EP0637231A1 - Prothesenkomponente und verfahren zu ihrer herstellung - Google Patents

Prothesenkomponente und verfahren zu ihrer herstellung

Info

Publication number
EP0637231A1
EP0637231A1 EP93909838A EP93909838A EP0637231A1 EP 0637231 A1 EP0637231 A1 EP 0637231A1 EP 93909838 A EP93909838 A EP 93909838A EP 93909838 A EP93909838 A EP 93909838A EP 0637231 A1 EP0637231 A1 EP 0637231A1
Authority
EP
European Patent Office
Prior art keywords
prosthesis
bone
section
cross
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93909838A
Other languages
English (en)
French (fr)
Inventor
Klaus Dr.Med. Draenert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0637231A1 publication Critical patent/EP0637231A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3662Femoral shafts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30014Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30131Rounded shapes, e.g. with rounded corners horseshoe- or crescent- or C-shaped or U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30952Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using CAD-CAM techniques or NC-techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4631Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/912Method or apparatus for measuring or testing prosthetic
    • Y10S623/914Bone

Definitions

  • the invention relates to a prosthesis component to be anchored without cement or with bone cement and to a method for its production.
  • the invention has for its object to provide a prosthesis component to be anchored with or without bone cement, which allows good long-term results to be expected during implantation.
  • the problem was investigated how the strength of the bone is related to the durability of an implantation. Histological studies were able to clearly demonstrate that the soft, deformable bones showed stable anchors only if implants with a low mass were used.
  • each bone has an individual shape and an individual strength; Both factors must therefore be taken into account when choosing the prosthesis.
  • a stable, compact bone is a good indication for metal-bone anchoring without the use of bone cement.
  • Two things are important here: 1. to achieve the greatest possible primary stability of the anchoring and 2. to provide the largest possible surface for the force transmission between the prosthesis and the bones.
  • the different compartments of the bone e.g. Epyphysis, metaphysis and diaphysis, have completely different shapes and strengths.
  • the invention showed that there is a good correlation between the density of a bone and its strength.
  • the density of the bone can therefore be used according to the invention as a measure of its strength.
  • ° i & prosthesis component is adjustable in its mass and / or stiffness to the individual properties of the bone.
  • the bending stiffness of the prosthesis is the decisive factor, for example in the medial, especially the edial-proximal area of the prosthesis.
  • tensile stresses occur in the distal as well as in the proximal area, so that the tensile strength of the prosthesis also plays a role there.
  • Tensile strength is particularly important in the distal area. Because of the muscle attachments that leave the femoral neck and femoral neck free, torsional forces also occur.
  • the desired material properties also vary in different areas of the prosthesis components.
  • the material properties discussed above are usually summarized in the present application as "stiffness".
  • the rigidity the prosthesis and / or its mass adapted to the individual properties of the bone are usually summarized in the present application as "stiffness".
  • the adaptation can be carried out in different ways, for example the material of the prosthesis can be selected according to the individual properties of the bone. In the case of a dense bone, a material with a higher specific mass and higher stiffness can be selected, whereas a material with a lower specific mass and stiffness is selected accordingly for a bone with low density.
  • CoCrMo alloys, Ti, Ti alloys, steel, plastic or composite materials, for example, can be used as prosthesis material.
  • the material for the prosthetic component inhomogeneous, in the sense that a material with a higher specific mass and / or stiffness is used in areas with higher bone density than in areas with lower bone density. It should be taken into account here that the bone density can vary greatly and e.g. in the spongy region of the femur, only 15 to 20% of the density of the compact bone can be.
  • the desired inhomogeneity of the material can be produced, for example, by varying the pore size when using a porous material and setting it smaller in the region of higher bone density.
  • Composite materials can also be used as material for the prosthesis component, the fiber content of the composite material, for example, being able to vary over the length of the prosthesis component. This allows the stiffness of the prosthesis component to be varied and adapted to the bone density.
  • the adaptation of the mass and / or stiffness of the prosthesis component to the individual properties of the bone can also be achieved by a suitable choice of the shape of the prosthesis component, in particular the cross section of the prosthesis component. nent in different bone sections. If, for example, the cross-section of a femoral prosthesis component is U-shaped or horseshoe-shaped at least over a substantial part of its length, as suggested in WO 90/02533, the cross-sectional area and thus the prosthesis mass can be selected in various sectional planes by suitable selection of the size and Depth of the gutter or slot between the two. Arms of the U-shaped cross section can be adjusted. A transition from a full shaft to a U-shaped cross section with very thin arms is conceivable. The largest possible surface for the power transmission is ensured by the fact that the prosthesis component forms a closed surface in the media, dorsomedial and anteromedial area.
  • Changes in mass and / or rigidity can also be achieved, for example, by making partially through bores, such as blind bores, or completely through bores in the prosthesis socket, in particular in order to reduce the mass and / or rigidity.
  • applied strips and / or reinforcements on the outer and / or inner contour of the prosthesis can increase the mass and / or the rigidity of the prosthesis component. This can be carried out either in sections or continuously over the entire length of the prosthesis component.
  • the adaptation of the mass and / or stiffness of the prosthesis component to the bone density is preferably carried out by providing a linear correlation between the bone density and the mass or stiffness of the prosthesis component, ie, for example in the case of a doubling pelung bone density component and the mass or stiffness of the prosthesis in the corresponding area of 'Prothesenkompo ⁇ is amplified percentage.
  • a linear correlation between the bone density and the mass or stiffness of the prosthesis component ie, for example in the case of a doubling pelung bone density component and the mass or stiffness of the prosthesis in the corresponding area of 'Prothesenkompo ⁇ is amplified percentage.
  • a patient with a deformed and arthrotically altered joint is examined in the computer tomograph, and stacked images of the joint are digitized and stored as cross-sectional images.
  • So-called binary images are generated from the cross-sectional images using image analysis methods, i.e. black and white contrast images that can be captured with their inner and outer contours.
  • the inner contour is put together in a 3-D model.
  • the axis or the axes of the joint is determined and displayed with the aid of the image analysis together with the contour model with the joint surfaces (see figure using the example of a femoral component).
  • the shaft shape of the prosthetic components can then be adapted to the shape of the bony bed.
  • the areal density of the bone is determined on the binary image in a plurality, preferably a total of six to ten sections, which are evenly distributed over the length of the bone, and is compared to a corresponding section of a correspondingly determined corresponding normal bone. This comparison gives a correlation factor as a measure of the strength of the individual bone. If the specific bone density corresponds to that of normal bone, the contour model of the bony bed is reduced by 20 to 50% for the cemented component, for the cementless component by 1 to 20%, preferably 5 to 10%, specifically, for example, eccentrically and / or concentric in order to fix the cross section of the prosthesis component in the relevant cutting plane.
  • the contour model is correspondingly reduced in size in order to determine the cross section of the prosthesis.
  • the values can be interpolated between the individual sectional planes.
  • One to be anchored with bone cement The prosthesis cross-section is preferably determined so that the layer thickness of the surrounding bone cement sheath is approximately inversely proportional to the bone density.
  • the data record of the contour model may be passed on to a CAD unit together with the rotation center or the joint axis.
  • the axis of the contour model is determined in the CAD unit and undercuts in the design are corrected, in such a way that the prosthesis component can be inserted in the bone cement in a straight line and / or with a slight screwing movement, if necessary, without bumping against the bone .
  • the construction obtained in this way is returned to the image analysis unit, where a double contour model with the outer and inner contour of the bone is generated, into which the prosthesis component can be fitted.
  • the magnification factor is finally the Pro 5 - synthesis component (posterior anterior-ray path) in the ap-Röntcrenscient and projected axial RöntÜjnsent and respectively inserted along its axis of implantation.
  • the mass and / or stiffness of the prosthesis is determined in proportion to the bone density.
  • the CAD data record is then completed with the standard construction data of the prosthesis and the implantation instruments and passed on to a milling unit.
  • the denture component is milled from a blank in the milling unit, for example in V 4 A steel. After processing the surface, the prosthesis component is washed and sterilized and is then ready for use.
  • the invention is explained in more detail below with reference to the accompanying figure.
  • the figure shows an embodiment of the prosthesis component according to the invention using the example of a cementless femoral prosthesis component, cross-sections of the prosthesis and the inner and outer contour model of the femur being drawn in at different sectional planes for a more detailed explanation.
  • the prosthesis is shown as a front view (in the implanted state).
  • the prosthesis shown schematically in the femur bone has an attachable spherical head 1, which is seated on the cone 2 of the prosthesis neck 3.
  • the rotation center is designated by the reference number 4.
  • the neck 3 is firmly connected to a shaft 5 of the prosthesis.
  • the optimal shaft cross sections 5 • resulting in the manner described above are shown.
  • eight shaft cross sections 5 1 are shown hatched and, in addition, three shaft cross sections are drawn out for clarification.
  • the bone density and the resulting optimum switching cross section are preferably determined in six to ten, for example nine, sectional planes.
  • Reference number 6 shows the outer contour model and reference number 7 the inner contour model of the femur as an example in the individual sectional planes, which each result from the image analysis.
  • the mass and / or rigidity of the prosthesis in the individual sectional planes can be adjusted by suitable design of the shaft cross sections 5 '. If, for example, a low mass is desired, the slot or the recess in the U-shaped cross-section of the shaft is correspondingly enlarged, the greatest possible surface being available for the force transmission between the prosthesis and bone in the medial region of the prosthesis. When changing the specific mass in a sectional plane, the stiffness of the prosthesis component generally also changes in this area.
  • the reference number 8 designates the construction axis of the prosthesis, which at the same time also represents the medullary cavity axis and the implantation axis.
  • Literature designates the construction axis of the prosthesis, which at the same time also represents the medullary cavity axis and the implantation axis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manufacturing & Machinery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Prostheses (AREA)

