EP0635587B1 - Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigem Überzug - Google Patents

Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigem Überzug Download PDF

Info

Publication number
EP0635587B1
EP0635587B1 EP94108425A EP94108425A EP0635587B1 EP 0635587 B1 EP0635587 B1 EP 0635587B1 EP 94108425 A EP94108425 A EP 94108425A EP 94108425 A EP94108425 A EP 94108425A EP 0635587 B1 EP0635587 B1 EP 0635587B1
Authority
EP
European Patent Office
Prior art keywords
lead
electrode
coating
copper
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94108425A
Other languages
English (en)
French (fr)
Other versions
EP0635587A1 (de
Inventor
David Dr. Sopher
Andreas Dr. Gieseler
Hartmut Dr. Hibst
Klaus Dr. Harth
Peter Dr. Jaeger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP97122734A priority Critical patent/EP0931856A3/de
Publication of EP0635587A1 publication Critical patent/EP0635587A1/de
Application granted granted Critical
Publication of EP0635587B1 publication Critical patent/EP0635587B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • C25B3/295Coupling reactions hydrodimerisation

Definitions

  • the present invention relates to an improved electrode, consisting essentially of an electrically conductive core Iron and an electrically conductive coating from essentially Lead.
  • the present invention also relates to methods of manufacture the electrode according to the invention, its use for reductive coupling of olefinic reactants and a improved process for the reductive coupling of olefinic Reaction partners.
  • ADN acrylonitrile to adiponitrile
  • US-A 3,193,481 describes US-A 3,193,482 and US-A 3,193,483 the electrochemical manufacture of ADN in a divided cell, with pure cathode Lead is used.
  • Organic Electrochemistry Edit. Baizer and Lund, Marcel Dekker, New York, 1984, 986, becomes analog Manufacture of ADN a lead cathode containing 7% by weight Antimony used.
  • DE-A 2,338,341 describes the use of pure lead cathodes in undivided electrochemical cells for the production of ADN.
  • the disadvantage of the electrodes mentioned above is that regardless of whether the cathodes are made of lead or another Material, such as cadmium, are built up the anodes and corrode cathodes during the reaction and thereby disturbing Produce degradation products that include for deposits on the electrodes being able to lead.
  • these deposits can the electrohydrodimerization of acrylonitrile to a decrease selectivity for adiponitrile and increased Lead to hydrogen formation. It is therefore important to avoid deposits, caused by electrode degradation, i.a. on the cathode surface, to prevent.
  • the object of the present invention was therefore an electrode with a cathode consisting of lead or lead alloys increased resistance to corrosion put.
  • adiponitrile more economical through electrohydrodimerization of acrylonitrile and be made more environmentally friendly.
  • an electrode consisting of an electrical conductive core of essentially iron and an electrical conductive, single layer coating of lead and 0.3 to 3.5 wt .-% copper and optionally other elements selected from the group silver, selenium, tellurium, bismuth and antimony, found.
  • the electrode according to the invention consists of an electrically conductive Core of essentially iron and an electrically conductive, single-layer coating of lead and 0.3 to 3.5% by weight Copper and optionally further elements selected from the Group of silver, selenium, tellurium, bismuth and antimony.
  • the design of the electrodes is also not critical, so that the specialist from the variety of common electrode types such as plane-parallel plates, pipes, nets and disks suitable electrode types can choose. It is preferred to choose plane-parallel ones Plates.
  • the electrically conductive coating consists of Lead and 0.3 to 3.5% by weight copper.
  • the coating can other elements such as silver, selenium, tellurium, bismuth and antimony in amounts up to 3.5% by weight, preferably from 0.5 to 2% by weight, particularly preferably from 0.8 to 1.5% by weight.
  • Prefers is a coating with the following according to the previous observations Composition: 96.5 to 99.5, preferably 98 to 99.5% by weight Lead, 0.3 to 3, preferably 0.5 to 2% by weight copper, 0 to 3, preferably 0 to 2% by weight of silver and / or bismuth and / or selenium and / or tellurium and / or antimony.
