EP0639631A1 - Verfahren zur Herstellung von Synthesegas - Google Patents

Verfahren zur Herstellung von Synthesegas Download PDF

Info

Publication number
EP0639631A1
EP0639631A1 EP94112796A EP94112796A EP0639631A1 EP 0639631 A1 EP0639631 A1 EP 0639631A1 EP 94112796 A EP94112796 A EP 94112796A EP 94112796 A EP94112796 A EP 94112796A EP 0639631 A1 EP0639631 A1 EP 0639631A1
Authority
EP
European Patent Office
Prior art keywords
liquid
products
waste
gas
plastic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94112796A
Other languages
English (en)
French (fr)
Other versions
EP0639631B1 (de
Inventor
Ulrich Gerhardus
Horst Dr. Hanke
Josef Hibbel
Norbert Leder
Klaus Poloszyk
Heinz Scheve
Volkmar Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Sales Germany GmbH
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0639631A1 publication Critical patent/EP0639631A1/de
Application granted granted Critical
Publication of EP0639631B1 publication Critical patent/EP0639631B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels

Definitions

  • the invention relates to a process for converting plastic waste into synthesis gas, which can be used as a raw material for chemical synthesis.
  • Plastic waste can only be disposed of by incineration without special precautionary measures if it is ensured that no pollutants are released into the environment. This requirement is only given in exceptional cases, because they often contain chlorine-containing, but also sulfur- or nitrogen-containing components, as well as heavy metals, which lead to undesired combustion products during combustion. Dust removal and flue gas scrubbing, if necessary special combustion devices, are then indispensable. Conveying and dosing problems can also occur if the waste contains non-flammable and non-melting foreign substances. In addition, economic reasons speak against burning high-quality finishing products of petrochemical raw materials such as their raw materials, namely petroleum and petroleum products.
  • a gasoline-kerosene mixture is obtained by degrading polyethylene at 400 to 450 ° C (CA Vol. 76, 1972, 158024 q). This process can also be carried out in the presence of nickel catalysts (Chem. Ind. XXIII, 1971, 630).
  • the splitting of carbon-containing organic waste Synthetic or predominantly synthetic origin takes place according to the process of EP-A-291 698 under hydrogenating conditions and results predominantly in hydrocarbon fractions in the gasoline and medium oil (diesel oil) boiling range.
  • Waste from plastic and rubber are split thermally at 250 to 450 ° C in the presence of an auxiliary phase which is liquid at the reaction temperature by the process described in DE-C-2 205 001. Over 90% liquid hydrocarbons are formed and soot is only produced in minor amounts.
  • a primary goal of thermal processing is the conversion of plastics into liquid fuels that can be easily conveyed and dosed and distributed homogeneously in the combustion air to ensure smoke-free and soot-free combustion.
  • Prior use of the hydrocarbons e.g. as a solvent, extraction or cleaning agent is not excluded.
  • a decisive disadvantage of the known methods is the need to degrade the plastics to a large extent while maintaining the appropriate temperatures and residence times.
  • they require a complex separation of the solids often contained in the plastics, such as inorganic or organic pigments, opacifiers and fillers.
  • the invention has for its object to convert plastic waste into technically usable raw materials.
  • solids incorporated into the plastics are to be concentrated in the preparation process and are free of organic constituents, so that they can be disposed of in an environmentally friendly manner.
  • This object is achieved by a process for producing synthesis gas from plastic waste. It is characterized in that the waste is thermally split predominantly into liquid products and the liquid split products are converted into synthesis gas by partial oxidation.
  • plastic waste in the sense of the new process is very broad. It includes uniform substances and mixtures of substances of whatever origin and composition.
  • the waste is derived from thermoplastic or thermosetting plastics based on their thermal behavior.
  • the plastic waste includes used plastics that were used for packaging purposes or as materials, e.g. in the construction, electrical or textile industry, in machine and vehicle construction, or were processed into articles for everyday use, such as household and sports equipment or toys.
  • Plastic waste is also faulty batches and unusable residues and residues from production and processing. Plastic waste can therefore briefly be called plastic material that cannot be regenerated or used for other economic purposes. According to the new procedure, waste e.g.
  • plastics polyolefins, vinyl resins such as polyvinyl chloride, polyvinyl acetate and polyvinyl alcohol, furthermore polystyrenes, polycarbonates, polymethylene oxides, polyacrylates, polyurethanes, polyamides, polyester resins and hardened epoxy resins.
  • the process is particularly easy to carry out with thermoplastics.
  • the feed material from which coarse impurities such as metals, glass and ceramic materials have been mechanically separated, becomes thermally low molecular weight Dismantled fragments.
  • all known processes are suitable for this process step, which preferably result in liquid decomposition products and / or soot only in a minor amount.
  • the polymeric compounds can be cleaved in the presence or absence of hydrogen. Subsequent hydrogenation of the cleavage products is also possible; However, it is not absolutely necessary in any sub-step of the thermal pretreatment of the waste to work under hydrogenating conditions. The choice of the process suitable for the thermal degradation of the plastics therefore largely depends on the respective circumstances.
  • the depolymerization of plastic waste not only leads to easily metered and homogeneous, liquid products. In particular, it also results in dechlorination of the chlorine-containing plastics that are often present in the plastic waste.
  • the halogen is split off as hydrogen chloride, which is washed out from the gaseous degradation products in a known manner.
  • the liquid fission products only contain chlorine in small amounts that can be tolerated in the subsequent gasification.
  • auxiliary phase which is liquid at the reaction temperature has proven to be particularly suitable (cf. DE-C-2 205 001).