Abstract

Die Erfindung betrifft eine zementfrei oder mit Knochenzement zu verankernde Prothesenkomponente und ein Verfahren zu ihrer Herstellung. Die mittels CAD- und Bildanalyse-Verfahren herstellbare Prothesenkomponente bietet die grösstmögliche Oberfläche für die Kraftübertragung und ist in ihrer Masse und Steifigkeit auf die individuellen Eigenschaften des Knochens einstellbar.

Description

Prothesenko ponente und Verfahren zu ihrer Herstellung
Die Erfindung betrifft eine zementfrei oder mit Knochenze¬ ment zu verankernde Prothesenkomponente und ein Verfahren zu ihrer Herstellung.
Der künstliche Gelenkersatz ist in der Chirurgie und Ortho¬ pädie des Bewegungsapparates zu einem Standardeingriff ge¬ worden und stellt heute eine der häufigsten Operationen überhaupt dar. Die Langzeitergebnisse von ersetzten Gelenken sind sehr unterschiedlich und reichen am Beispiel des Hüft¬ gelenkes von wenigen Wochen bis zu 27 Jahren (Draenert und Draenert 1992) .
Wissenschaftliche Untersuchungen führten zu dem Ergebnis, daß unterschiedlichste Faktoren für das Auslockern einer En- doprothesenkomponente verantwortlich zu machen sind, u.a. Infektionen, mangelnde Operationstechnik, falsche Implantat¬ wahl und zu große Beanspruchung. Trotzdem blieben bisher viele Lockerungsfälle ohne eine befriedigende Erklärung. Es fiel lediglich auf, daß bestimmte Faktoren häufig zusammen- kamen, um eine Lockerung herbeizuführen, wie z.B. der Kno¬ chen eines Rheumatikers in Verbindung mit einem massiven ze¬ mentfreien Implantat. Prothesendesigns, die sich im Knochen verblocken sollten und die zusammen mit Knochenzement im- plantiert wurden, ließen erkennen (Draenert 1988) , daß Kno¬ chenzement als Füllmaterial zwischen Metall und Knochen keine Verankerungsfunktion erfüllen kann, sondern zerrieben wird.
Das Problem der Verankerung der Prothesenkomponenten konnte letztlich auf das Phänomen der Deformierbarkeit des Knochens zurückgeführt werden. Hieraus wurde verständlich, warum ein leicht deformierbarer Knochen eines Rheumatikers durch eine zementfrei verankerte Metallprothese so deformiert wird, daß eine schnelle Auslockerung die Folge war. Auf der anderen Seite konnte gezeigt werden, daß eine fragile oder weiche, aber auch eine ganz normale Spongiosa (Schwammknochen) mit einem PMMA-Knochenzement ausgesteift ?»erden kann und dadurch enorme Stei . l.gkei.t bekommt (Draener -?t* und Draenert 1992) .
Eine so versteifte Knochenstruktur wurde bei all denjenigen Implantaten gefunden, die 10 bis 20 Jahre erfolgreich getra¬ gen worden waren und histologisch untersucht werden konnten. Auf der anderen Seite wurden sehr kompakte Femurknochen mit Prothesenkomponenten versorgt, ohne daß Knochenzement als Verankerungsmittel benutzt wurde, und diese Prothesenkompo¬ nenten sind teilweise bereits etwa 10 Jahre erfolgreich im¬ plantiert (Draenert und Draenert 1992) . Allerdings waren auch bei diesen Fällen die Ergebnisse wenig reproduzierbar.
Der Erfindung liegt die Aufgabe zugrunde, eine mit oder ohne Knochenzement zu verankernde Prothesenkomponente bereitzu¬ stellen, die gute Langzeitergebnisse bei der Implantation erwarten läßt.
Diese Aufgabe wird durch die Erfindung gelöst. Im Rahmen der Erfindung wurde das Problem untersucht, wie die Festigkeit des Knochens mit der Dauerhaftigkeit einer Implantation zusammenhängt. Histologische Studien konnten dabei eindeutig nachweisen, daß die weichen, deformierbaren Knochen nur dann stabile Verankerungen erkennen ließen, wenn Implantate mit geringer Masse eingesetzt worden waren.
Die Erfindung basiert auf den folgenden Erkenntnissen bezüg¬ lich der Prothesenverankerung: Jeder Knochen hat eine indi- viduelle Form und eine individuelle Festigkeit; beide Fakto¬ ren müssen bei der Wahl der Prothese deshalb berücksichtigt werden. Ein stabiler kompakter Knochen stellt eine gute Indikation dar für eine Metall-Knochen-Verankerung ohne Ver¬ wendung von Knochenzement. Hierbei kommt es vor allem auf zwei Dinge an: 1. eine möglichst große Primärstabilität der Verankerung zu erreichen und 2. eine möglichst große Ober¬ fläche für die Kraftübertragung zwischen Prothese und Kno¬ chen zur Verfügung zu stellen. Hierbei ist jedoch zu berück¬ sichtigen, daß die unterschiedlichen Kompartimente des Kno- chens, wie z.B. Epyphyse, Metaphyse und Diaphyse, gänzlich andere Formen und Festigkeiten aufweisen. Bei der Implanta¬ tion mit Knochenzement ist ebenfalls die Berücksichtigung der Form des knöchernen Betts, beispielsweise der Markhöhle, deswegen wichtig, da eine unvollständige Zementscheide zur frühen Zerstörung derselben führt. Es wurde zwar frühzeitig versucht, den Prothesenstiel der Markhöhle anzupassen, vgl. z.B. EP-A-0 038 908, doch zeigte sich schnell, daß die Viel¬ zahl der verschiedenen Formen der Knochen mit einem einzigen Implantatdesign nicht abzudecken waren (Noble et al., 1988); auch gab es keine Möglichkeiten, die Festigkeiten des Kno¬ chens zu erfassen und in das Prothesendesign einzubeziehen.
Im Rahmen der Erfindung wurde das Problem untersucht, wie die Festigkeit des Knochens mit der Dauerhaftigkeit einer Implantation zusammenhängt. Histologische Studien konnten dabei eindeutig nachweisen, daß die weichen, deformierbaren l Knochen nur dann stabile Verankerungen erkennen ließen, wenn
Implantate mit geringer Masse eingesetzt worden waren.
Im Rahmen der Erfindung zeigte sich, daß eine gute Korrela- tion besteht zwischen der Dichte eines Knochens und seiner Festigkeit. Die Dichte des Knochens kann deshalb erfindungs¬ gemäß als Maß für seine Festigkeit herangezogen werden. Durch Kombination verschiedener bildanalytischer und compu¬ terunterstützter Berechnungen konnte eine Methode gefunden " werden, die es erlaubte, sowohl die Morphologie des knöcher¬ nen Betts des Knochens als auch die Festigkeit des Knochens zu erfassen und beim Design der Prothesenkomponente zu berücksichtigen. Aus diesen Versuchen ergab sich ein Design einer Prothesenkomponente, welche sich in idealer Weise in das knöcherne Bett einpassen läßt und in ihrer Masse und/oder Steifigkeit so verändert werden kann, daß jeweils die größtmögliche Oberfläche für die Kraftübertragung zwi¬ schen Prothese und Knochen zur Verfügung steht.