  • the electrically conductive coating can be made by the usual methods be applied. Application is particularly preferred by electroplating, i.e. electrolytically, and by physical Deposition process selected from the group consisting of Vapor deposition, sputtering ("sputtering", i.e. metal vapor deposition) or arc coating.
  • electroplating i.e. electrolytically, and by physical Deposition process selected from the group consisting of Vapor deposition, sputtering ("sputtering", i.e. metal vapor deposition) or arc coating.
  • an electroplating bath with an iron or Sheet steel as the cathode and a lead as the anode, being the two electrodes are advantageously arranged parallel to one another are (see “Modern Electroplating”).
  • the electrolyte solution usually contains what is to be separated Lead and, if desired, other elements in the form of their water-soluble Salts.
  • An aqueous silicic hydrofluoric acid, an aqueous fluoroborate or a C 1 -C 4 alkanesulfonic acid solution such as methane, ethane, propane or butanesulfonic acid solution, preferably methanesulfonic acid solution, is preferably used as the electrolyte solution.
  • the electrolyte solution is generally present essentially from lead fluoroborate.
  • the electrolytic solution still contains common auxiliaries such as fluoroboric acid, Boric acid and common organic additives such as a peptone, resorcinol or hydroquinone to achieve fine-grained, smooth precipitates.
  • lead fluoroborate is used in concentrations in the range from 5 to 500 g / l, preferably from 20 to 400 g / l, and copper in the form of its fluoroborate salt, oxide, hydride or Carbonates in concentrations ranging from 0.1 to 10, preferably from 0.5 to 10 g / l.
  • Fluoroboric acid is generally used in the range from 10 to 150, preferably from 15 to 90 g / l a.
  • Boric acid is usually used in the range from 5 to 50, preferably from 10 to 30 g / l.
  • Uses common organic additives one generally in amounts in the range of 0.1 to 5 g / l.
  • the other elements possible in addition to lead and copper such as silver, selenium, tellurium, bismuth and / or antimony expedient in the form of their fluoroborate salts, oxides, hydroxides or Carbonates in concentrations ranging from 0.1 to 10, preferably from 0.5 to 10 g / l.
  • lead is usually used in the form of its salt of methanesulfonic acid in amounts in the range from 10 to 200, preferably from 10 to 60 g / l and copper in the form of the corresponding C 1 -C 4 -alkanesulfonic acid salt, oxide, hydroxide or carbonate in amounts in the range from 0.1 to 20, preferably from 0.5 to 10 g / l.
  • the electrolyte solution also contains customary auxiliaries such as the corresponding C 1 -C 4 -alkanesulfonic acid, usually methanesulfonic acid, in an amount in the range from 20 to 150, preferably from 30 to 80 g / l, and surfactants, for example such based on alkylphenol ethoxylates such as Lutensol® AP 10 (BASF AG), in amounts in the range from 1 to 20, preferably from 5 to 15 g / l.
  • auxiliaries such as the corresponding C 1 -C 4 -alkanesulfonic acid, usually methanesulfonic acid, in an amount in the range from 20 to 150, preferably from 30 to 80 g / l
  • surfactants for example such based on alkylphenol ethoxylates such as Lutensol® AP 10 (BASF AG), in amounts in the range from 1 to 20, preferably from 5 to 15 g / l.
  • the electrode coating can contain the elements already listed above, such as silver, selenium, tellurium, bismuth and / or antimony, which are expediently in the form of their corresponding C 1 -C 4 -alkanesulfonic acid salts, oxides, hydroxides or carbonates in amounts in the range from 0.1 to 20, preferably from 0.5 to 10 g / l, to the electrolyte solution.