  • This auxiliary phase is used in particular to transfer the heat to the feed materials in the cracking reactor. In addition, it promotes thermal degradation by allowing the starting materials to swell in a gel-like manner in many cases.
  • auxiliary phase such substances are used with success that the waste products used and the Dissolve cleavage products at least partially at the given reaction temperature. Natural or artificial waxy hydrocarbons, polyglycols and in particular the liquid degradation products of the plastic waste itself have proven successful.
  • the breakdown of the waste to be processed is promoted by mechanically crushing it before thermal decomposition. In addition, it can be accelerated by adding suitable catalysts. In this way, waste containing predominantly polyolefins can easily be broken down into low-molecular fragments in the presence of manganese, vanadium, copper, chromium, molybdenum or tungsten compounds at elevated temperatures.
  • the catalytically active metals can already be present in the plastics in the form of the additives, so that their addition is unnecessary.
  • the fission products boil in the area of crude gasoline (naphtha) and middle distillates and also have the viscosity of these petroleum fractions. They can therefore be pumped using conventional devices.
  • Hydrocarbons generated during the splitting partly leave the reactor as vapors in a mixture with hydrogen chloride and small amounts of other fission gases such as carbon monoxide, hydrogen, nitrogen and ammonia. They are obtained from the gaseous mixture by partial condensation as an ash-free condensate. It is a for further processing, e.g. on naphtha, suitable raw material.
  • the gas phase containing hydrogen chloride can e.g. be converted into about 30% hydrochloric acid.
  • the remaining part of the fission product which contains all of the ash, is discharged in liquid form and converted into synthesis gas either alone or in a mixture with other raw materials, eg naphtha, with steam and oxygen.
  • This reaction can also be carried out by known methods. Processes that allow problem-free separation of the ashes and their extraction without external admixtures are particularly suitable.
  • the solution to this problem requires the highest possible carbon conversion in the reactor in order to avoid the discharge of soot together with the ash.
  • special cooling devices must be provided for the raw gas that carries liquid ash. Direct cooling with water in a quench cooler or a system consisting of a radiation cooler and a convection cooler has proven its worth. The cooling stage is followed by water washes, in which the last ash residues are removed.
  • the ashes can be stored in landfills or processed into metals.
  • the gasification itself takes place at temperatures between 1100 and 1500 ° C and a pressure of 1 to 10 MPa.
  • the raw gas leaving the gasification reactor at a temperature of 1300 to 1500 ° C. contains, in addition to soot, metals and / or metal compounds in the stated amount in liquid form. It is first pre-cooled in a radiation cooler to 500 to 1000 ° C, a temperature range in which the metallic contaminants solidify without substantial contact with the cooler wall. Some of the solid particles settle in the water sump of the radiation cooler and are discharged from there. For further cooling to 150 to 300 ° C, preferably 260 to 280 ° C, the remaining portion of fine metal particles and soot particles containing raw gas is passed into a convection cooler.
  • the carbon monoxide / hydrogen mixture obtained by gasification of the depolymerized plastic waste can be used directly as a starting material for chemical reactions, for example for oxosynthesis.
  • the C / H ratio of their fission products is lower than that of heavy fuel oils, the common raw material for synthesis gas production.
  • the CO / H2 ratio of 1: 1 required for certain applications (eg in the oxo process) is therefore not always achieved.
  • a hydrogen-rich fraction can be separated from the solid-free raw gas in a membrane system, which is burned or worked up by conversion to pure hydrogen.
  • the gas mixture as a whole can also be converted into hydrogen by conversion.
  • the figure shows the new process in the form of a block diagram.
  • Plastic waste is broken down thermally in the depolymerization stage at temperatures which, depending on the process, are in the range of 200 to 500 ° C to liquid products, the flowability of which corresponds roughly to that of heavy heating oils at the same temperature.
  • the depolymerization is accompanied by the elimination of hydrogen chloride from chlorine-containing plastics, the hydrogen chloride is washed out with water from the reaction product and in a known manner, e.g. to 30% crude acid, worked up. In special cases, the hydrogen chloride can also be neutralized in an alkaline wash.
  • the splitting is followed by gasification, i.e. the partial oxidation of the depolymerized waste with oxygen in the presence of water vapor.
  • hydrogen can also be obtained from the raw gas.
  • it is converted, the resulting CO2 / H2 mixture is fed into a chemical wash and separated into CO2 and H2 in a pressure swing absorption stage.
  • Returned packaging material made of plastic with a content of 2.5% by weight of water and 3.3% by weight of chlorine is suspended in a liquid auxiliary phase, which was obtained by thermal splitting of plastic waste, and to separate the water at about 130 ° C. heated.
  • the plastic suspension is then transferred to the cleavage reactor, in which the feed material is depolymerized at about 350 ° C. and has a residence time of about 4 hours. Gaseous fission products are cooled to about 30 ° C and fed to an appropriate absorption system for the separation of hydrogen chloride.
  • the liquid depolymerizate has the following composition.
  • N 0.4% by weight
  • Part of the liquid fission product is used as an auxiliary phase (suspension medium) for the thermal fission of further plastic waste, the rest is partially oxidized to water gas.
  • the depolymerizate is reacted with oxygen and water vapor in a known manner at about 1400 ° C. and a pressure of 4 MPa.
  • 400 kg of depolymerized material 325 Nm3 of oxygen and 110 kg of steam are required.
  • the raw gas contains 43.8 vol .-% CO, 48.6 vol .-% H2 and 6.6 vol .-% CO2; the CO / H2 ratio is about 0.9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Kunststoffabfälle werden thermisch zu überwiegend flüssigen Produkten gespalten und die Spaltprodukte durch partielle Oxidation in Synthesegas überführt.