°i& erfindungsgemäße Prothesenkomponente ist in ihrer Masse und/oder Steifigkeit auf die individuellen Eigenschaften des Knochens einstellbar. Bei einer Femurprothesenkomponente ist z.B. im medialen, insbesondere edial-proximalen Bereich der Prothese die Biegesteifigkeit der Prothese der entscheidende 5 Faktor. Im lateralen Bereich der Prothese treten sowohl im distalen als auch im proximalen Bereich vor allem Zugspan¬ nungen auf, so daß dort auch die Zugfestigkeit der Prothese eine Rolle spielt. Insbesondere im distalen Bereich ist die Zugfestigkeit wichtig. Aufgrund der Muskelansätze, die Schenkelhals und Schenkelhalskopf frei lassen, treten auch Torsionskräfte auf. Bei anderen Prothesenkomponenten, z.B. Schulter-, Ellbogen-, Knie-, Hand-, Finger- oder Sprungge¬ lenkkomponenten, variieren die erwünschten Materialeigen¬ schaften ebenfalls in verschiedenen Bereichen der Prothesen- komponenten. Die vorstehend diskutierten Materialeigenschaf¬ ten werden in der vorliegenden Anmeldung meist als "Steifig¬ keit" zusammengefaßt. Erfindungsgemäß wird die Steifigkeit der Prothese und/oder deren Masse an die individuellen Eigenschaften des Knochens angepaßt.
Die Anpassung kann auf verschiedene Weise erfolgen, bei- spielsweise kann das Material der Prothese entsprechend den individuellen Eigenschaften des Knochens gewählt werden. Bei einem dichten Knochen kann ein Material höherer spezifischer Masse und höherer Steifigkeit gewählt werden, während ent¬ sprechend bei einem Knochen niedriger Dichte ein Material mit niedrigerer spezifischer Masse und Steifigkeit gewählt wird. Als Prothesenmaterial können beispielsweise CoCrMo-Le- gierungen, Ti, Ti-Legierungen, Stahl, Kunststoff oder Ver¬ bundwerkstoffe verwendet werden.
Es ist auch möglich, das Material für die Prothesenkompo¬ nente inhomogen zu gestalten, in dem Sinne, daß in Bereichen höherer Knochendichte ein Material mit höherer spezifischer Masse und/oder Steifigkeit verwendet wird als in Bereichen mit niedrigerer Knochendichte. Hierbei ist zu berücksichti- g n, daß die Knochendichte sehr stark variieren kann und z.B. beim Femur im spongiösen Bereich lediglich 15 bis 20 % der Dichte des Kompaktaknochens betragen kann. Die ge¬ wünschte Inhomogenität des Materials kann beispielsweise da¬ durch hergestellt werden, daß bei Verwendung eines porösen Materials die Porengröße variiert und im Bereich höherer Knochendichte kleiner eingestellt wird. Es können auch Ver¬ bundwerkstoffe als Material für die Prothesenkomponente ver¬ wendet werden, wobei beispielsweise der Fasergehalt des Ver¬ bundwerkstoffs über die Länge der Prothesenkomponente vari- ieren kann. Hierdurch läßt sich insbesondere die Steifigkeit der Prothesenkomponente variieren und an die Knochendichte anpassen.
Die Anpassung der Masse und/oder Steifigkeit der Prothesen- komponente an die individuellen Eigenschaften des Knochens kann ferner durch geeignete Wahl der Form der Prothesenkom¬ ponente, insbesondere des Querschnitts der Prothesenkompo- nente in verschiedenen Knochenabschnitten erfolgen. Wenn beispielsweise der Querschnitt einer Femurprothesenkompo¬ nente zumindest über einen wesentlichen Teil ihrer Länge ü- förmig oder hufeisenförmig ist, wie in WO 90/02533 vorge- schlagen, kann die Querschnittsflache und damit die Prothe¬ senmasse in verschiedenen Schnittebenen durch geeignete Wahl der Größe und Tiefe der Rinne bzw. des Schlitzes zwischen den beiden. Armen des U-förmigen Querschnitts eingestellt werden. Hierbei ist ein Übergang von einem Vollschaft bis zu einem U-förmigen Querschnitt mit sehr dünnen Armen denkbar. Die größtmögliche Oberfläche für die Kraftübertragung wird dadurch gewährleistet, daß die Prothesenkomponente im media¬ len, dorsomedialen und anteromedialen Bereich jeweils eine geschlossene Fläche bildet.
Änderungen der Masse und/oder Steifigkeit sind beispiels¬ weise auch dadurch zu erreichen, daß teilweise durchgehende Bohrungen, wie Sackbohrungen, oder vollständig durchgehende Bohrungen im Prothesenschaft angebracht werden, insbesondere um die Masse und/oder Steifigkeit zu verringern. Anderer¬ seits können aufgebrachte Leisten und/oder Verstärkungen an der äußeren und/oder inneren Kontur der Prothese, beispiels¬ weise eines U-förmigen Prothesenschaftes, die Masse und/oder die Steifigkeit der Protheεenkomponente erhöhen. Dies kann entweder abschnittsweise oder durchgehend im wesentlichen über die gesamte Länge der Prothesenkomponente durchgeführt werden.
Die Anpassung der Masse und/oder Steifigkeit der Prothesen- komponente an die Knochendichte erfolgt vorzugsweise da¬ durch, daß eine lineare Korrelation zwischen der Knochen¬ dichte und der Masse bzw. Steifigkeit der Prothesenkompo¬ nente gegeben ist, d.h. daß beispielsweise bei einer Verdop¬ pelung der Knochendichte auch die Masse bzw. Steifigkeit der Prothese in dem entsprechenden Bereich der' Prothesenkompo¬ nente prozentual verstärkt wird. Im einzelnen kann, um eine solche individuelle Prothesenkom¬ ponente konstruieren und herstellen zu können, folgender¬ maßen vorgegangen werden:
Ein Patient mit einem deformierten und arthrotisch veränder¬ ten Gelenk wird im Computertomographen untersucht, und es werden Stapelbilder des Gelenks digitalisiert und als Quer¬ schnittsbilder abgespeichert. Von den Querschnittsbildern werden über bildanalytische Verfahren sogenannte Binärbilder erzeugt, d.h. schwarz-weiß Kontrastbilder, die mit ihrer in¬ neren und äußeren Kontur erfaßt werden können. Die innere Kontur wird in einem 3-D Modell zusammengesetzt. Vom Gelenk wird die Achse bzw. die Achsen ermittelt und mit Hilfe der Bildanalyse zusammen mit dem Konturmodell mit den Gelenkflä- chen dargestellt (siehe Figur am Beispiel einer Femurprothe¬ senkomponente) .