  • elements already listed above such as silver, selenium, tellurium, bismuth and / or antimony, which are expediently in the form of their corresponding C 1 -C 4 -alkanesulfonic acid salts, oxides, hydroxides or carbonates in amounts in the range from 0.1 to 20, preferably from 0.5 to 10 g / l, to the electrolyte solution.
  • a DC voltage of 0.5 to 20, preferably 1 to 10 volts is generally applied to the electrodes.
  • the current density during the electroplating is generally in the range from 1 to 200, preferably from 5 to 40 mA / cm 2 .
  • the duration of the electroplating depends on the chosen reaction parameters and the desired layer thickness of the coating from and is usually in the range of 0.5 to 10 hours. In general you choose the layer thickness in the range of 1 to 500, preferably from 20 to 200 ⁇ m.
  • the temperature during the electroplating is preferably chosen in the range from 10 to 70 ° C., the reaction is preferably carried out Room temperature through.
  • the selected pressure range is generally not critical, preferred one works at atmospheric pressure.
  • the pH value essentially depends on the electrolytes used and additives and is usually in the range from 0 to 2nd
  • pulse current techniques Pulsed current techniques
  • Another preferred embodiment is galvanic Deposition in a through an ion exchange membrane such as Cation or anion exchange membrane, preferably an anion exchange membrane, divided cell.
  • an ion exchange membrane such as Cation or anion exchange membrane, preferably an anion exchange membrane, divided cell. This procedure has the advantage that unwanted deposits are used further Elements, especially copper, on the anode are suppressed can.
  • any suitable one can be used as a galvanizing cell
  • the process parameters are in general with the identical above.
  • anion exchange membranes can be used as the anion exchange membrane such as Selemion® AMV (Asahi Glass), Neosepta® ACH 45T AM1, -AM2, -AM3 (Tokoyama Soda) or Aciplex® A 101, -102 Use (Asahi Chemical).
  • the production can of the electrodes according to the invention also by physical deposition processes such as vapor deposition, sputtering ("sputtering") or carry out an arc coating.
  • physical deposition processes such as vapor deposition, sputtering ("sputtering") or carry out an arc coating.
  • Cathode sputtering allows the layer thickness of the electrode coating in the range between 5 Angstroms and 100 ⁇ m. Furthermore, cathode sputtering allows simple and reproducible production of a multi-component layer, according to the previous knowledge, no limitation regarding the number of elements applied can be observed.
  • the microstructure of the electrode coating can be influenced by means of sputtering by varying the process gas pressure and / or by applying a negative bias (bias).
  • bias a process gas pressure in the range of 4 * 10 -3 to 8 * 10 -3 mbar leads to a very dense, fine-crystalline layer with high corrosion stability.
  • the coating material is generally applied in solid form as a so-called target to the cathode of a plasma system, then under reduced pressure, for example from 1 * 10 -4 to 1 mbar, preferably 5 * 10 -4 to 5 * 10 -2 mbar , atomized in a process gas atmosphere by applying a plasma and deposited on the substrate to be coated (anode) (see RFBhunshah et al., "Deposition Technologies for Films and Coatings", Noyes Publications, 1982).
  • at least one noble gas such as helium, neon or argon, preferably argon, is selected as the process gas.
  • the plasma usually consists of charged (ions and electrons) and neutral (partly radical) components of the process gas, which interact with each other via shock and radiation processes stand.
  • Various methodological methods can be used to produce the electrode coating Variants of cathode sputtering such as magnetron sputtering, DC and RF sputtering or bias sputtering and their combinations be applied.
  • Magnetron sputtering is in the Rule the target to be atomized in an external magnetic field, which concentrates the plasma in the area of the target and thus increasing the atomization rate.
  • DC or RF sputtering is generally used to excite the sputtering plasma by a direct voltage (DC) or by an alternating voltage (RF), for example with a frequency in the range of 10 kHz to 100 MHz, preferably 13.6 MHz.
  • Bias sputtering is usually the substrate to be coated with a in the Usually negative bias (bias) proves which in general during the coating for an intensive bombardment of the substrate leads with ions.
