 -10 S / cm.
  • the cable shown in Figure 1 has a conductive core 1, formed by a conductive strand but can also be formed by a single conductor, which is surrounded by an internal semiconductor screen 2, itself surrounded by a layer insulating dielectric 3, in turn surrounded by an external semiconductor screen 4.
  • a protective sheath 5 surrounds the external semiconductor screen 4 and ensures the protection of the cable. It is in particular made of lead or a lead alloy. It can be insulating and then preferably associated with a directly underlying metallic mass screen.
  • the insulating dielectric layer 3 is constituted by an insulating polymer matrix in which is incorporated at least one conductive polymer, with a mass rate such that the electrical conductivity resulting from the dielectric layer 3 is lower. at 10 -14 S / cm in direct current, and at 10 -10 S / cm in alternating current.
  • the electrical conductivity or the dielectric constant of the layer 3 in the cable according to the invention increases substantially locally, in the presence of a defect at any point, being variable from one point to another depending on the faults at these points.
  • the dielectric layer 3 is therefore said to be self-adapting locally according to the various defects it presents. It thus makes it possible to homogenize the distribution of the electric field through it over the entire length of the cable, reducing the risks of breakdown due to these faults.
  • the conductive polymer may for example be an undoped, dedoped or autodoped polymer.
  • an undoped conductive polymer is a polymer whose synthesis does not require the introduction of dopant, such as the polyaniline obtained by polycondensation reaction of aniline and quinone, or polyacetylene, the polymerization of which was started using a Ziegler-Natta type catalyst.
  • dopant such as the polyaniline obtained by polycondensation reaction of aniline and quinone, or polyacetylene, the polymerization of which was started using a Ziegler-Natta type catalyst.
  • a self-doping conductive polymer is a polymer obtained by grafting a dopant during its synthesis, such as for example polyaniline grafted by a sulfonic group on the cycle.
  • a dedoped conductive polymer is a polymer doped during its synthesis, like polyaniline treated by hydrochloric acid, then dedoped by elimination of this acid by an appropriate means.
  • the mass rate in the dielectric layer 3 is at most about 2% by mass, both for direct current and current use.
  • its mass content in layer 3 will preferably be at most equal to approximately 5% by mass, both for direct current and alternating current use.
  • One or each of the internal 2 and external 4 semiconductor screens is advantageously of the type described in document EP-A-0507676, which consists of an insulating polymer matrix and at least one conductive polymer, the latter being chosen among undoped polymers and doped polymers then dedoped, and being incorporated into the polymer matrix with a rate of 5 to 70% by mass, and preferably from 20 to 30%, to obtain a conductivity of the semiconductor screens lower or equal to 1 S / cm.
  • one or each of these semiconductor screens consists of an insulating polymer matrix and at least one conductive polymer autodoped in particular of the type described in document EP-A-0512926, which is incorporated with a mass content greater than 5% by mass, and preferably between 10 and 40% by mass in the polymer matrix.
  • the polymer matrix of the dielectric layer 3 comprises, like that of the semiconductor screens 2 and 4, at least one thermoplastic polymer, chosen from acrylic, styrenic, vinyl and cellulosic resins, polyolefins, fluorinated polymers, polyethers, polyimides, polycarbonates, polyurethanes, silicones, their copolymers, and mixtures between homopolymers and between homopolymers and copolymers.
  • thermoplastic polymer chosen from acrylic, styrenic, vinyl and cellulosic resins, polyolefins, fluorinated polymers, polyethers, polyimides, polycarbonates, polyurethanes, silicones, their copolymers, and mixtures between homopolymers and between homopolymers and copolymers.
  • thermoplastic polymer is chosen from polypropylene (PP), polyethylene (PE), the copolymer of ethylene and vinyl acetate (EVA), ethylene-proprylene-diene-monomer (EPDM), fluorinated polyvinylidene (PVDF), ethylene-butylacrylate (EBA), alone or as a mixture.
  • PP polypropylene
  • PE polyethylene
  • EVA ethylene-proprylene-diene-monomer
  • PVDF fluorinated polyvinylidene
  • EBA ethylene-butylacrylate
  • the polymer matrix comprises at least one thermosetting polymer chosen from polyesters, epoxy resins and phenolic resins.
  • the undoped or doped polymer (s) then doped of the dielectric layer 3, like that or those possible of the semiconductor screens 2 and 4, are chosen from the group comprising polyaniline, polythiophene, polypyrrole, polyacetylene, polyparaphenylene, polyalkylthiophenes, their derivatives and mixtures.
  • undoped and dedoped polymers do not contain ionic groups. Their intrinsic electrical conductivity, measured in direct current, is very low and of the order of 10 -10 to 10 -9 S / cm.