Die Schaftform der Prothesenkomponenten kann dann an die Form des knöchernen Betts angepaßt werden. An mehreren, vor- zugsweise insgesamt sechs bis zehn Schnitten, die gleich¬ mäßig über die Länge des Knochens verteilt sind, wird die Flächendichte des Knochens am Binärbild bestimmt und in Ver¬ gleich zu einem korrespondierenden Schnitt eines zuvor er¬ mittelten entsprechenden Normalknochens gesetzt. Aus diesem Vergleich ergibt sich ein Korrelationsfaktor als Maß für die Festigkeit des individuellen Knochens. Entspricht die spezi¬ fische Knochendichte der des Normalknochens, so wird das Konturmodell des knöchernen Betts bei der zementierten Komponente um 20 bis 50 % verkleinert, bei der zementfreien um 1 bis 20 %, vorzugsweise 5 bis 10 %, und zwar z.B. exzen¬ trisch und/oder konzentrisch, um den Querschnitt der Prothe¬ senkomponente in der betreffenden Schnittebene festzulegen. Ist die spezifische Knochendichte kleiner als die des Nor¬ malknochens, so wird das Konturmodell entsprechend stärker verkleinert, um den Prothesenquerschnitt festzulegen. Zwi¬ schen den einzelnen Schnittebenen können die Werte interpo¬ liert werden. Bei einer mit Knochenzement zu verankernden Prothesenkomponente wird der Prothesenquerschnitt vorzugs¬ weise so festgelegt, daß sich die Schichtdicke der umgeben¬ den Knochenzementscheide etwa umgekehrt proportional zur Knochendichte verhält. Der Datensatz des Konturmodells wird gegebenenfalls zusammen mit dem RotationsZentrum bzw. der Gelenkachse an eine CAD-Einheit weitergegeben. In der CAD- Einheit wird die Achse des Konturmodells bestimmt und Hin- terschneidungen im Design korrigiert, und zwar in der Weise, daß die Prothesenkomponente, ohne am Knochen anzustoßen, ge- gebenenfalls im Knochenzement geradlinig und/oder mit einer leichten Schraubbewegung eingesetzt werden kann. Die so er¬ haltene Konstruktion wird an die Bildanalyse-Einheit zurück¬ gegeben, wo ein Doppelkonturmodell mit der äußeren und inne¬ ren Kontur des Knochens erzeugt wird, in den die Prothesen- komponente eingepaßt werden kann. Unter Berücksichtigung und Korrektur des Vergrößerungsfaktors wird zum Schluß die Pro5- thesenkomponente in das ap-Röntcrenbild (Strahlengang anterior-posterior) und axiale RöntÜjnbild projiziert und jeweils entlang ihrer Implantationsachse eingesetzt. Die Masse und/oder Steifigkeit der Prothese wird proportional zur Knochendichte festgelegt. Danach wird der CAD-Datensatz vervollständigt mit den Standardkonstruktionsdaten der Pro¬ these und des ImplantationsInstrumentariums und an eine Fräseinheit weitergegeben. In der Fräseinheit wird von einem Rohling, z.B. in V4A-Stahl, die Prothesenkomponente gefräst. Nach Bearbeitung der Oberfläche wird die Prothesenkomponente gewaschen und sterilisiert und ist dann einsatzbereit.
Die Erfindung wird nachstehend anhand der beiliegenden Figur noch näher erläutert. Die Figur zeigt eine Ausfuhrungsform der erfindungsgemäßen Prothesenkomponente am Beispiel einer zementfreien Femurprothesenkomponente, wobei zur näheren Er¬ läuterung Querschnitte der Prothese sowie des inneren und äußeren Konturmodells des Femur in verschiedenen Schnittebe- nen eingezeichnet sind. In der Figur ist die Prothese als (im implantierten Zustand) Vorderansicht gezeigt.
Die schematisch im Femurknochen dargestellte Prothese gemäß der Figur weist einen aufsteckbaren kugelförmigen Kopf 1 auf, der auf dem Konus 2 des Prothesenhalses 3 aufsitzt. Mit dem Bezugszeichen 4 ist das RotationsZentrum bezeichnet. Der Hals 3 ist fest mit einem Schaft 5 der Prothese verbunden. In den etwa gleichmäßig über die Länge des proximalen Femur verteilten Schnittebenen, in denen die Flächendichte des Knochens bestimmt wird, sind die sich in der vorstehend be¬ schriebenen Weise ergebenden optimalen Schaftquerschnitte 5• eingezeichnet. In der Figur sind acht Schaftquerschnitte 51 schraffiert eingezeichnet und außerdem zur Verdeutlichung noch drei Schaftquerschnitte herausgezogen. Vorzugsweise werden die Knochendichte und der sich daraus ergebende opti¬ male Schaltquerschnitt in sechs bis zehn, beispielsweise neun Schnittebenen bestimmt. Mit dem Bezugszeichen 6 ist das äußere Konturmodell und mit dem Bezugszeichen 7 das innere Konturmodell des Femur beispielhaft in den einzelnen Schnittebenen dargestellt, die sich jeweils aus der Bild¬ analyse ergeben. Die Masse und/oder Steifigkeit der Prothese in den einzelnen Schnittebenen kann durch geeignete Gestal¬ tung der Schaftquerschnitte 5' eingestellt werden. Wenn z.B. eine niedrige Masse erwünscht ist, wird der Schlitz bzw. die Ausnehmung in den U-förmigen Schaftquerschnitt entsprechend vergrößert, wobei gleichzeitig im medialen Bereich der Pro¬ these die größtmögliche Oberfläche für die Kraftübertragung zwischen Prothese und Knochen zur Verfügung steht. Bei einer Änderung der spezifischen Masse in einer Schnittebene ändert sich in der Regel auch die Steifigkeit der Prothesenkompo¬ nente in diesem Bereich. Mit dem Bezugszeichen 8 ist die Konstruktionsachse der Prothese bezeichnet, die gleichzeitig auch die Markhöhlenachse und die Implantationsachse dar- stellt. Literatur:
Draenert K. (1988) , Forschung und Fortbildung in der Chirur¬ gie des Bewegungsapparates 2, zur Praxis der Zementveranke- rung, München, Art and Science.
Draenert K. und Draenert Y. (1992) , Forschung und Fortbil¬ dung in der Chirurgie des Bewegungsapparates 3, die Adapta¬ tion des Knochens an die Deformation durch Implantate, Mün- chen, Art and Science.
Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS, Clinical Orthopaedics and Related Research, No. 235, October 1988, pp. 148-163.