  • Suitable targets are, for example homogeneous alloy targets in a known manner can be produced by melting or powder metallurgical processes are, and inhomogeneous mosaic targets that are usually caused by Assembling smaller sections of different chemical Composition or by placing or sticking small ones disc-shaped pieces of material can be produced on homogeneous targets are.
  • homogeneous alloy targets in a known manner can be produced by melting or powder metallurgical processes are, and inhomogeneous mosaic targets that are usually caused by Assembling smaller sections of different chemical Composition or by placing or sticking small ones disc-shaped pieces of material can be produced on homogeneous targets are.
  • the desired layer thickness and the chemical composition and the microstructure of the electrode coating are essentially through the process gas pressure, the atomization performance, the sputtering mode, to influence the substrate temperature and the coating time.
  • the atomizing power is the power for excitation of the plasma is used, and is usually in the range from 50 W to 10 kW.
  • the substrate temperature is generally chosen in the range from Room temperature to 350, preferably from 150 to 250 ° C.
  • the coating time essentially depends on the desired Layer thickness. Typical coating rates for sputtering are usually in the range of 0.1 to 100 nm / s.
  • Another preferred embodiment is the production of the electrode coating by vapor deposition (see L. Holland, Vacuum Deposition of Thin Films, Chapman and Hay Ltd., 1970).
  • the coating material is expediently introduced in a manner known per se into a suitable evaporation source, such as electrically heated evaporator boats or electron beam evaporators.
  • the coating material is then evaporated under reduced pressure, usually in the range from 10 -7 to 10 -3 mbar, the desired coating being formed on the electrode introduced in the vacuum system.
  • the evaporation material can be used in the production of multi-component layers either in the appropriate composition a common source or simultaneously from different sources be evaporated.
  • Typical coating rates during evaporation are in general in the range from 10 nm / s to 10 ⁇ m / s.
  • that to be coated can be Substrate before or during the vapor deposition process an RF plasma or using a conventional ion gun Bombarded to the microstructure and the adhesion of the ions To improve layers. You can also see the microstructure and also affect the adhesion of the layers by heating the substrate.
  • the electrodes according to the invention can be used for reductive coupling of olefinic reactants.
  • olefinic reactants usually the olefinic reactants by electrohydrodimerization according to conventional reaction methods brought by being in an electrolytic cell with an anode and exposed to an electrode according to the invention as a cathode of electrolysis will.
  • R 1 R 2 C CR 3 X in which R 1 , R 2 and R 3 are the same or different hydrogen or C 1 -C 4 alkyl, such as methyl, ethyl, n-propyl , i-Propyl, n-butyl, i-butyl, sec-butyl or tert-butyl, and X is -CN, -CONR 1 R 2 or -COOR 1 .
  • Examples include olefinic nitriles such as acrylonitrile, methacrylonitrile, crotononitrile, 2-Methylenbutyronitril, 2-pentenenitrile, 2-Methylenvalerian Textrenitril or 2-Methylenhexanklarenitril, olefinic carboxylates such as acrylate, methyl or Ethylacryl Acidester olefinic carboxamides such as acrylamide, methacrylamide, N, N-dimethyl - or N, N-diethylacrylamide, particularly preferably acrylonitrile.
  • one provides with the help of the electrodes according to the invention adiponitrile Electrohydrodimerization from acrylonitrile.
  • the following information therefore refer to this procedure.
  • the type of electrolysis cell is based on previous observations uncritical, so that the specialist from the spectrum of commercially available Can choose electrolytic cells.
  • a preferred embodiment the undivided cell represents the electrolytic cell represents, especially plate stack cells or capillary gap cells to be favoured.
  • Such cells are, for example, in J. Electrochem. Soc. 131 (1984) 435c and J. Appl. Electrochemical. 2 (1972) 59 described in detail.
