EP0643223A1 - Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen - Google Patents

Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen Download PDF

Info

Publication number
EP0643223A1
EP0643223A1 EP93111510A EP93111510A EP0643223A1 EP 0643223 A1 EP0643223 A1 EP 0643223A1 EP 93111510 A EP93111510 A EP 93111510A EP 93111510 A EP93111510 A EP 93111510A EP 0643223 A1 EP0643223 A1 EP 0643223A1
Authority
EP
European Patent Office
Prior art keywords
shaft
sealing
medium
seal
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93111510A
Other languages
English (en)
French (fr)
Other versions
EP0643223B1 (de
Inventor
Roger Stehr
Martin Schaich
Eduard Mischler
Christian Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maag Pump Systems AG
Original Assignee
Maag Pump Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maag Pump Systems AG filed Critical Maag Pump Systems AG
Priority to DE59308121T priority Critical patent/DE59308121D1/de
Priority to AT93111510T priority patent/ATE163074T1/de
Priority to EP93111510A priority patent/EP0643223B1/de
Publication of EP0643223A1 publication Critical patent/EP0643223A1/de
Application granted granted Critical
Publication of EP0643223B1 publication Critical patent/EP0643223B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0034Sealing arrangements in rotary-piston machines or pumps for other than the working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C15/0038Shaft sealings specially adapted for rotary-piston machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids

Definitions

  • the present invention relates to a method according to the preamble of claim 1, a sealed shaft bushing according to that of claim 2 and a gear pump according to claim 7.
  • DE-OS-41 25 describes a method for sealing a shaft bushing in a medium-filled space, in which the pressure adjusts as a function of the shaft speed and the medium is a Newtonian or non-Newtonian liquid whose viscosity is temperature-dependent 128 known. It describes a gear pump shaft bushing.
  • the aim is to prevent ambient air from entering the pump delivery chamber, both under operating and at standstill conditions.
  • a pumped-up leakage absorption zone is provided for the return of the pumped medium, which is designed as an annular chamber can be emptied into the environment through a lockable outlet.
  • a subsequently provided labyrinth seal with a thread conveying direction acting against the leakage space starts from an intermediate annular chamber, to which a labyrinth seal, which conveys the opposite, is connected, which finally opens into another collecting space, which can be emptied to the outside. This is followed by the grease supply seal or the sealing liquid seal.
  • a gear pump with the mentioned shaft seal according to the invention is distinguished by the wording of claim 7.
  • the present invention is based on the knowledge that the sealing mechanisms for the operating states “rotating shaft” and “standstill” are to be separated and that, as will be explained below, the viscosity behavior of the medium present on one side of the bushing can be optimally used for this purpose.
  • FIG. 1 schematically shows a passage of a shaft 1 from a first space U into a second M, in which the latter is a Newtonian or non-Newtonian liquid.
  • the space M corresponds to the axially outer plain bearing gap before the seal begins.
  • the pressure p in the medium in space M depends on the speed n of the shaft and the viscosity ⁇ of this medium is known to depend on the temperature ⁇ .
  • a sealing stage 3 is first provided according to the invention, the sealing effect of which depends on the speed n of the shaft 1.