Claims

P a t e n t a n s p r ü c h e
1. Prothesenkomponente zur Verankerung mit oder ohne Kno¬ chenzement im epiphysären, meta- oder diaphysären Kno- chenabschnitt, welche die größtmögliche Oberfläche für die Kraftübertragung bietet und in ihrer Masse und/oder Steifigkeit auf die individuellen Eigenschaften des Kno¬ chens einstellbar ist.
2. Prothesenkomponente nach Anspruch 1, wobei die Schaft¬ form der Prothese an die Form des Knochenabschnitts an¬ paßbar ist.
3. Prothesenkomponente nach Anspruch 1 oder 2, wobei das Verhältnis von Prothesenquerschnitt zu Markhöhlenquer¬ schnitt durch einen Korrelationsfaktor der Festigkeit des Knochens bestimmt ist, welcher aufgrund der spezifi¬ schen Knochendichte pro Flächeneinheit festgelegt wird.
4« Prothesenkomponente nach einem der Ansprüche 1 bis 3, wobei die Fläche des Prothesenquerschnittes zwischen 30 und 90 %, vorzugsweise 40 bis 80 % des Querschnitts des knöchernen Betts ausmacht.
5. Prothesenkomponente nach einem der Ansprüche 1 bis 4, wobei der Umfang des Querschnittes der Prothese bei der zementierten Prothese konstant 60 bis 80 %, bei der ze¬ mentfreien Prothese 70 bis 95 %, vorzugsweise 80 bis 90 % der inneren Kontur des knöchernen Betts ausmacht.
Prothesenkomponente nach einem der Ansprüche 1 bis 5, wobei sich die spezifische Masse der Prothese bzw. ihre spezifische Steifigkeit jeweils proportional zur Kno¬ chendichte verhält.
Prothesenkomponente nach einem der Ansprüche 1 bis 6, wobei als Material der Prothese eine CoCrMo-Legierung, Titan oder eine Titanlegierung, Stahl oder Kunststoff oder ein Verbundwerkstoff verwandt wird.
8. Verfahren zur Herstellung einer Prothesenkomponente nach einem der Ansprüche 1 bis 7, wobei die Schaftform der
Prothese zunächst an die Form des knöchernen Betts ange¬ paßt wird, wobei das knöcherne Bett aus einer Serie von Schnitten dreidimensional rekonstruiert und ein Kontur¬ modell des Knochens mit äußeren und inneren Konturen er- halten wird.
9. Verfahren nach Anspruch 8, wobei die Schnitte computer- tomographische Schnitte oder Kernspinschnitte oder hi¬ stologische Schnitte sind.
10. Verfahren nach Anspruch 8 oder 9, wobei bei der Rekon¬ struktion des knöchernen Betts Stapelbilder der einzel¬ nen Schnitte digitalisiert und elektronisch gespeichert und anschließend, z.B. über Binärbilder, zu dem Kontur- modeil verarbeitet werden.
11. Verfahren nach einem der Ansprüche 8 bis 10, wobei an einzelnen Schnitten Knochendichten ermittelt werden, aus denen bestimmte Flächenverhältnisse von Prothesenschaft- querschnitt und Querschnitt des knöchernen Betts festge¬ legt werden.
12. Verfahren nach Anspruch 11, wobei die Knochendichte pro Flächeneinheit, verglichen mit der korrespondierenden spezifischen Flächendichte eines Normalknochens, einen Faktor ergibt, der als Korrelationεfaktor der Festigkeit des Knochens bei der Bestimmung des Verhältnisses von Prothesenquerschnitt zu Querschnitt des knöchernen Betts verwendet wird.
13. Verfahren nach Anspruch 12, wobei das innere Konturmo¬ dell entsprechend dem Korrelationsfaktor bei der zemen- tierten Prothese um 20 bis 50 %, bei der zementfreien von 1 bis 20 %, vorzugsweise 5 bis 10 % im Querschnitt verkleinert wird, und zwar z.B. entweder exzentrisch oder konzentrisch, oder entlang der Konstruktionsachse der Prothese wechselnd exzentrisch und konzentrisch.
14. Verfahren nach einem der Ansprüche 8 bis 13, wobei die Daten des Konturmodelles der Prothese an eine CAD/CAM- Einheit oder ein ähnliches Konstruktionssystem übertra- gen werden und dort in der Weise verarbeitet werden, daß das Konturmodell der Prothese so in das Konturmodell des Knochens eingepaßt wird, daß es entlang einer Implanta¬ tionsachse geradlinig und/oder mit einer Schraubbewegung implantiert werden kann.
15. Verfahren nach einem der Ansprüche 9 bis 14, wobei aus der gemittelten Dichte einzelner Knochenschnitte die Masse und/oder der Steifigkeit den Prothese in der Weise festgelegt wird, daß sie sich proportional zur Dichte des Knochens verhält und daß sich die Knochenzement¬ schichtdicke der Zementscheide etwa umgekehrt proportio¬ nal zur Knochendichte verhält.
16. Prothesenkomponente zur Verankerung mit oder ohne Kno¬ chenzement im epiphysären, meta- oder diaphysären Kno¬ chenabschnitt, herstellbar mit einem Verfahren nach ei¬ nem der Ansprüche 8 bis 15.
EP93909838A 1992-04-24 1993-04-26 Prothesenkomponente und verfahren zu ihrer herstellung Withdrawn EP0637231A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4213597A DE4213597A1 (de) 1992-04-24 1992-04-24 Mit Knochenzement zu verankernde Femurprothesenkomponente und Verfahren zu ihrer Herstellung
DE4213599A DE4213599A1 (de) 1992-04-24 1992-04-24 Prothesenkomponente und Verfahren zu ihrer Herstellung
DE4213598A DE4213598A1 (de) 1992-04-24 1992-04-24 Zementfreie Femurprothesenkomponente und Verfahren zu ihrer Herstellung
DE4213599 1992-04-24
PCT/EP1993/001002 WO1993021863A1 (de) 1992-04-24 1993-04-26 Prothesenkomponente und verfahren zu ihrer herstellung

Publications (1)

Publication Number Publication Date
EP0637231A1 true EP0637231A1 (de) 1995-02-08

Family

ID=27203664

Family Applications (3)

Application Number Title Priority Date Filing Date
EP93909838A Withdrawn EP0637231A1 (de) 1992-04-24 1993-04-26 Prothesenkomponente und verfahren zu ihrer herstellung
EP93909839A Withdrawn EP0637232A1 (de) 1992-04-24 1993-04-26 Zementfreie femurprothesenkomponente und verfahren zu ihrer herstellung
EP93909837A Withdrawn EP0637230A1 (de) 1992-04-24 1993-04-26 Mit knochenzement zu verankernde femurprothesenkomponente und verfahren zu ihrer herstellung

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP93909839A Withdrawn EP0637232A1 (de) 1992-04-24 1993-04-26 Zementfreie femurprothesenkomponente und verfahren zu ihrer herstellung
EP93909837A Withdrawn EP0637230A1 (de) 1992-04-24 1993-04-26 Mit knochenzement zu verankernde femurprothesenkomponente und verfahren zu ihrer herstellung

Country Status (5)