Description

  • Die Erfindung betrifft ein Verfahren zur Umwandlung von Kunststoffabfällen in Synthesegas, das als Rohstoff für chemische Synthesen verwendet werden kann.
  • Eines der drängendsten Umweltprobleme, dem sich die Fachweit gegenübersieht, ist die Beseitigung von Abfällen, darunter auch solchen aus Kunststoff. Die bisher vielfach geübte Lagerung derartiger Materialien in Mischung mit anderen Abfällen in Deponien hat sich als fragwürdig erwiesen, weil sie die langfristige Einwirkung auf Grundwasser und Boden nicht berücksichtigte. Durch Lagerung in Sonderdeponien bemüht man sich, solchen Umweltbelastungen vorzubeugen, weil aber entsprechende Abladestätten nur in begrenztem Umfang zur Verfügung stehen, wird die Lösung der Aufgabe, die Abfälle umweltneutral zu beseitigen, tatsächlich nur in die Zukunft verschoben.
  • Daher hat man sich in letzter Zeit vielfach bemüht, Verfahren zur Aufarbeitung der genannten Abfälle zu entwickeln. Sie haben nicht allein die Schonung der Umwelt zum Ziel, sondern häufig auch die Gewinnung verwertbarer Produkte aus den ihrer eigentlichen Bestimmung nicht mehr unmittelbar zuzuführenden Stoffe.
  • Die Aufarbeitung gebrauchter oder nicht typgerechter Kunststoffe zum wiederverwertbaren Ursprungsmaterial scheitert in den meisten Fällen daran, daß Abfälle Kunststoffe verschiedener stofflicher Zusammensetzung enthalten. Es ist leicht einzusehen, daß sich solche Gemische im allgemeinen nicht zu einem Ursprungswerkstoff aufarbeiten lassen. Die Trennung der Gemische in Anteile gleicher stofflicher Beschaffenheit scheitert an der Schwierigkeit, die einzelnen Komponenten zu identifizieren. Aber auch aus Abfällen identischer Kunststoffe kann nur ausnahmsweise das Ausgangsmaterial in ursprünglicher Qualität wiedergewonnen werden, weil durch die erforderlichen chemischen und/oder physikalischen Behandlungsschritte die molekulare Struktur der Polymerisate und damit ihre ursprünglichen Eigenschaften verändert werden.
  • Durch Verbrennen können Kunststoffabfälle nur dann ohne besondere Vorsichtsmaßnahmen entsorgt werden, wenn sichergestellt ist, daß hierbei keine Schadstoffe in die Umwelt gelangen. Diese Voraussetzung ist nur in Ausnahmefällen gegeben, denn häufig enthalten sie chlorhaltige, aber auch schwefel- oder stickstoffhaltige Bestandteile sowie Schwermetalle, die bei der Verbrennung zu unerwünschten Verbrennungsprodukten führen. Entstaubung und Rauchgaswäsche, gegebenenfalls spezielle Verbrennungsvorrichtungen, sind dann unerläßlich. Förder- und Dosierungsprobleme können zusätzlich dann auftreten, wenn die Abfälle nicht brennbare und nicht schmelzende Fremdstoffe enthält. Überdies sprechen wirtschaftliche Gründe dagegen, hochwertige Veredlungsprodukte petrochemischer Rohstoffe wie deren Rohstoffe, nämlich Erdöl und Erdölprodukte, zu verbrennen.
  • Statt sie zu verbrennen, hat man nicht mehr verwertbare Kunststoffe auch thermisch gespalten. Die hierzu entwickelten Verfahren sind vielgestaltig. So erhält man durch Abbau von Polyethylen bei 400 bis 450°C ein Gasolin-Kerosin-Gemisch (C.A. Vol. 76, 1972, 158024 q). Dieser Prozeß kann auch in Gegenwart von Nickelkatalysatoren durchgeführt werden (Chem. Ind. XXIII, 1971, 630). Die Spaltung Kohlenstoff enthaltender organischer Abfälle synthetischen oder überwiegend synthetischen Ursprungs erfolgt nach dem Verfahren der EP-A-291 698 unter hydrierenden Bedingungen und ergibt überwiegend Kohlenwasserstofffraktionen im Benzin und Mittelöl-(Dieselöl)Siedebereich. Abfälle aus Kunststoff und Kautschuk werden nach dem in der DE-C-2 205 001 beschriebenen Prozeß thermisch bei 250 bis 450°C in Gegenwart einer bei der Reaktionstemperatur flüssigen Hilfsphase gespalten. Es entstehen über 90 % flüssige Kohlenwasserstoffe und nur in untergeordneten Mengen Ruß.
  • Ein vordergründiges Ziel der thermischen Aufbereitung ist die Umwandlung der Kunststoffe in flüssige Brennstoffe, die leicht gefördert und dosiert und in der Verbrennungsluft homogen verteilt werden können, um eine rauch- und rußfreie Verbrennung sicherzustellen. Eine vorherige Verwendung der Kohlenwasserstoffe z.B. als Lösungs-, Extraktions- oder Reinigungsmittel ist dabei nicht ausgeschlossen.
  • Ein entscheidender Nachteil der bekannten Verfahren ist das Erfordernis, die Kunststoffe unter Einhaltung entsprechender Temperaturen und Verweilzeiten sehr weitgehend abzubauen. Überdies erfordern sie eine aufwendige Abtrennung der in den Kunststoffen oftmals enthaltenen Feststoffe wie anorganische oder organische Pigmente, Trübungsmittel und Füllstoffe.
  • Der Erfindung liegt die Aufgabe zugrunde, Kunststoffabfälle in technisch verwertbare Rohstoffe umzuwandeln. Hierbei sollen in die Kunststoffe eingearbeitete Feststoffe im Aufbereitungsprozeß konzentriert und frei von organischen Bestandteilen anfallen, so daß sie umweltschonend entsorgt werden können.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Synthesegas aus Kunststoffabfällen. Es ist dadurch gekennzeichnet, daß die Abfälle thermisch überwiegend zu flüssigen Produkten gespalten und die flüssigen Spaltprodukte durch partielle Oxidation in Synthesegas überführt werden.
  • Der Begriff Kunststoffabfälle im Sinne des neuen Verfahrens ist sehr weit zu fassen. Er schließt einheitliche Stoffe und Stoffgemische gleich welcher Herkunft und Zusammensetzung ein. Nach ihrem thermischen Verhalten leiten sich die Abfälle von thermoplastischen oder duroplastischen Kunststoffen her. Zu den Kunststoffabfällen zahlen gebrauchte Kunststoffe, die zu Verpackungszwecken dienten oder als Werkstoffe, z.B. in der Bau-, Elektro- oder Textilindustrie, im Maschinen- und Fahrzeugbau, verwendet wurden oder zu Artikeln des täglichen Bedarfs, wie Haushalts- und Sportgeräte oder Spielzeug verarbeitet worden waren. Kunststoffabfälle sind auch Fehlchargen und nicht verwertbare Reste und Rückstände aus Produktion und Verarbeitung. Als Kunststoffabfälle kann man daher kurz Kunststoffmaterial bezeichnen, das sich nicht regenerieren oder einer anderen wirtschaftlichen Verwertung zuführen läßt. Nach dem neuen Verfahren lassen sich Abfälle z.B. folgender Kunststoffe verarbeiten: Polyolefine, Vinylharze wie Polyvinylchlorid, Polyvinylacetat und Polyvinylalkohol, ferner Polystyrole, Polycarbonate, Polymethylenoxide, Polyacrylate, Polyurethane, Polyamide, Polyesterharze sowie gehärtete Epoxidharze. Besonders einfach ist das Verfahren mit thermoplastischen Kunststoffen durchzuführen.