  • the conductivity of the dielectric layer 3, containing at most 5% of the undoped or dedoped polymer, is of the order and even less than 10 -14 S / cm for use in direct current and at low electric fields, and less than 10 -10 S / cm for use in alternating current and at low electric fields, that is to say in the absence of faults or in the presence of faults negligible, which does not degrade the high dielectric strength of this layer.
  • the self-doped polymer or polymers of the dielectric layer 3, like that or those possible of the semiconductor screens 2 and 4, are chosen from self-doped polyanilines having benzene or benzene and quinone nuclei, which carry grafts consisting, for one hydrocarbon radical, comprising from 2 to 8 carbon atoms and interrupted by at least one hetero atom, and for the others by a strong acid function or one of its salts, said hetero atom being itself chosen from O and S and the strong acid function among the residues of sulfonic, phosphonic and phosphoric acids or their salts.
  • the intrinsic electrical conductivity, measured in direct current, of these self-doped polymers is on the order of 10 -3 to 10 -2 S / cm on average. It is also adjustable as desired between 10 -5 and 1 S / cm, by varying the molecular ratio of the two types of grafts.
  • the electrical conductivity of the dielectric layer 3, constituted by the above polymer matrix to which is added at most 2% by mass of this self-doped polymer, is itself adjustable and of the order or less than 10 -14 S / cm for use at low electric fields in direct current, and of the order or less than 10 -10 S / cm for use in alternating current at low electric fields. This dielectric strength decreases with the increase of the electric field.
  • the electrical conductivity and the dielectric constant of such a dielectric layer increase strongly with the electric field and then make it possible to withstand without problem a significant local concentration of space charges and to distribute these charges.
  • the above-mentioned dielectric layer 3 directly surrounds the cable core and is directly covered by the protective sheath 5, the two internal and external semiconductor screens being eliminated.
  • the cable shown in this FIG. 2 comprises an internal dielectric layer 7, between the conductive core 1 and the dielectric layer 3, and an external dielectric layer 8, between the dielectric layer 3 and the protective sheath 5.
  • Each of these two dielectric layers 7 and 8 consists of at least one of the polymers of the above-mentioned insulating polymer matrix and at least one conductive polymer incorporated in this matrix, with a content of 5 to 20% by mass.
  • Its conductive polymer is at least one of the three types of conductive polymers mentioned above, but is preferably chosen from only non-doped or dedoped polymers. It is added to the polymer matrix of the dielectric layer at a rate less than or equal to 20% by mass and greater than 5% by mass.
  • the resulting electrical conductivity of layers 7 and 8 is 10 -14 to 1 S / cm for use in direct current, and 10 -10 to 1 S / cm for use in alternating current.
  • the cable comprises two semiconductor screens as in FIG. 1, the internal screen being covered by the internal dielectric layer 7 and the external screen covering the external dielectric layer 8.
  • one or each of the internal 7 and external dielectric layers 8 is divided into several elementary layers, such as 7A and 7B and 8A and 8B, having a mass content of conductive polymer which remains between 5 and 20% but is different from one elementary layer to another.
  • This conductive polymer content of the elementary layers of the internal layer 7 decreases successively, from the innermost elementary layer 7A in contact with the core.
  • it is increasing in the outer layer 8 from the innermost elementary layer 8A in contact with the dielectric layer 3 to the outermost elementary layer 8B in contact with the protective sheath 5.
  • the internal 7 and external 8 dielectric layers or their possible elementary layers play the role of internal and external semiconductor screens when they are subjected to high electric fields, which are due to their internal faults and in addition to peripheral irregularities of the conductive core or to faults in the protective sheath. They play the role of dielectric layer at low electric fields.
  • the electrical conductivity of layer 7A is between 10 -9 and 1 S / cm, that of layer 7B between 10 -14 and 10 -9 S / cm, that of layer 8A between 10 -14 and 10 -9 S / cm, and that of layer 8B between 10 -9 and 1 S / cm.
  • the electrical conductivity of layer 7A is between 10 -5 and 1 S / cm, that of layer 7B between 10 -10 and 10 -5 S / cm, that of layer 8A between 10 -10 and 10 -5 S / cm, and that of layer 8B between 10 -5 and 1 S / cm.
  • the cable according to the invention comprises semiconductor screens as such
  • the latter can be made either of the materials described above, or of the conventional materials used for semiconductor screens in cables of the art prior.
  • the cables according to the invention can be produced using the conventional methods of manufacturing this type of cable.