  • a sealing liquid seal 7 is provided on a further sealing step 5 to ensure the gas tightness of the seal. Their effect is independent of the wave operation. In general, however, it must be ensured that no pumped medium from stage 3 reaches the area of the sealing liquid seal 7 and renders it ineffective. This is not initially ensured when the shaft is at a standstill, because sealing stage 3 is only effective to a significantly reduced extent.
  • the barrier liquid S is now also used as a cooling medium for the adjacent area of the shaft 1 and the sealing stage 3, which increases the viscosity ⁇ of the medium located in stage 3, particularly when the shaft is at a standstill, which increases the necessary sealing effect at the stage 3 is ensured despite the shaft being at a standstill.
  • FIG. 2 shows a simplified sectional illustration of a shaft bushing according to the invention working according to the method according to the invention, in particular on a gear pump for polymer melts.
  • a labyrinth seal 17 is then provided, preferably with a thread 17a provided on the housing side, which, in the given direction of rotation of the shaft 1, which must not be inverted, conveys towards the space M, depending on the speed. as shown with F.
  • the conveying labyrinth seal 17 acts as the sealing step 3 explained with reference to FIG. 1.
  • the sealing liquid sealing step 7 is then provided axially, as has been explained.
  • a ring 19 secured against rotation on the housing side which on the one hand abuts the shaft 1 with an annular sealing chamber 21 and is connected to the outer ring periphery via at least two radially opposite bores 25 with radially outer widenings 23.
  • the widenings 23 communicate with at least one inlet line 27 for barrier liquid S and one outlet line 29.
  • Sealing elements preferably spring-loaded (not shown) stuffing box packings or lip seal arrangements 31, are provided axially on both sides of the ring 19 in corresponding recesses on the housing side.
  • the axial extent of the Widenings 23 ensure that axial displacements of the ring 19 are absorbed without impeding the flow of sealing liquid S, due to the setting of the spring-loaded gland packing.
  • the labyrinth seal and barrier liquid stage 7 are arranged in an interchangeable sleeve 33, which can be connected in a simple manner to the housing 15, through which is carried out, as can be screwed.
  • the proposed shaft bushing is extremely easy to service, and all periodic emptying of any leak zones and collecting spaces provided is eliminated.
  • the cooling also ensures that the operating temperatures in the area of the sealing elements 31, be they stuffing box packings or lip seals, do not exceed the temperatures prescribed for this.
  • the cooling effect must be ensured in such a way that, even when the shaft is at a standstill, against the operating pressure is sealed in space M, which decelerates with a time delay after shaft 1 has stopped.
  • the cooling effect can be adapted to the requirements of the respective product through the temperature, the volume flow, the heat capacity and the thermal coupling of the barrier medium.
  • the entry of gas into the room M can be prevented even if the ambient pressure is higher than atmospheric pressure.
  • Circulation of the sealing and, according to the invention, cooling liquid can preferably be carried out by utilizing the thermosiphon effect or by using a specially designed circulating element.
  • An external pump can be provided as the circulating element, or the shaft in the sealing chamber 21 can be designed such that it itself acts as a circulating element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