  • Erfindungsgemäß wird das Einsatzmaterial, aus dem grobe Verunreinigungen wie Metalle, Glas und keramische Werkstoffe mechanisch abgetrennt wurden, thermisch zu niedermolekularen Bruchstücken abgebaut. Grundsätzlich sind für diesen Verfahrensschritt alle bekannten Prozesse geeignet, die bevorzugt flüssige und nur in untergeordneter Menge gasförmige Zersetzungsprodukte und/oder Ruß ergeben. Die Spaltung der polymeren Verbindungen kann in Gegenwart oder Abwesenheit von Wasserstoff erfolgen. Ebenso ist eine nachträgliche Hydrierung der Spaltprodukte möglich; es ist jedoch in keinem Teilschritt der thermischen Vorbehandlung der Abfälle zwingend erforderlich, unter hydrierenden Bedingungen zu arbeiten. Die Wahl des für den thermischen Abbau der Kunststoffe geeigneten Verfahrens hängt daher weitgehend von den jeweiligen Gegebenheiten ab.
  • Die Depolymerisation der Kunststoffabfälle führt nicht nur zu gut dosierbaren und homogenen, flüssigen Produkten. Sie hat insbesondere auch eine Entchlorierung der in den Kunststoffabfällen vielfach vorhandenen, Chlor enthaltenden Kunststoffe zur Folge. Das Halogen wird als Chlorwasserstoff abgespalten, der aus den gasförmigen Abbauprodukten in bekannter Weise ausgewaschen wird. Die flüssigen Spaltprodukte enthalten Chlor nur noch in geringen Mengen, die bei der anschließenden Vergasung tolerierbar sind.
  • Als besonders geeignet hat sich die thermische Aufbereitung der Kunststoffabfälle bei Temperaturen zwischen 250 und 450°C unter Verwendung einer, bei der Reaktionstemperatur flüssigen Hilfsphase erwiesen (vgl. DE-C-2 205 001). Diese Hilfsphase dient insbesondere zur Übertragung der Wärme auf die Einsatzstoffe im Spaltreaktor. Darüber hinaus fördert sie den thermischen Abbau dadurch, daß sie die Einsatzstoffe in vielen Fällen gelartig aufquellen läßt. Als Hilfsphase werden mit Erfolg solche Stoffe angewandt, die die eingesetzten Abfallprodukte und die Spaltprodukte bei der gegebenen Reaktionstemperatur zumindest teilweise lösen. Bewährt haben sich natürliche oder künstliche wachsartige Kohlenwasserstoffe, ferner Polyglykole und insbesondere die flüssigen Abbauprodukte der Kunststoffabfälle selbst.
  • Der Abbau der aufzubereitenden Abfälle wird dadurch gefördert, daß man sie vor der thermischen Spaltung mechanisch zerkleinert. Überdies kann er durch Zusatz geeigneter Katalysatoren beschleunigt werden. So lassen sich Abfälle, die vorwiegend Polyolefine enthalten, in Gegenwart von Mangan-, Vanadin-, Kupfer-, Chrom-, Molybdän- oder Wolframverbindungen bei erhöhter Temperatur leicht in niedermolekulare Bruchstücke aufspalten. Die katalytisch wirksamen Metalle können in den Kunststoffen bereits in Form der Zuschlagstoffe vorliegen, so daß sich ihr Zusatz erübrigt.
  • Die Umwandlung der hochmolekularen Einsatzstoffe erfolgt in herkömmlichen Reaktoren, z.B. in geschlossenen, mit einer Heizvorrichtung versehenen Rührkesseln. Üblicherweise arbeitet man in einer Stufe. Insbesondere wenn sich bei der Aufarbeitung von Abfällen aggressive Gase entwickeln, empfiehlt es sich, den Spaltprozeß zwei- oder mehrstufig durchzuführen, wobei die Spaltung in den einzelnen Stufen im allgemeinen nicht bei gleicher Temperatur, sondern mit von Stufe zu Stufe ansteigenden Temperaturen betrieben wird. So hat es sich bei Einsatz Chlor enthaltender Polymerer als zweckmäßig erwiesen, wasserfeuchte Kunststoffe zunächst bei mäßiger Temperatur, die noch nicht zur HCl-Abspaltung führt, zu trocknen, um eine korrosive Beanspruchung der Reaktorwerkstoffe durch wäßrigen Chlorwasserstoff zu vermeiden. Erst nach der Trocknung wird die Temperatur soweit gesteigert, daß sich als Folge der Spaltung der Polymerisate Chlorwasserstoff bildet. Die Entchlorierung kann in einer zusätzlichen Stufe durch weitere Erhöhung der Temperatur und der Verweilzeit vervollständigt werden. Der stufenweise thermische Abbau Chlor enthaltender polymerer Substanzen ermöglicht es, durch Wahl der Reaktionstemperatur, die aggressive Gase entwickelnden Spaltprodukte bevorzugt in der ersten Spaltstufe anzureichern, so daß bei der nachfolgenden Abtrennung der für die Umwelt schädlichen Gase nur ein Teil der Spaltprodukte einer Reinigungsvorrichtung zugeführt werden müssen. Hervorzuheben ist jedoch, daß selbst Kunststoffabfälle, die Chlor in einer Größenordnung von etwa 5 Gew.-% enthalten, nach dem erfindungsgemäßen Verfahren in flüssige Spaltprodukte umgewandelt werden können, deren Chlorgehalt nur wenige 100 ppm beträgt.
  • Die Spaltprodukte sieden im Bereich des Rohbenzins (Naphtha) und der Mitteldestillate und besitzen auch die Viskosität dieser Erdölfraktionen. Sie lassen sich daher mit üblichen Vorrichtungen pumpen.
  • Bei der Spaltung entstandene Kohlenwasserstoffe verlassen den Reaktor zum Teil als Dämpfe in Mischung mit Chlorwasserstoff und geringen Mengen anderer Spaltgase wie Kohlenmonoxid, Wasserstoff, Stickstoff und Ammoniak. Sie werden aus dem gasförmigen Gemisch durch partielle Kondensation als aschefreies Kondensat gewonnen. Es ist ein für die weitere Aufarbeitung, z.B. auf Naphtha, geeigneter Rohstoff. Die chlorwasserstoffhaltige Gasphase kann z.B. in etwa 30 %ige Salzsäure überführt werden.
  • Der restliche Anteil des Spaltproduktes, der die gesamte Asche enthält, wird flüssig ausgetragen und allein oder in Mischung mit anderen Rohstoffen, z.B. Naphtha, mit Wasserdampf und Sauerstoff zu Synthesegas umgesetzt.
  • Diese Reaktion kann ebenfalls nach bekannten Verfahren erfolgen. Geeignet sind insbesondere Prozesse, die eine problemblose Abtrennung der Asche und ihre Gewinnung ohne fremde Beimischungen erlaubt. Die Lösung dieser Aufgabe erfordert einen möglichst hohen Kohlenstoffumsatz im Reaktor, um den Austrag von Ruß zusammen mit der Asche zu vermeiden. Ferner sind für das Rohgas, das flüssige Asche mitführt, besondere Kühlvorrichtungen vorzusehen. Bewährt hat sich die unmittelbare Kühlung mit Wasser in einem Quenchkühler oder einem aus Strahlungskühler und Konvektionskühler bestehenden System. Der Kühlstufe schließen sich Wasserwäschen an, in der letzte Aschereste entfernt werden. Die Asche kann in Deponien gelagert oder zu Metallen aufgearbeitet werden.