Landscapes

  • Conductive Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Claims (9)

  1. Gleichstrom-Energiekabel mit verbesserter dielektrischer Festigkeit, das eine elektrische Seele (1) und eine erste dielektrische Isolationsschicht (3) aus Polymermaterial um die Seele herum enthält, dadurch gekennzeichnet, daß die erste dielektrische Schicht aus einer isolierenden Polymermatrix besteht, die mindestens ein leitendes Polymer enthält, welches in die Polymermatrix mit einem solchen Masseanteil eingebaut ist, daß die resultierende elektrische Leitfähigkeit der ersten Schicht unter 10-14 S/cm bei Umgebungstemperatur liegt.
  2. Energiekabel für Wechselstrom mit verbesserter dielektrischer Festigkeit, das eine elektrische Seele (1) und eine erste dielektrische Isolationsschicht (3) aus Polymermaterial um die Seele herum enthält, dadurch gekennzeichnet, daß die erste dielektrische Schicht aus einer isolierenden Polymermatrix besteht, die mindestens ein leitendes Polymer enthält, welches in die Polymermatrix mit einem solchen Masseanteil eingebaut ist, daß die resultierende elektrische Leitfähigkeit der ersten Schicht unter 10-10 S/cm bei Umgebungstemperatur liegt.
  3. Kabel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das leitende Polymer ein undotiertes oder entdotiertes Polymer ist, dessen Masseanteil in der Polymermatrix höchstens etwa 5% beträgt.
  4. Kabel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das leitende Polymer ein autodotiertes Polymer ist, dessen Masseanteil in der Polymermatrix höchstens 2% beträgt.
  5. Kabel nach einem der Ansprüche 1 bis 4, das außerdem einen inneren halbleitenden Schirm (2) zwischen der Seele (1) und der ersten dielektrischen Schicht (3) sowie einen äußeren halbleitenden Schirm (4) zwischen der ersten dielektrischen Schicht (3) und einer äußeren Schutzhülle (5) enthält, dadurch gekennzeichnet, daß jeder der Schirme aus einer Polymermatrix aus isolierendem Material mit einem leitenden Polymer gebildet wird, dessen Masseanteil so gewählt ist, daß die elektrische Leitfähigkeit der Schirme höchstens 1 S/cm beträgt.
  6. Kabel nach Anspruch 5, dadurch gekennzeichnet, daß das leitende Polymer ein undotiertes oder entdotiertes Polymer ist, dessen Masseanteil in der Polymermatrix der Schirme zwischen 5% und 70% liegt.
  7. Kabel nach Anspruch 5, dadurch gekennzeichnet, daß das leitende Polymer ein autodotiertes Polymer ist, dessen Masseanteil in der Polymermatrix der Schirme größer als 5% ist.
  8. Kabel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es außerdem eine zweite zusätzliche innere dielektrische Schicht (7) unter der ersten dielektrischen Schicht (3) sowie eine dritte zusätzliche äußere dielektrische Schicht (8) über der ersten dielektrischen Schicht (3) aufweist, die je von einer isolierenden Polymermatrix und einem leitenden Polymer gebildet werden, das unter den undotierten, den entdotierten und den autodotierten Polymeren ausgewählt wird, wobei die elektrische Leitfähigkeit der zweiten und der dritten dielektrischen Schicht zwischen 10-14 und 1 S/cm für eine Verwendung bei Gleichstrom und zwischen 10-10 und 1 S/cm für eine Verwendung bei Wechselstrom liegt.
  9. Kabel nach Anspruch 8, dadurch gekennzeichnet, daß mindestens eine der zweiten und dritten dielektrischen Schichten mehrere Elementarschichten (7A, 7B; 8A, 8B) enthält, die sich durch den Anteil an leitendem Polymer unterscheiden, wobei diese Anteile in den aufeinanderfolgenden Elementarschichten der zweiten dielektrischen Schicht von der am weitesten innen liegenden Elementarschicht ausgehend abnehmen und in den aufeinanderfolgenden Elementarschichten der dritten dielektrischen Schicht von der am weitesten innen liegenden Elementarschicht dieser dritten dielektrischen Schicht ausgehend zunehmen.
EP94402053A 1993-09-17 1994-09-14 Energiekabel mit verbesserter dielektrischen Festigkeit Expired - Lifetime EP0645781B2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9311117A FR2710184B1 (fr) 1993-09-17 1993-09-17 Câble d'énergie à rigidité diélectrique améliorée.
FR9312227 1993-10-14
FR9312227A FR2710183B3 (fr) 1993-09-17 1993-10-14 Câble d'énergie à rigidité diélectrique améliorée.
FR9311117 1993-10-14