Insbesondere für Zahnradpumpen wird eine Wellendurchführung vorgeschlagen, welche, vom Gleitlagerspalt bzw. einer Entlastungskammer (M) her betrachtet, erst eine Labyrinthdichtung (17) mit gegen den Raum (M) gerichteter Gewindeförderrichtung aufweist und weiter eine Sperrflüssigkeits-Dichtungsstufe (7). Zur Sicherstellung der Dichtwirkung wirkt die umgewälzte Sperrflüssigkeit (S) als Kühlmedium für die axial aussenliegenden Bereiche der Labyrinthdichtung (17). <IMAGE>

Description

  • Die vorliegende Erfindung betrifft ein Verfahren nach dem Oberbegriff von Anspruch 1, eine dichte Wellendurchführung nach demjenigen von Anspruch 2 und eine Zahnradpumpe nach Anspruch 7.
  • Ein Verfahren zum Dichten einer Wellendurchführung in einen mediumsgefüllten Raum, worin sich der Druck in Funktion der Wellendrehzahl einstellt und wobei das Medium eine Newton'sche oder nicht Newton'sche Flüssigkeit ist, deren Viskosität temperaturabhängig ist, ist aus der DE-OS-41 25 128 bekannt. Darin ist eine Zahnradpumpen-Wellendurchführung beschrieben. Insbesondere für die Förderung von Polymerschmelzen vorgesehen, soll einerseits verhindert werden, dass Umgebungsluft in den Förderraum der Pumpe eindringt, und zwar sowohl unter Betriebs- wie auch unter Stillstandsbedingungen.
  • Um weiter zu verhindern, dass Fördermedium in eine zu obgenanntem Zwecke vorgesehene Sperrflüssigkeits- oder Fettvorlagedichtung eindringt, wird, ausgehend vom Entlastungsraum, in welchen Fördermedium axial eindringt und der mit dem Pumpeneinlass verbunden ist, zur Rückführung aufgenommenen Fördermediums eine als Ringkammer ausgebildete Leckaufnahmezone vorgesehen, die durch einen verschliessbaren Auslass in die Umgebung entleert werden kann. Eine anschliessend vorgesehene Labyrinthdichtung mit gegen den Leckraum wirkender Gewindeförderrichtung geht aus von einer Zwischen-Ringkammer, an welche eine umgekehrt fördernde Labyrinthdichtung anschliesst, die schliesslich in einen weiteren Sammelraum, nach aussen entleerbar, ausmündet. Anschliessend folgt die Fettvorlagedichtung oder die Sperrflüssigkeitsdichtung.
  • Weil die mit den fördernden Labyrinthdichtungen realisierten Dichtungen bei Wellenstillstand unwirksam werden, wird eine gegenseitige Kontamination von Fördermedium und Fettvorlagenmedium bzw. der Sperrflüssigkeit` durch das Vorsehen von Leckzonen und Sammelzonen, die nach aussen entleerbar sind bzw. mit dem Pumpeneinlass verbunden sind, vermieden.
  • Die hier vorgeschlagene Lösung ist äusserst kompliziert und baut eigentlich auf der axialen Serieschaltung von Dichtungen mit Sammelkammern auf, welche eine zunehmende Dichtsicherheit ergeben, aber mit, wie erwähnt, grossem Aufwand.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren bzw. eine Wellendichtung eingangs genannter Art zu schaffen, die konstruktiv wesentlich einfacher ist und bei der ein periodisches Entleeren von Sammelzonen entfällt.
  • Dies wird beim Verfahren eingangs genannter Art durch Vorgehen nach dem kennzeichnenden Teil von Anspruch 1 erreicht bzw. bei einer dichten Wellendurchführung bei deren Ausbildung nach dem kennzeichnenden Teil von Anspruch 2.
  • Bevorzugte Ausführungsvarianten der Wellendurchführung sind in den Ansprüchen 3 bis 6 spezifiziert.
  • Eine Zahnradpumpe mit der erwähnten erfindungsgemässen Wellendichtung zeichnet sich nach dem Wortlaut von Anspruch 7 aus.
  • Die Erfindung wird anschliessend beispielsweise anhand von Figuren erläutert.
  • Es zeigen:
  • Fig. 1
    anhand einer schematischen Darstellung einer Wellendurchführung, das erfindungsgemässe Vorgehen verfahrensmässig bzw. die Grundstruktur einer erfindungsgemässen Wellendurchführung;
    Fig. 2
    in vereinfachter Längsschnittdarstellung eine erfindungsgemässe Wellendurchführung, beispielsweise und insbesondere für die Durchführung einer Zahnradpumpenwelle.