Country Link
US (1) US5554190A (de)
EP (3) EP0637231A1 (de)
JP (3) JPH07508189A (de)
DE (3) DE4213599A1 (de)
WO (3) WO1993021862A1 (de)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4304570A1 (de) * 1993-02-16 1994-08-18 Mdc Med Diagnostic Computing Vorrichtung und Verfahren zur Vorbereitung und Unterstützung chirurgischer Eingriffe
WO1995007509A1 (en) * 1993-09-10 1995-03-16 The University Of Queensland Stereolithographic anatomical modelling process
DE4406230C1 (de) * 1994-02-25 1995-08-31 Fehling Medical Ag Hüfttotalendoprothese
US8617242B2 (en) 2001-05-25 2013-12-31 Conformis, Inc. Implant device and method for manufacture
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US7534263B2 (en) * 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US6459927B1 (en) * 1999-07-06 2002-10-01 Neutar, Llc Customizable fixture for patient positioning
US6165193A (en) * 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US9289153B2 (en) * 1998-09-14 2016-03-22 The Board Of Trustees Of The Leland Stanford Junior University Joint and cartilage diagnosis, assessment and modeling
ATE439806T1 (de) 1998-09-14 2009-09-15 Univ Leland Stanford Junior Zustandsbestimmung eines gelenks und schadenvorsorge
US7239908B1 (en) * 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US20070233272A1 (en) * 1999-02-23 2007-10-04 Boyce Todd M Shaped load-bearing osteoimplant and methods of making same
US8133421B2 (en) * 1999-02-23 2012-03-13 Warsaw Orthopedic, Inc. Methods of making shaped load-bearing osteoimplant
DE19922279A1 (de) 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Verfahren zur Generierung patientenspezifischer Implantate
US9208558B2 (en) 1999-08-11 2015-12-08 Osteoplastics Llc Methods and systems for producing an implant
US8781557B2 (en) 1999-08-11 2014-07-15 Osteoplastics, Llc Producing a three dimensional model of an implant
AU6634800A (en) 1999-08-11 2001-03-05 Case Western Reserve University Method and apparatus for producing an implant
EP1226553A2 (de) 1999-11-03 2002-07-31 Case Western Reserve University System und verfahren zur erzeugung eines drei-dimensionalen models
US6712856B1 (en) 2000-03-17 2004-03-30 Kinamed, Inc. Custom replacement device for resurfacing a femur and method of making the same
US20030127181A1 (en) * 2000-03-17 2003-07-10 3M Innovative Properties Company Image graphic system comprising a highly tacky adhesive and method for using same
EP1296809B1 (de) * 2000-07-04 2004-10-13 3di GmbH Verfahren zur naturgetreuen herstellung medizinischer implantate und epithesen und danach hergestellte implantate und epithesen
DE60136474D1 (de) 2000-09-14 2008-12-18 Univ R Beurteilung des zustandes eines gelenkes und des verlustes von knorpelgewebe
ATE426357T1 (de) 2000-09-14 2009-04-15 Univ Leland Stanford Junior Beurteilung des zustandes eines gelenkes und planung einer behandlung
AU2002214869A1 (en) * 2000-10-31 2002-05-15 Centre National De La Recherche Scientifique (C.N.R.S.) High precision modeling of a body part using a 3d imaging system
ATE431111T1 (de) * 2001-02-27 2009-05-15 Smith & Nephew Inc Vorrichtung zur totalen knierekonstruktion
CA2447694A1 (en) 2001-05-25 2002-12-05 Imaging Therapeutics, Inc. Methods and compositions for articular resurfacing
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1555962B1 (de) 2002-10-07 2011-02-09 Conformis, Inc. Minimal invasives gelenkimplantat mit einer den gelenkflächen angepassten dreidimensionalen geometrie
CA2505371A1 (en) 2002-11-07 2004-05-27 Conformis, Inc. Methods for determining meniscal size and shape and for devising treatment
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
TWI584796B (zh) 2006-02-06 2017-06-01 康福美斯公司 患者可選擇式關節置換術裝置及外科工具
US10278711B2 (en) 2006-02-27 2019-05-07 Biomet Manufacturing, Llc Patient-specific femoral guide
US8608749B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US8092465B2 (en) 2006-06-09 2012-01-10 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US8407067B2 (en) 2007-04-17 2013-03-26 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US8864769B2 (en) 2006-02-27 2014-10-21 Biomet Manufacturing, Llc Alignment guides with patient-specific anchoring elements
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US8473305B2 (en) 2007-04-17 2013-06-25 Biomet Manufacturing Corp. Method and apparatus for manufacturing an implant
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8070752B2 (en) 2006-02-27 2011-12-06 Biomet Manufacturing Corp. Patient specific alignment guide and inter-operative adjustment
US8535387B2 (en) 2006-02-27 2013-09-17 Biomet Manufacturing, Llc Patient-specific tools and implants
US8133234B2 (en) 2006-02-27 2012-03-13 Biomet Manufacturing Corp. Patient specific acetabular guide and method
US8377066B2 (en) 2006-02-27 2013-02-19 Biomet Manufacturing Corp. Patient-specific elbow guides and associated methods
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US8298237B2 (en) 2006-06-09 2012-10-30 Biomet Manufacturing Corp. Patient-specific alignment guide for multiple incisions
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8282646B2 (en) 2006-02-27 2012-10-09 Biomet Manufacturing Corp. Patient specific knee alignment guide and associated method
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US8608748B2 (en) 2006-02-27 2013-12-17 Biomet Manufacturing, Llc Patient specific guides
US8568487B2 (en) 2006-02-27 2013-10-29 Biomet Manufacturing, Llc Patient-specific hip joint devices
US8603180B2 (en) 2006-02-27 2013-12-10 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US20150335438A1 (en) 2006-02-27 2015-11-26 Biomet Manufacturing, Llc. Patient-specific augments
US8858561B2 (en) 2006-06-09 2014-10-14 Blomet Manufacturing, LLC Patient-specific alignment guide
US7967868B2 (en) 2007-04-17 2011-06-28 Biomet Manufacturing Corp. Patient-modified implant and associated method
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
GB0622930D0 (en) * 2006-11-16 2006-12-27 Benoist Girard Sas One-piece short femoral prosthesis
WO2008157412A2 (en) 2007-06-13 2008-12-24 Conformis, Inc. Surgical cutting guide
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