  • Ein Verfahren, das insbesondere hinsichtlich der Schadstoffvermeidung den vorstehend skizzierten Ansprüchen genügt, ist z.B. in der EP-A-0 515 950 beschrieben. Es ist dadurch charakterisiert, daß man das Einsatzmaterial unter Bedingungen oxidiert, die zur Bildung von etwa 0,1 bis etwa 0,3 Gew.-% Ruß, bezogen auf den in Form von Kohlenwasserstoffen eingesetzten Kohlenstoff, führen. Diese Arbeitsweise läßt sich mit Erfolg auch auf die Umwandlung der Spaltprodukte von Kunststoffabfällen in Kohlenmonoxid-Wasserstoff-Gemische anwenden. In diesem Fall ist der Kohlenstoffgehalt der depolymerisierten Kunststoffe Bezugsgröße für den Rußanteil. Seine Höhe wird dabei in bekannter Weise über die zugeführte Sauerstoffmenge eingestellt, überdies kann sich der Einsatz eines speziell gestalteten Brenners empfehlen (vgl. z.B. EP-B-0 095 103). Die Vergasung selbst erfolgt bei Temperaturen zwischen 1100 und 1500°C und einem Druck von 1 bis 10 MPa. Das den Vergasungsreaktor mit einer Temperatur von 1300 bis 1500°C verlassende Rohgas enthält neben Ruß in der angegebenen Menge Metalle und/oder Metallverbindungen in flüssiger Form. Es wird zunächst in einem Strahlungskühler auf 500 bis 1000°C vorgekühlt, ein Temperaturbereich, in dem die metallischen Verunreinigungen ohne wesentlichen Kontakt mit der Kühlerwandung erstarren. Die festen Partikel setzen sich zum Teil im Wassersumpf des Strahlungskühlers ab und werden von dort ausgetragen. Zur weiteren Abkühlung auf 150 bis 300°C, vorzugsweise 260 bis 280°C, leitet man das noch restliche Anteile feiner Metallpartikel und Rußteilchen enthaltende Rohgas in einen Konvektionskühler. Weil die vom Gas mitgeführten Verunreinigungen bereits im Strahlungskühler erstarrt sind, beeinträchtigen sie die Wirksamkeit des Konvektionskühlers durch Verlegung der Strömungswege und Ablagerungen auf den Austauschflächen nicht. Die nahezu restlose Abscheidung der Feststoffe erfolgt durch Waschen des Gases mit Wasser. Dieser Teilschritt des Verfahrens wird zweckmäßigerweise mit Hilfe von Naßabscheidern des Standes der Technik z.B. mit Wasser berieselte Füllkörpertürmen, die gegebenenfalls auch in Verbindung mit Venturiwäschern angewandt werden können, durchgeführt. Aus dem Waschwasser wird die Asche durch mechanische Abtrennung, z.B. Filtration, gewonnen.
  • Das durch Vergasung der depolymerisierten Kunststoffabfälle erhaltene Kohlenmonoxid-/Wasserstoffgemisch kann unmittelbar als Ausgangsstoff für chemische Reaktionen, z.B. für die Oxosynthese, eingesetzt werden. Entsprechend der Zusammensetzung von Kunststoffabfällen ist das C/H-Verhältnis ihrer Spaltprodukte niedriger als das schwerer Heizöle, dem üblichen Rohstoff für die Synthesegasgewinnung. Das für bestimmte Anwendungen (z.B. im Oxoprozeß) benötigte CO/H₂-Verhältnis von 1 : 1 wird daher nicht immer erreicht. Um den Wasserstoffanteil zu vermindern, kann aus dem feststofffreien Rohgas in einer Membrananlage eine wasserstoffreiche Fraktion abgetrennt werden, die verbrannt oder durch Konvertierung zu reinem Wasserstoff aufgearbeitet wird. Selbstverständlich läßt sich aber auch das Gasgemisch insgesamt durch Konvertierung in Wasserstoff überführen.
  • In der Abbildung ist das neue Verfahren in Form eines Blockschemas dargestellt. Kunststoffabfälle werden in der Depolymerisationsstufe thermisch bei Temperaturen, die, abhängig vom Verfahren, im Bereich von 200 bis 500°C liegen, zu flüssigen Produkten abgebaut, deren Fließfähigkeit etwa der schwerer Heizöle bei gleicher Temperatur entsprechen. Die Depolymerisation wird von der Abspaltung von Chlorwasserstoff aus chlorhaltigen Kunststoffen begleitet, der Chlorwasserstoff wird mit Wasser aus dem Reaktionsprodukt ausgewaschen und in bekannter Weise, z.B. zu 30 %iger Rohsäure, aufgearbeitet. In Sonderfällen kann der Chlorwasserstoff auch in einer alkalischen Wäsche neutralisiert werden. Der Spaltung schließt sich die Vergasung, d.h. die partielle Oxidation der depolymerisierten Abfälle mit Sauerstoff in Gegenwart von Wasserdampf, an. Im Spaltprodukt in geringer Konzentration verbleibende Chlor-Kohlenstoff-Verbindungen beeinträchtigen diesen Verfahrensschritt nicht. Das bei der Vergasung resultierende CO/H₂-Gemisch wird zur Entfernung von Feststoffen und HCl mit Wasser, dem gegebenenfalls alkalische Reagenzien, wie Alkalicarbonat oder -hydroxid, zugesetzt wurde, gewaschen. Zur Herstellung von Synthesegas mit einem bestimmten, von der Zusammensetzung des Rohgases abweichenden CO/H₂-Verhältnisses wird das Rohgas über ein Membranfilter geführt.
  • Statt Synthesegas kann aus dem Rohgas auch Wasserstoff gewonnen werden. Hierzu wird es konvertiert, das resultierende CO₂/H₂-Gemisch einer chemischen Wäsche zugeführt und in einer Druckwechsel-Absorptionsstufe in CO₂ und H₂ aufgetrennt.
  • Beispiel
  • Zurückgeführtes Verpackungsmaterial aus Kunststoff mit einem Gehalt von 2,5 Gew.-% Wasser und 3,3 Gew.-% Chlor wird in einer flüssigen Hilfsphase, die durch thermische Spaltung von Kunststoffabfällen erhalten wurde, suspendiert und zur Abtrennung des Wassers auf etwa 130°C erhitzt. Darauf überführt man die Kunststoffsuspension in den Spaltreaktor, in dem die Depolymerisation des Einsatzmaterials bei etwa 350°C und einer Verweilzeit von etwa 4 h erfolgt. Gasförmige Spaltprodukte werden auf etwa 30°C abgekühlt und zur Abtrennung von Chlorwasserstoff einer entsprechenden Absorptionanlage zugeführt. Das flüssige Depolymerisat hat folgende Zusammensetzung.
    C = 84,3 Gew.-%
    H = 12,0 Gew.-%
    N = 0,4 Gew.-%
    S = 1,3 Gew.-%
    Asche = 2,0 Gew.-%
  • Es enthält 300 mg Cl/l, hat eine Dichte von 920 kg/m³ und eine Viskosität von 404 mPa . s (bei 90°C).
  • Ein Teil des flüssigen Spaltproduktes wird als Hilfsphase (Suspensionsmittel) für die thermische Spaltung weiterer Kunststoffabfälle verwendet, der Rest partiell zu Wassergas oxidiert. Hierzu setzt man das Depolymerisat bei etwa 1400°C und einem Druck von 4 MPa in bekannter Weise mit Sauerstoff und Wasserdampf um. Zur Erzeugung von 1000 Nm² CO/H₂-Gemisch benötigt man 400 kg Depolymerisat, 325 Nm³ Sauerstoff und 110 kg Dampf. Das Rohgas enthält 43,8 Vol.-% CO, 48,6 Vol.-% H₂ und 6,6 Vol.-% CO₂; das CO/H₂-Verhältnis ist etwa 0,9.