  • Known anodes can be used as the anode, preferably with undivided ones
  • Cells are usually made of materials with less Oxygen overvoltage, for example carbon steel, steel, Platinum, nickel, magnetite, lead, lead alloys or lead dioxide, a (see Hydrocarbon Processing (1981) 161).
  • the electrodes according to the invention are used as cathodes with a composition of the following type according to the previous ones Observations can preferably use: 96.5 to 100, preferably 98 to 99.5% by weight of lead, 0.3 to 3, preferably 0.5 up to 2% by weight copper, 0 to 3, preferably 0 to 2% by weight silver and / or bismuth and / or selenium and / or tellurium and / or antimony.
  • the electrolyte solution usually contains a conductive salt, in particular in the manufacture of adiponitrile, otherwise in usually propionitrile becomes the main product and with an increased one Hydrogen formation is to be expected.
  • a conductive salt in particular in the manufacture of adiponitrile, otherwise in usually propionitrile becomes the main product and with an increased one Hydrogen formation is to be expected.
  • the conducting salt in an amount in the range of 1 to 100 mmol / kg aqueous electrolyte solution, preferably from 5 to 50 mmol / kg.
  • Suitable conductive salts are: quaternary Ammonium compounds such as tetrabutylammonium salts, ethyltributylammonium salts, quaternary phosphonium salts and bisquaternaries Ammonium and phosphonium salts such as hexamethylene bis (dibutylethylammonium hydroxide) (see Hydrocarbon Processing 161 (1981); J. Electrochem. Soc. 131 (1984) 435c).
  • quaternary Ammonium compounds such as tetrabutylammonium salts, ethyltributylammonium salts, quaternary phosphonium salts and bisquaternaries Ammonium and phosphonium salts such as hexamethylene bis (dibutylethylammonium hydroxide) (see Hydrocarbon Processing 161 (1981); J. Electrochem. Soc. 131 (1984) 435c).
  • the electrolyte solution usually contains one Buffers such as hydrogen phosphate, hydrogen carbonate, preferably in the form their sodium salts, particularly preferably disodium hydrogen phosphate, in an amount ranging from 10 to 150, preferably from 30 to 100 g / kg aqueous electrolyte solution.
  • Buffers such as hydrogen phosphate, hydrogen carbonate, preferably in the form their sodium salts, particularly preferably disodium hydrogen phosphate, in an amount ranging from 10 to 150, preferably from 30 to 100 g / kg aqueous electrolyte solution.
  • the electrolyte solution preferably contains an anode corrosion inhibitor like the borates known for this purpose (see Hydrocarbon Processing (1981) 161), preferably disodium diborate and orthoboric acid, in an amount in the range of 5 to 50, preferred from 10 to 30 g / kg aqueous electrolyte solution.
  • anode corrosion inhibitor like the borates known for this purpose (see Hydrocarbon Processing (1981) 161), preferably disodium diborate and orthoboric acid, in an amount in the range of 5 to 50, preferred from 10 to 30 g / kg aqueous electrolyte solution.
  • the electrolyte solution preferably contains a complexing agent, to prevent the precipitation of iron and lead ions.
  • a complexing agent examples include ethylenediaminetetraacetate (“EDTA”), triethanolamine (“TEOA”), nitrilotriacetate, preferred EDTA in an amount ranging from 0 to 50, preferably 2 to 10 g / kg aqueous electrolyte solution, and / or TEOA in an amount in the range of 0 to 10, preferably 0.5 to 3 g / kg more aqueous Electrolyte solution.
  • Acrylonitrile is generally used in an amount in the range from 10 to 50, preferably from 20 to 30 wt .-%, based on the organic phase, a.
  • the reaction temperature is generally chosen in the range from 30 to 80, preferably from 50 to 60 ° C.
  • the pH essentially depends on the composition of the Electrolyte solution and is generally in the range of 6 to 10, preferably 7.5 to 9.
  • reaction pressure is not critical. It is usually chosen in the range from normal pressure to 10 bar.