  • Die vorliegende Erfindung geht von der Erkenntnis aus, dass die Abdichtmechanismen für die Betriebszustände "drehende Welle" und "Stillstand" zu trennen sind und dass, wie nachfolgend erläutert werden soll, das Viskositätsverhalten des einseitig der Durchführung vorliegenden Mediums hierzu optimal ausgenützt werden kann.
  • In Fig. 1 ist schematisch eine Durchführung einer Welle 1 von einem ersten Raum U in einen zweiten M dargestellt, in welch letzterem eine Newton'sche oder nicht Newton'sche Flüssigkeit ist. Bei einer Zahnradpumpe mit Gleitlager entspricht der Raum M dem axial äusseren Gleitlagerspalt vor Dichtungsbeginn. Wie insbesondere auch bei einer Pumpe, dabei insbesondere einer Zahnradpumpe, ist der Druck p in dem im Raum M vorliegenden Medium abhängig von der Drehzahl n der Welle und die Viskosität η dieses Mediums bekanntermassen abhängig von der Temperatur ϑ.
  • Ausgehend vom mediumbeschickten Raum M, wird erfindungsgemäss erst eine Dichtungsstufe 3 vorgesehen, deren Dichtwirkung abhängig ist von der Drehzahl n der Welle 1. Mithin ist der durch die Dichtwirkung maximal gedichtete axiale Druckunterschied Δp abhängig sowohl von der Drehzahl n der Welle 1 wie auch von der Viskosität η des Mediums im Dichtspalt der Stufe 3. Steht die Welle still, d.h. bei n = 0, bleibt die Dichtwirkung an Stufe 3 nurmehr von der Viskosität η des Mediums im Dichtraum der Stufe 3 abhängig.
  • Nach aussen fortschreitend, ist zur Sicherstellung der Gasdichtheit der Dichtung an einer weiteren Dichtstufe 5 eine Sperrflüssigkeitsdichtung 7 vorgesehen. Ihre Wirkung ist vom Wellenbetrieb unabhängig. Es muss aber im allgemeinen sichergestellt sein, dass kein Fördermedium aus der Stufe 3 in den Bereich der Sperrflüssigkeitsdichtung 7 gelangt und diese unwirksam macht. Im Wellenstillstand ist dies vorerst nicht sichergestellt, weil die Dichtungsstufe 3 nur in wesentlich reduziertem Umfange wirksam ist.
  • Erfindungsgemäss wird nun aber die Sperrflüssigkeit S auch als Kühlmedium für den angrenzenden Bereich der Welle 1 und der Dichtungsstufe 3 eingesetzt, womit dort kühlungsbedingt die Viskosität η des insbesondere bei Stillstand der Welle in der Stufe 3 befindlichen Mediums erhöht wird, womit die notwendige Dichtwirkung an Stufe 3 trotz Wellenstillstands sichergestellt ist.
  • Mit Blick auf Pumpen, beispielsweise mit Antriebswelle 1 und dabei insbesondere auf Zahnradpumpen als bevorzugtes Einsatzgebiet für das erfindungsgemässe Verfahren bzw. die erfindungsgemässe Wellendurchführung, insbesondere auf Zahnradpumpen zur Förderung von Polymerschmelzen, ist erkenntlich, dass bei stillstehender Welle 1 der Druck im Raum vor der Stufe 3 wesentlich geringer wird als im Normalbetrieb der Pumpe. Dies verringert zusätzlich die nach erreichtem Stillstand notwendigen zusätzlichen Dichtmassnahmen durch Viskositätsausnützung, da mithin die leckagetreibende Kraft abnimmt. Mit Q̇ ist schematisch die Wärmeabfuhr mittels der Sperrflüssigkeit dargestellt. Die Sperrflüssigkeit kann durch Thermosiphonwirkung und/oder durch eigens dafür vorgesehene Umwälzorgane, wie durch ein Förderaggregat 9, oder durch wellenintegrierte Förderorgane an der Dichtung 7 umgewälzt werden.
  • In Fig. 2 ist in vereinfachter Schnittdarstellung eine nach dem erfindungsgemässen Verfahren arbeitende erfindungsgemässe Wellendurchführung, insbesondere an einer Zahnradpumpe für Polymerschmelzen, dargestellt.