Publications (3)

Publication Number Publication Date
EP0645781A1 EP0645781A1 (de) 1995-03-29
EP0645781B1 true EP0645781B1 (de) 1997-04-09
EP0645781B2 EP0645781B2 (de) 2000-06-07

Family

ID=26230605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402053A Expired - Lifetime EP0645781B2 (de) 1993-09-17 1994-09-14 Energiekabel mit verbesserter dielektrischen Festigkeit

Country Status (8)

Country Link
EP (1) EP0645781B2 (de)
JP (1) JP4040114B2 (de)
KR (1) KR100323178B1 (de)
CN (1) CN1124868A (de)
AU (1) AU683076B2 (de)
DE (1) DE69402494T3 (de)
DK (1) DK0645781T4 (de)
FR (1) FR2710183B3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2779268B1 (fr) * 1998-05-27 2000-06-23 Alsthom Cge Alcatel Bobinage electrique, transformateur et moteur electrique comportant un tel bobinage
FR2827999B1 (fr) * 2001-07-25 2003-10-17 Nexans Ecran semi-conducteur pour cable d'energie
NO335342B1 (no) 2013-01-02 2014-11-24 Nexans Feltgraderingslag
FR3003993B1 (fr) * 2013-03-29 2016-08-19 Nexans Cable electrique comprenant une couche a gradient de propriete electrique
BR112017007895A2 (pt) * 2014-10-17 2018-01-23 3M Innovative Properties Company material dielétrico com resistência melhorada à ruptura
CN104332220B (zh) * 2014-11-12 2017-07-21 远东电缆有限公司 一种柔软性抗核电磁脉冲智慧信息系统用电缆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666876A (en) * 1970-07-17 1972-05-30 Exxon Research Engineering Co Novel compositions with controlled electrical properties
US3792192A (en) * 1972-12-29 1974-02-12 Anaconda Co Electrical cable
IT1135021B (it) 1981-01-14 1986-08-20 Pirelli Cavi Spa Cavo elettrico perfezionato
DE3248088A1 (de) 1982-12-24 1984-06-28 Brown, Boveri & Cie Ag, 6800 Mannheim Verfahren zur herstellung eines polymers
GB8425377D0 (en) 1984-10-08 1984-11-14 Ass Elect Ind High voltage cables
DE3509168A1 (de) 1985-03-14 1986-09-18 Brown, Boveri & Cie Ag, 6800 Mannheim Kabel
JPH0218811A (ja) 1988-07-05 1990-01-23 Fujikura Ltd 直流電力ケーブル
ATE138240T1 (de) 1991-04-02 1996-06-15 Alcatel Cable Material für halbleiter-abschirmung
US5371182A (en) 1991-05-07 1994-12-06 Alcatel N.V. Self-doped conductive polyanilines, and method of preparing them