Claims (11)

  1. Verfahren zur Herstellung von Synthesegas aus Kunststoffabfällen, dadurch gekennzeichnet, daß die Abfälle thermisch überwiegend zu flüssigen Produkten gespalten und die flüssigen Spaltprodukte durch partielle Oxidation in Synthesegas überführt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die thermische Spaltung bei Temperaturen zwischen 250 und 450°C unter Verwendung einer bei der Reaktionstemperatur flüssigen Hilfsphase erfolgt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die flüssige Hilfsphase aus den flüssigen Abbauprodukten der Kunststoffabfälle besteht.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die thermische Spaltung in Gegenwart von Katalysatoren erfolgt.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß insbesondere, wenn chlorhaltige Kunststoffabfälle vorhanden sind, die thermische Spaltung in zwei oder mehr Stufen durchgeführt wird, wobei die Temperatur von Stufe zu Stufe ansteigt und durch Wahl der Temperatur die Hauptmenge des als Spaltprodukt anfallenden Chlorwasserstoffs in der ersten Stufe gebildet wird.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die partielle Oxidation der flüssigen Spaltprodukte bei Temperaturen zwischen 1100 und 1500°C und einem Druck von 1 bis 10 MPa erfolgt.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die partielle Oxidation über die zugesetzte Sauerstoffmenge so geführt wird, daß etwa 0,1 bis etwa 0,3 Gew.-% Ruß, bezogen auf die flüssigen Spaltprodukte, gebildet werden.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das den Vergasungsreaktor verlassende Rohgas zunächst in einem Strahlungskühler auf 500 bis 1000°C und darauf in einem Konvektionskühler auf 150 bis 300°C gekühlt wird.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das gekühlte Gas mit Wasser gewaschen und darauf die im Waschwasser suspendierte Asche abgetrennt wird.
  10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das gereinigte Gas zur Einstellung eines gewünschten CO/H₂-Verhältnisses einer Membranfilteranlage zugeführt wird.
  11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das gereinigte Gas einer Konvertierungsanlage zugeführt wird.
EP94112796A 1993-08-21 1994-08-17 Verfahren zur Herstellung von Synthesegas Expired - Lifetime EP0639631B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4328188A DE4328188C2 (de) 1993-08-21 1993-08-21 Verfahren zur Herstellung von Synthesegas
DE4328188 1993-08-21