  • Die Welle 1 mit Lagerblock 11, zahnradseitig, definiert den Lagerspaltraum, an den, in bekannter Weise, ein Entlastungsraum 13 anschliesst, mit der Saugseite der Pumpe verbunden (nicht dargestellt). Dieser bildet hier den Raum M gemäss Fig. 1. Daran anschliessend ist eine Labyrinthdichtung 17 vorgesehen, vorzugsweise mit gehäuseseitig vorgesehenem Gewinde 17a, welches bei der vorgegebenen Drehrichtung der Welle 1, die nicht invertiert werden darf, gegen den Raum M hin fördert, drehzahlabhängig, wie mit F dargestellt. Die fördernde Labyrinthdichtung 17 wirkt als die anhand von Fig. 1 erläuterte Dichtungsstufe 3. Axial anschliessend ist, wie erläutert wurde, die Sperrflüssigkeits-Dichtstufe 7 vorgesehen.
  • In bevorzugter Art und Weise umfasst sie einen gehäuseseitig verdrehfest gesicherten Ring 19, der einerseits mit einer Ringdichtkammer 21 an der Welle 1 anliegt und über mindestens zwei sich radial gegenüberliegende Bohrungen 25 mit radial aussenseitigen Aufweitungen 23 mit der äusseren Ringperipherie verbunden ist. Gehäuseseitig kommunizieren die Aufweitungen 23 mit mindestens einer Einlassleitung 27 für Sperrflüssigkeit S und einer Auslassleitung 29.
  • Dichtelemente, bevorzugterweise federvorgespannte (nicht dargestellt) Stopfbuchspackungen oder Lippendichtungsanordnungen 31, sind axial beidseitig des Ringes 19 in entsprechenden Einformungen gehäuseseitig vorgesehen. Die Axialausdehnung der Aufweitungen 23 sichert dabei, dass axiale Verschiebungen des Ringes 19, ohne den Durchfluss von Sperrflüssigkeit S zu behindern, aufgenommen werden, bedingt durch sich Setzen der federkraftbelasteten Stopfbuchspackungen. Durch Wahl der Sperrflüssigkeit S mit entsprechender Wärmekapazität, deren Fluss durch die Stufe 7 und der thermischen Leitfähigkeit zwischen axial aussenliegendem Bereich der Stufe 3 und den Fliesswegen der Sperrflüssigkeit S wird die Kühlung in besagtem Bereich der Stufe 3, d.h. in Fig. 2, dem axial aussenliegenden Bereich der Labyrinthdichtung, so sichergestellt, dass bei Stillstand der Welle 1, beispielsweise bei einer schmelzefördernden Zahnradpumpe, unter Berücksichtigung des Druckabfalles im Lagerspalt und gegebenenfalls im Entlastungsraum, M, und der Viskositatszunahme von Fördermedium im axial aussenliegenden Labyrinthdichtungsbereich die notwendige Dichtheit zwischen genanntem Raum M und Sperrflüssigkeits-Dichtstufe 7 gewährleistet ist.
  • Bevorzugterweise, und wie dargestellt, werden Labyrinthdichtung und Sperrflüssigkeitsstufe 7 in einer auswechselbaren Büchse 33 angeordnet, die auf einfache Art und Weise mit dem Gehäuse 15, durch welches durchgeführt wird, verbunden werden kann, wie verschraubt werden kann.
  • Die vorgeschlagene Wellendurchführung ist ausserordentlich servicefreundlich, und es entfallen alle periodischen Entleerungen irgendwelcher vorgesehener Leckzonen und Sammelräume. Es wird durch die Kühlung auch sichergestellt, dass die Betriebstemperaturen im Bereiche der Dichtungselemente 31, seien dies Stopfbuchspackungen oder Lippendichtungen, die hierfür vorgeschriebenen Temperaturen nicht überschreiten.
  • Im weiteren muss die Kühlwirkung so sichergestellt sein, dass kurzzeitig, auch bei stillstehender Welle, gegen den Betriebsdruck im Raum M gedichtet wird, der sich, nach Stillsetzen der Welle 1, zeitlich verzögert, abbaut. Wie erwähnt, kann aber die Kühlwirkung durch die Temperatur, den Volumenstrom, die Wärmekapazität und die thermische Kopplung des Sperrmediums den Erfordernissen des jeweiligen Produktes angepasst werden.
  • Durch Anheben des Druckes im Sperrmediums-Kreislauf kann auch bei höherem Umgebungsdruck als Atmosphärendruck der Zutritt von Gas in den Raum M verhindert werden.
  • Eine Umwälzung der Dicht- und, erfindungsgemäss, Kühlflüssigkeit kann vorzugsweise durch Ausnützung der Thermosiphonwirkung oder durch Einsatz eines eigens dafür vorgesehenen Umwälzorganes vorgenommen werden. Als Umwälzorgan kann eine externe Pumpe vorgesehen sein oder die Welle in der Dichtkammer 21 so gestaltet sein, dass sie selbst als Umwälzorgan wirkt.