US8425523B2 (en) 2007-09-30 2013-04-23 DePuy Synthes Products, LLC Customized patient-specific instrumentation for use in orthopaedic surgical procedures
US8357111B2 (en) 2007-09-30 2013-01-22 Depuy Products, Inc. Method and system for designing patient-specific orthopaedic surgical instruments
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
WO2009140294A1 (en) 2008-05-12 2009-11-19 Conformis, Inc. Devices and methods for treatment of facet and other joints
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US8170641B2 (en) 2009-02-20 2012-05-01 Biomet Manufacturing Corp. Method of imaging an extremity of a patient
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
EP2405865B1 (de) 2009-02-24 2019-04-17 ConforMIS, Inc. Automatisierte systeme zur herstellung von individuell an den patienten angepassten implantaten und instrumenten
US8808297B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US8808303B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
SG10201401326SA (en) 2009-04-16 2014-10-30 Conformis Inc Patient-specific joint arthroplasty devices for ligament repair
DE102009028503B4 (de) 2009-08-13 2013-11-14 Biomet Manufacturing Corp. Resektionsschablone zur Resektion von Knochen, Verfahren zur Herstellung einer solchen Resektionsschablone und Operationsset zur Durchführung von Kniegelenk-Operationen
CA2782137A1 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9066727B2 (en) 2010-03-04 2015-06-30 Materialise Nv Patient-specific computed tomography guides
ITRM20100036U1 (it) * 2010-03-15 2011-09-16 Paolo Palombi Stelo protesico femorale a presa dorsale
US11865785B2 (en) 2010-08-20 2024-01-09 H. David Dean Continuous digital light processing additive manufacturing of implants
CA2808535C (en) 2010-08-20 2017-10-03 Case Western Reserve University Continuous digital light processing additive manufacturing of implants
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
WO2012112698A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US8715289B2 (en) 2011-04-15 2014-05-06 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9675400B2 (en) 2011-04-19 2017-06-13 Biomet Manufacturing, Llc Patient-specific fracture fixation instrumentation and method
US8668700B2 (en) 2011-04-29 2014-03-11 Biomet Manufacturing, Llc Patient-specific convertible guides
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
JP2014522263A (ja) 2011-05-11 2014-09-04 マイクロベンション インコーポレイテッド 内腔を閉塞するためのデバイス
US8532807B2 (en) 2011-06-06 2013-09-10 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US8764760B2 (en) 2011-07-01 2014-07-01 Biomet Manufacturing, Llc Patient-specific bone-cutting guidance instruments and methods
US20130001121A1 (en) 2011-07-01 2013-01-03 Biomet Manufacturing Corp. Backup kit for a patient-specific arthroplasty kit assembly
US8597365B2 (en) 2011-08-04 2013-12-03 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
WO2013062848A1 (en) 2011-10-27 2013-05-02 Biomet Manufacturing Corporation Patient-specific glenoid guides
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
KR20130046337A (ko) 2011-10-27 2013-05-07 삼성전자주식회사 멀티뷰 디바이스 및 그 제어방법과, 디스플레이장치 및 그 제어방법과, 디스플레이 시스템
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9486226B2 (en) 2012-04-18 2016-11-08 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
US8906108B2 (en) * 2012-06-18 2014-12-09 DePuy Synthes Products, LLC Dual modulus hip stem and method of making the same
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US20150112349A1 (en) 2013-10-21 2015-04-23 Biomet Manufacturing, Llc Ligament Guide Registration
US10282488B2 (en) 2014-04-25 2019-05-07 Biomet Manufacturing, Llc HTO guide with optional guided ACL/PCL tunnels
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10568647B2 (en) 2015-06-25 2020-02-25 Biomet Manufacturing, Llc Patient-specific humeral guide designs
US10722310B2 (en) 2017-03-13 2020-07-28 Zimmer Biomet CMF and Thoracic, LLC Virtual surgery planning system and method
EP3498227B1 (de) * 2017-12-12 2020-11-04 Tornier Schulterprothesenkomponente wie etwa eine humeruskomponente oder eine glenoidkomponente für einen patienten und verfahren zur herstellung solch einer schulterprothesenkomponente für einen patienten
US11051829B2 (en) 2018-06-26 2021-07-06 DePuy Synthes Products, Inc. Customized patient-specific orthopaedic surgical instrument
US12108959B2 (en) 2019-05-29 2024-10-08 Wright Medical Technology, Inc. Preparing a tibia for receiving tibial implant component of a replacement ankle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893196A (en) * 1970-08-06 1975-07-08 Robert F Hochman Body implant material
FR2438469A1 (fr) * 1978-10-11 1980-05-09 Tornier Sa Ets Prothese de la hanche a tige femorale elastique
DE3213434C1 (de) * 1982-04-10 1983-10-27 Günther Dr.med. 7400 Tübingen Aldinger Verfahren zur Herstellung individuell gestalteter Endoprothesen oder Implantate
US4436684A (en) * 1982-06-03 1984-03-13 Contour Med Partners, Ltd. Method of forming implantable prostheses for reconstructive surgery
US4936862A (en) * 1986-05-30 1990-06-26 Walker Peter S Method of designing and manufacturing a human joint prosthesis
DE3626549A1 (de) * 1986-08-06 1988-02-11 Mecron Med Prod Gmbh Verfahren zur herstellung einer endoprothese mit individueller anpassung
DE3627097A1 (de) * 1986-08-09 1988-02-18 S & G Implants Gmbh Stiel fuer gelenk-endoprothesen
DE3715000A1 (de) * 1987-05-06 1988-11-17 Krupp Gmbh Gelenkprothese und verfahren zu ihrer herstellung
US4873707A (en) * 1987-09-11 1989-10-10 Brigham & Women's Hospital X-ray tomography phantoms, method and system
DE3743329C1 (en) * 1987-12-21 1989-06-22 Krupp Gmbh Endoprosthesis hollow stem for cement-free implantation
WO1989010730A1 (en) * 1988-05-11 1989-11-16 Dall Desmond Meiring Hip joint femoral prosthesis
CH676196A5 (de) * 1988-08-30 1990-12-28 Sulzer Ag
DE58909862D1 (de) * 1988-09-09 1999-12-16 Klaus Draenert Hüftgelenksprothese
EP0425714A1 (de) * 1989-10-28 1991-05-08 Metalpraecis Berchem + Schaberg Gesellschaft Für Metallformgebung Mbh Verfahren zur Herstellung einer Implantat-Gelenkprothese
US5274565A (en) * 1990-10-03 1993-12-28 Board Of Regents, The University Of Texas System Process for making custom joint replacements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9321863A1 *