Publications (2)

Publication Number Publication Date
EP0639631A1 true EP0639631A1 (de) 1995-02-22
EP0639631B1 EP0639631B1 (de) 1999-11-24

Family

ID=6495729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112796A Expired - Lifetime EP0639631B1 (de) 1993-08-21 1994-08-17 Verfahren zur Herstellung von Synthesegas

Country Status (10)

Country Link
US (1) US5457250A (de)
EP (1) EP0639631B1 (de)
JP (1) JP2534461B2 (de)
KR (1) KR100308464B1 (de)
AT (1) ATE186940T1 (de)
BR (1) BR9403282A (de)
CA (1) CA2130019C (de)
DE (2) DE4328188C2 (de)
ES (1) ES2141788T3 (de)
TW (1) TW310333B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534448A1 (de) * 1995-09-16 1997-03-20 Buna Sow Leuna Olefinverb Gmbh Verfahren zum Entsorgen von PVC, vorzugsweise zur Gewinnung von gereinigtem und/oder reinem Chlorwasserstoff
WO2023115083A1 (de) * 2021-12-20 2023-06-29 Walter Kanzler Reaktorvorrichtung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2260953A1 (en) * 1996-07-17 1998-01-22 John Saunders Stevenson Partial oxidation of waste plastic material
WO2000059825A1 (fr) * 1999-04-02 2000-10-12 Ebara Corporation Procede et appareil de production d'hydrogene par gazeification de matiere combustible
DE19952755B4 (de) * 1999-11-02 2006-11-23 Future Energy Gmbh Verfahren und Flugstromvergaser zur Umwandlung von fließfähigen halogen- und kohlenstoffhaltigen Rest- und Abfallstoffen
DE10065921A1 (de) 1999-11-06 2001-07-26 Krc Umwelttechnik Gmbh Verfahren und Vorrichtung zur Vergasung von Brenn-, Rest- und Abfallstoffen mit Vorverdampfung
DE19954188A1 (de) 1999-11-11 2001-05-31 Krc Umwelttechnik Gmbh Verfahren und Vorrichtung zur Verwertung stickstofforganischer Verbindungen durch Vergasung
DE19957696C1 (de) 1999-11-30 2001-05-03 Krc Umwelttechnik Gmbh Vorrichtung zur Vergasung kohlenstoffhaltiger Brenn-, Rest- und Abfallstoffe in einem Flugstromreaktor
US20030192251A1 (en) * 2002-04-12 2003-10-16 Edlund David J. Steam reforming fuel processor
CN1304355C (zh) * 2004-04-08 2007-03-14 浙江大学 一种液相催化降解聚苯乙烯废旧塑料生产苯甲酸的方法
DE102009007880A1 (de) 2009-02-06 2010-08-12 Eta Ag Engineering Verfahren und Vorrichtung zur Behandlung von chlorhaltigem Rohgas aus Vergasungsanlagen
BRPI1011619A2 (pt) * 2009-04-06 2016-03-22 Rentech Inc processo de conversão térmica, método para produzir líquidos de produto de ft, e, sistema para condicionar gás de síntese.
EP2834323A4 (de) * 2013-06-04 2015-10-07 Enviro Power Pte Ltd System und verfahren zur umwandlung von kunststoff/kautschuk in kohlenwasserstoffbrennstoff anhand eines thermokatalytischen verfahrens
US11286436B2 (en) 2019-02-04 2022-03-29 Eastman Chemical Company Feed location for gasification of plastics and solid fossil fuels
US11447576B2 (en) 2019-02-04 2022-09-20 Eastman Chemical Company Cellulose ester compositions derived from recycled plastic content syngas
EP4136157A1 (de) * 2020-04-13 2023-02-22 Eastman Chemical Company Chemisches recycling von metallhaltigen kunststoffgemischen
CN115397955A (zh) * 2020-04-13 2022-11-25 伊士曼化工公司 湿废塑料的部分氧化气化