Claims (8)

  1. Verfahren zum Dichten einer Wellendurchführung in einen mediumsgefüllten Raum, worin sich der Druck in Funktion der Wellendrehzahl (n) verändert und wobei das Medium eine temperaturabhängige Viskositat (η) aufweist, dadurch gekennzeichnet, dass vom Raum (M) aus fortschreitend erst eine drehzahlabhängig wirkende Dichtung (3) vorgenommen wird, dann eine Sperrflüssigkeitsdichtung (7), und dass man mit der Sperrflüssigkeit (S) als Wärmetransportmedium den angrenzenden Bereich der drehzahlabhängigen Dichtung (3) derart kühlt, dass dort, weitgehendst drehzahlunabhängig, Dichtung erreicht wird, aufgrund der aus der Kühlung resultierenden Viskositätsänderung des Mediums.
  2. Dichte Wellendurchführung in einen Raum für ein Medium, worin sich der Druck wellendrehzahlabhängig verändert, wobei die Viskosität (η) des Mediums mit zunehmender Temperatur abnimmt, dadurch gekennzeichnet, dass, ausgehend vom Raum (M), erst eine Labyrinthdichtung (17) mit Gewindeförderrichtung (F) gegen den Raum (M) hin vorgesehen ist und anschliessend eine Sperrflüssigkeitsdichtung (7), deren Sperrflüssigkeit (S) gleichzeitig als Kühlmedium für den angrenzenden Bereich der Labyrinthdichtung wirkt.
  3. Wellendurchführung nach Anspruch 2, dadurch gekennzeichnet, dass die Sperrflüssigkeitsdichtung mindestens einen auf der Welle (1) angeordneten Ring (19) umfasst mit radialen, radial aussen axial aufgeweiteten Bohrungen, die mit mindestens einer Zuführleitung und mindestens einer Abführleitung (27, 29) für die Sperrflüssigkeit (S) gehäuseseitig kommunizieren, wobei die Axialausdehnung der Aufweitungen (23) eine axiale Verschiebung des Ringes (19) bezüglich der erwähnten Leitungen (27, 29) ermöglicht.
  4. Wellendurchfuhrung nach Anspruch 3, dadurch gekennzeichnet, dass axial beidseits des Ringes an der Welle anliegende Dichtorgane (31), vorzugsweise Stopfbuchspackungen oder Lippendichtungen, vorgesehen sind.
  5. Wellendurchführung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass Labyrinthdichtung (17) und Sperrflüssigkeitsdichtung (7) an einem lösbar an einem Gehäuse befestigbaren Einsatz (33) angeordnet sind.
  6. Wellendurchführung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass ein Thermosiphon-Umwälzkreis für die Sperrflüssigkeit (S) vorgesehen ist oder ein Umwälzaggregat hierfür, vorzugsweise gebildet durch eine externe Pumpe und/oder Umwälzorgane an der Welle (1) im Bereich der Sperrflüssigkeitsdichtung (7).
  7. Zahnradpumpe mit mindestens einer Wellendurchführung nach einem der Ansprüche 2 bis 6.
  8. Verwendung der Zahnradpumpe nach Anspruch 7 zur Förderung von Polymerschmelzen.
EP93111510A 1993-07-17 1993-07-17 Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen Expired - Lifetime EP0643223B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59308121T DE59308121D1 (de) 1993-07-17 1993-07-17 Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen
AT93111510T ATE163074T1 (de) 1993-07-17 1993-07-17 Verfahren und anordnung zum dichten einer wellendurchführung bei zahnradpumpen
EP93111510A EP0643223B1 (de) 1993-07-17 1993-07-17 Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93111510A EP0643223B1 (de) 1993-07-17 1993-07-17 Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen

Publications (2)

Publication Number Publication Date
EP0643223A1 true EP0643223A1 (de) 1995-03-15
EP0643223B1 EP0643223B1 (de) 1998-02-04

Family

ID=8213089

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93111510A Expired - Lifetime EP0643223B1 (de) 1993-07-17 1993-07-17 Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen

Country Status (3)