Also Published As

Publication number Publication date
DE4213599A1 (de) 1993-10-28
JPH07508191A (ja) 1995-09-14
JPH07508189A (ja) 1995-09-14
WO1993021863A1 (de) 1993-11-11
EP0637230A1 (de) 1995-02-08
WO1993021862A1 (de) 1993-11-11
US5554190A (en) 1996-09-10
WO1993021864A1 (de) 1993-11-11
DE4213597A1 (de) 1993-10-28
JPH07508190A (ja) 1995-09-14
EP0637232A1 (de) 1995-02-08
DE4213598A1 (de) 1993-10-28

Similar Documents

Publication Publication Date Title
EP0637231A1 (de) Prothesenkomponente und verfahren zu ihrer herstellung
EP0093869B1 (de) Individuell gestaltete Gelenkendoprothesen
DE3689260T2 (de) Femurkopf-prothese.
US5824083A (en) Cement-free femoral prosthesis component and method of producing it
DE69225472T2 (de) Längliche hüftpfannenschale
DE60208569T2 (de) Modulare zwischenwirbelfusionierungseinrichtung und herstellungsverfahren dafür
DE69208350T2 (de) Röhrenförmige Gerüststruktur für den Ersatz von langen Knochenteilen
DE60214307T2 (de) Hüftgelenkspfanne
DE69715264T2 (de) Knochenprothese
DE3889621T2 (de) Verfahren zur Formgebung einer Endoprothese.
DE69728001T2 (de) Prothese mit veränderbarer Passungs- und Spannungsverteilung
DE69425015T2 (de) Femurkomponente für eine Hüftprothese
EP3277227B1 (de) Gelenkimplantatteil, gelenkendoprothese und verfahren zum herstellen eines gelenkimplantatteils und einer gelenkendoprothese
EP1917051B1 (de) Spongiös-metallisches implantat und verfahren zu seiner herstellung
EP2344087A1 (de) Implantat zur fusion von wirbelsäulensegmenten
DE8105177U1 (de) Implantat als Ersatz für spongiöse Knochen
DE4421153A1 (de) Verfahren zur Herstellung einer Prothese
EP0013863A1 (de) Zementfrei einsetzbare Schalenprothese, insbesondere für das Hüftgelenk
WO1998052498A1 (de) Knochen- und knorpel-ersatzstrukturen
WO2007118856A1 (de) Implantat fuer die rueckenchirurgie
EP1168989B1 (de) Gelenkkopfprothese und bausatz zur bildung einer solchen
EP1776068B1 (de) Hüftgelenkprothese mit einem in den oberschenkelknochen einzusetzenden schaft
DE10043107C1 (de) Handgelenksendoprothese
EP1592369B1 (de) Hüftgelenkprothese mit einem in den oberschenkelknochen ein zusetzenden schaft
DE4223373C2 (de) Endoprothesenschaft für Kniegelenke und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19960522

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000301