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2205001B1 (de) * 1972-02-03 1973-07-26 Ruhrchemie Ag, 4200 Oberhausen-Holten Verfahren zur thermischen aufbereitung von abfaellen aus kunststoff und kautschuk
FR2357630A1 (fr) * 1976-07-05 1978-02-03 Erap Procede perfectionne de craquage catalytique
US4108730A (en) * 1977-03-14 1978-08-22 Mobil Oil Corporation Method for treatment of rubber and plastic wastes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2840987A1 (de) * 1978-09-21 1980-04-03 Linde Ag Verfahren zum spalten von kohlenwasserstoffen
JPS60219292A (ja) * 1984-04-13 1985-11-01 Mitsubishi Heavy Ind Ltd 石油化学製品の選択的製造法
JPS63260981A (ja) * 1987-04-17 1988-10-27 Mamoru Sano 可燃性廃棄物熱分解ガス製造装置
DE4107046A1 (de) * 1991-03-06 1992-09-10 Menges Georg Verfahren und vorrichtung zum verwerten von organischen abfaellen
DE4017089C3 (de) * 1990-05-26 1996-10-17 Menges Georg Verfahren und Vorrichtung zum Vegasen von Kunststoffen zur Erzeugung von Synthesegas
DE4029880A1 (de) * 1990-09-21 1992-03-26 Menges Georg Verfahren zum vergasen von kunststoffen zur erzeugung von brenngasen
US5061363A (en) * 1990-10-09 1991-10-29 The United States Of America As Represented By The United States Department Of Energy Method for co-processing waste rubber and carbonaceous material
DE4117266A1 (de) * 1991-05-27 1992-12-03 Hoechst Ag Herstellung von synthesegas aus aschereichen kohlenwasserstoffen
US5158982A (en) * 1991-10-04 1992-10-27 Iit Research Institute Conversion of municipal waste to useful oils
DE4311034A1 (de) * 1993-04-03 1994-10-06 Veba Oel Ag Verfahren zur Gewinnung von Chemierohstoffen und Kraftstoffkomponenten aus Alt- oder Abfallkunststoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2205001B1 (de) * 1972-02-03 1973-07-26 Ruhrchemie Ag, 4200 Oberhausen-Holten Verfahren zur thermischen aufbereitung von abfaellen aus kunststoff und kautschuk
FR2169965A1 (de) * 1972-02-03 1973-09-14 Ruhrchemie Ag
FR2357630A1 (fr) * 1976-07-05 1978-02-03 Erap Procede perfectionne de craquage catalytique
US4108730A (en) * 1977-03-14 1978-08-22 Mobil Oil Corporation Method for treatment of rubber and plastic wastes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534448A1 (de) * 1995-09-16 1997-03-20 Buna Sow Leuna Olefinverb Gmbh Verfahren zum Entsorgen von PVC, vorzugsweise zur Gewinnung von gereinigtem und/oder reinem Chlorwasserstoff
WO2023115083A1 (de) * 2021-12-20 2023-06-29 Walter Kanzler Reaktorvorrichtung

Also Published As

Publication number Publication date
TW310333B (de) 1997-07-11
JPH07197041A (ja) 1995-08-01
US5457250A (en) 1995-10-10
KR950005959A (ko) 1995-03-20
KR100308464B1 (ko) 2001-12-01
DE4328188C2 (de) 1996-04-18
CA2130019C (en) 1999-10-19
EP0639631B1 (de) 1999-11-24
ATE186940T1 (de) 1999-12-15
DE59408948D1 (de) 1999-12-30
CA2130019A1 (en) 1995-02-22
BR9403282A (pt) 1995-04-11
JP2534461B2 (ja) 1996-09-18
ES2141788T3 (es) 2000-04-01
DE4328188A1 (de) 1995-02-23

Similar Documents

Publication Publication Date Title
EP0639631B1 (de) Verfahren zur Herstellung von Synthesegas
EP0182309B1 (de) Verfahren zur hydrierenden Aufarbeitung von Kohlenstoff enthaltenden Abfällen synthetischen bzw. überwiegend synthetischen Ursprungs
EP0236701B1 (de) Verbessertes Verfahren zur Wiederaufarbeitung Kohlennstoff enthaltender Abfälle
DE69212667T2 (de) Kracken von Polymeren
DE4311034A1 (de) Verfahren zur Gewinnung von Chemierohstoffen und Kraftstoffkomponenten aus Alt- oder Abfallkunststoff
DE4444209C1 (de) Verfahren zur Gewinnung von Hartparaffinen aus stark verunreinigten Polyolefinabfällen
EP0468073B1 (de) Verfahren zur vollständigen Verwertung von Hochpolymerabprodukten
DE69326527T2 (de) Verfahren zur Umwandlung von Polymeren
DE69721302T2 (de) Partielle oxidation von abfallplastikmaterial
DE10037229B4 (de) Verfahren zur Herstellung von hochmolekularen Wachsen aus Polyolefinen
DE19750327C1 (de) Verfahren zur Herstellung von Synthesegas aus nachwachsenden zellulosehaltigen Roh- oder Abfallstoffen
DE69504707T2 (de) Verfahren zur wiederverwendung von verbundwerkstoffen
EP0291698B1 (de) Verbessertes Verfahren zur hydrierenden Spaltung Kohlenstoff enthaltender synthetischer Abfälle
DD260712A5 (de) Verfahren zur aufarbeitung von kohlenstoff enthaltenden abfaellen
DD214749A3 (de) Verfahren zur hydrierenden spaltung von altgummi und gummiabfaellen
DE3807272A1 (de) Verfahren zur hydrierenden spaltung kohlenstoff enthaltender abfaelle und biomasse bei hohen drucken
DE19707302B4 (de) Verfahren zur Gewinnung von Mikrowachsen, Paraffinen und Ölen aus Altkunststoffen oder Altkunststoffgemischen
DE1921917C3 (de) Verfahren zur Herstellung schwefelarmer Heizöle aus Rückstandsölen mit hohem Schwefelgehalt
DD254207A1 (de) Verfahren zur hydrobehandlung von kohlenstoffhaltigem material
DD254112A3 (de) Verfahren zur hydrobehandlung von kohlenstoffhaltigem material
CH591555A5 (en) Pyrolysis of carbon-contg materials esp waste products - in a turbulent carrier gas stream, to yield gaseous hydrocarbons, esp ethylene
DD249036A5 (de) Verfahren zur Aufarbeitung von Kohlenstoff enthaltenden Abfällen
DE2255484A1 (de) Verfahren zur herstellung von gasfoermigen kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19950822

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CELANESE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990121

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 186940

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59408948

Country of ref document: DE

Date of ref document: 19991230

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CELANESE CHEMICALS EUROPE GMBH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000203

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2141788

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: CELANESE CHEMICALS EUROPE GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010713

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010725

Year of fee payment: 8

Ref country code: AT

Payment date: 20010725

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010801

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010802

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010803

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010810

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020817

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020818

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

BERE Be: lapsed

Owner name: *CELANESE G.M.B.H.

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050817