Country Link
EP (1) EP0643223B1 (de)
AT (1) ATE163074T1 (de)
DE (1) DE59308121D1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132154A3 (en) * 2009-05-12 2011-05-12 Illinois Tool Works Inc. Seal system for gear pumps
CN108527813A (zh) * 2018-04-20 2018-09-14 浙江厚普科技有限公司 无丝网过滤设备及自密封冷却传动装置
CN109751238A (zh) * 2019-02-22 2019-05-14 郑州沃华机械有限公司 一种熔体齿轮泵及其密封结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102377227B1 (ko) 2017-03-09 2022-03-22 존슨 컨트롤스 테크놀러지 컴퍼니 백투백 베어링 밀봉 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976405A (en) * 1974-10-29 1976-08-24 Cominco Ltd. Pump
DE3135037A1 (de) * 1980-09-12 1982-09-23 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid "austragspumpe"
US4575100A (en) * 1984-11-05 1986-03-11 The Dow Chemical Company Seal assembly which is hydraulically actuated
WO1989008782A1 (en) * 1988-03-17 1989-09-21 Johnson Pump Ab Pump arrangement in which the pump housing constitutes the pump foundation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976405A (en) * 1974-10-29 1976-08-24 Cominco Ltd. Pump
DE3135037A1 (de) * 1980-09-12 1982-09-23 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid "austragspumpe"
US4575100A (en) * 1984-11-05 1986-03-11 The Dow Chemical Company Seal assembly which is hydraulically actuated
WO1989008782A1 (en) * 1988-03-17 1989-09-21 Johnson Pump Ab Pump arrangement in which the pump housing constitutes the pump foundation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010132154A3 (en) * 2009-05-12 2011-05-12 Illinois Tool Works Inc. Seal system for gear pumps
CN108527813A (zh) * 2018-04-20 2018-09-14 浙江厚普科技有限公司 无丝网过滤设备及自密封冷却传动装置
CN108527813B (zh) * 2018-04-20 2024-04-12 浙江厚普科技有限公司 无丝网过滤设备及自密封冷却传动装置
CN109751238A (zh) * 2019-02-22 2019-05-14 郑州沃华机械有限公司 一种熔体齿轮泵及其密封结构
CN109751238B (zh) * 2019-02-22 2024-03-08 郑州沃华机械有限公司 一种熔体齿轮泵及其密封结构

Also Published As

Publication number Publication date
ATE163074T1 (de) 1998-02-15
DE59308121D1 (de) 1998-03-12
EP0643223B1 (de) 1998-02-04

Similar Documents

Publication Publication Date Title
EP2507527B1 (de) Wälzlageranordnung
DE102005037118B3 (de) Mehrfach gelagerte zweiflutige Schraubenspindelpumpe
DE19839501A1 (de) Trockenverdichtende Schraubenspindelpumpe
DE69719928T2 (de) Rotationspumpe für Flüssigkeiten
DE3441351A1 (de) Fliehkraft-gleitringdichtung
DE1782548B2 (de) Vollmantel-Schneckenzentrifuge
DE2001578A1 (de) Fluiddurchstroemtes Radialkammer-Aggregat
EP0602357B1 (de) Zahnradpumpe
DE60300051T2 (de) Wellendichtung
EP0955466A1 (de) Spaltringdichtung
DE2825616A1 (de) Zahnradpumpe
DE2825599A1 (de) Dichtung
EP0643223B1 (de) Verfahren und Anordnung zum Dichten einer Wellendurchführung bei Zahnradpumpen
DE3135037C2 (de)
DE2503856B2 (de) Wellendichtung
EP0942172B1 (de) Mehrwellenvakuumpumpe
EP0599030B1 (de) Zahnradpumpe und deren Verwendungen
DE19800825A1 (de) Trockenverdichtende Schraubenspindelpumpe
DE60126459T2 (de) Kühlvorrichtung für ein Lager
DE3034190C2 (de)
DE19631824A1 (de) Kreiselpumpenlagerung mit Axialschubausgleich
EP0405161A1 (de) Schraubenspindelpumpe
DE3002804A1 (de) Hydromechanische kupplung, z.b. fuer foerderer und gewinnungsmaschinen des untertagebergbaus
EP0520943B1 (de) Verdrängungspumpe
DE3539251C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950405

17Q First examination report despatched

Effective date: 19960404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAAG PUMP SYSTEMS TEXTRON AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980204

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980204

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980204

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980204

REF Corresponds to:

Ref document number: 163074

Country of ref document: AT

Date of ref document: 19980215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980206

REF Corresponds to:

Ref document number: 59308121

Country of ref document: DE

Date of ref document: 19980312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980504

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: MAAG PUMP SYSTEMS TEXTRON A.G.

Effective date: 19980731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020813

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030930

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060713

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201