Also Published As

Publication number Publication date
KR950009751A (ko) 1995-04-24
FR2710183B3 (fr) 1995-10-13
EP0645781B2 (de) 2000-06-07
DE69402494D1 (de) 1997-05-15
DK0645781T3 (de) 1997-05-05
DE69402494T2 (de) 1997-07-17
DE69402494T3 (de) 2000-08-31
FR2710183A1 (fr) 1995-03-24
AU7296794A (en) 1995-03-30
AU683076B2 (en) 1997-10-30
EP0645781A1 (de) 1995-03-29
CN1124868A (zh) 1996-06-19
JPH07169339A (ja) 1995-07-04
JP4040114B2 (ja) 2008-01-30
DK0645781T4 (da) 2000-10-09
KR100323178B1 (ko) 2002-05-13

Similar Documents

Publication Publication Date Title
EP1128395B1 (de) Hoch und Höchstspannungsgleichstromenergiekabel
EP2859633B1 (de) Vorrichtung mit einer ladungsblockierungsschicht
EP2765581B1 (de) Elektrisches Kabel, das resistent gegen Teilentladungen ist
FR2950728A1 (fr) Cable electrique a moyenne ou haute tension
EP0645781B1 (de) Energiekabel mit verbesserter dielektrischen Festigkeit
FR2686727A1 (fr) Conducteur electrique et cable electrique contenant un tel conducteur.
FR2714543A1 (fr) Dispositif pour la jonction de câbles d'énergie.
EP2136376B1 (de) Hochspannungsstromkabel
EP0624885B1 (de) Kabel verwendbar auf dem Gebiet der Nachrichten
EP0644641B1 (de) Garnitur zum Verbinden eines Energiekabels und damit ausgerüstetes Energiekabel
EP2807656B1 (de) Mittel- oder hochspannungsstromkabel
EP3422366A1 (de) Kabel, das ein elektrisch leitendes element umfasst, das metallisierte karbonfasern enthält
FR2710184A1 (fr) Câble d'énergie à rigidité diélectrique améliorée.
EP0833421B1 (de) Garnitur für Kabelendverschluss und Material für die Bildung der Garnitur
EP3965123A1 (de) Elektrisches kabel für die luftfahrtindustrie
EP0828345A1 (de) Elektrischer Leiter der geschützt ist gegen elektromagnetische Störungen, die eine Schwelle überschreiten
FR2939234A1 (fr) Composition reticulable pour cable d'energie a moyenne et haute tension
EP3965124A1 (de) Elektrisches kabel, das teilentladungen begrenzt
EP0539905B1 (de) Elektrisches Kabel
EP2498264B1 (de) Mittel- oder Hochspannungsstromkabel
EP4092689A1 (de) Elektrisches kabel, das teilentladungen begrenzt
EP3671768A1 (de) Elektrisches kabel, das beständig gegen wasserbäumchen ist
FR2629626A1 (fr) Cable pour courant continu
FR3107985A1 (fr) câble comprenant une couche semiconductrice présentant une surface lisse
FR3079067A1 (fr) Cable electrique comprenant une couche polymerique facilement pelable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950721

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960717

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB IT LI NL SE

ITF It: translation for a ep patent filed

Owner name: 0508;05TOFJACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM (SUISSE) S.A. DEPARTEMENT DES BREVETS

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REF Corresponds to:

Ref document number: 69402494

Country of ref document: DE

Date of ref document: 19970515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970613

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 19980109

NLR1 Nl: opposition has been filed with the epo

Opponent name: SIEMENS AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: PIRELLI KABEL UND SYSTEME GMBH&COKG

Effective date: 19980109

NLR1 Nl: opposition has been filed with the epo

Opponent name: PIRELLI KABEL UND SYSTEME GMBH & CO KG

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000607

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE DK FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: MAINTIEN DU BREVET DONT L'ETENDUE A ETE MODIFIEE

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000816

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000824

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000830

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000831

Year of fee payment: 7

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100927

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110926

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110920

Year of fee payment: 18

Ref country code: SE

Payment date: 20110923

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120915

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120914

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001