  • the current density is generally chosen in the range from 1 to 40, preferably from 5 to 30 A / dm 2 .
  • the flow rate with continuous operation is usually in the range of 0.5 to 2 m / sec, preferably 0.8 to 1.5 m / sec.
  • the advantage of the electrode according to the invention is that Use as a cathode in the electrohydrodimerization of acrylonitrile to adiponitrile the corrosion of the cathodes is significantly less than when using solid lead or lead alloy electrodes, resulting in longer downtimes and less Amount of heavy metals.
  • the indicated corrosion rates of the electrodes were by means of atomic absorption spectroscopy (determination of the concentration on lead ions (cathode) released by corrosion and Iron ions (anode)) and by determining the weight loss of the electrodes after the end of the reaction.
  • the specified selectivities were determined using a gas chromatograph determined.
  • a round steel disc (diameter 20 mm) was used as the cathode used, which degreased as usual before the galvanic coating and was stained.
  • a lead strip also served as the anode the same dimensions as the cathode.
  • the electrodes were mounted parallel to each other in a tank. The reaction mixture in the bathroom was moved by mechanical stirring, the bath temperature was 25 ° C.
  • the coating bath (1 l) had the following composition: free fluoroboric acid 20 g / l Boric acid 30 g / l Lead fluoroborate 90 g / l Peptone 0.5 g / l water to 1 l
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally contained 2.6 g / l copper fluoroborate.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally contained 0.7 g / l copper fluoroborate.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally contained 1.6 g / l copper fluoroborate.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally contained 5.6 g / l copper fluoroborate.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally 1.25 g / l copper fluoroborate and Contained 0.5 g / l bismuth nitrate.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally 1.5 g / l copper fluoroborate and Contained 0.65 g / l tellurium dioxide.
  • the layer thickness was 50 ⁇ m.
  • Example 2 The procedure was as in Example 1, with the difference that the coating bath additionally 2.7 g / l copper fluoroborate and Contained 0.15 g / l selenium dioxide.
  • the layer thickness was 50 ⁇ m.
  • the cathode consisted of a pencil strip of the same dimensions.
  • the coating bath (10 1) had the following composition: free methanesulfonic acid 32 g / l Lead methanesulfonate 70 g / l Copper methanesulfonate 5.2 g / l Lutensol® AP 10 10 g / l
  • the layer thickness was 60 ⁇ m.
  • the coating contained 1% by weight copper.
  • a round steel electrode with a diameter of 20 mm was placed in a cathode sputtering system. Parallel to the steel substrate, a round mosaic target (diameter 150 mm) consisting of lead with copper discs (diameter 2 mm) was used at a distance of 60 mm. The area occupancy rate is shown in Table 1. The system was evacuated to a pressure of 10 -6 mbar using a two-stage pump system.
  • the substrate was heated to a temperature of 200 ° C. Then argon was admitted to a pressure of 9 x 10 -3 mbar.
  • the substrate was subjected to a sputter etching treatment for 1 min by applying an RF voltage with a power of 500 W to the substrate holder. After completion of the sputter etching treatment, the Ar pressure was set to 5 x 10 -3 mbar.
  • An atomizing plasma was ignited by applying a DC voltage to the target (power 1000 W) and an RF voltage to the substrate holder (power 200 W) and a (Pb-Cu) layer with a thickness of 10 ⁇ m was deposited on the stainless steel substrate .
  • the Cu content of the electrodes produced in this way is shown in Table 1. Area coverage of the Cu chips [%] Cu content of the electrode coating [% by weight] a 0 0 b 0.43 0.3 c 0.86 0.8 d 1.7 1.2 e 3.4 2.4 f 4.2 3.0 G 18th 13.0
  • the electrolytic solution was pumped through the electrolytic cell. From there it came into a separation vessel, where the formed Adiponitrile as an organic phase. Then was the aqueous electrolyte is pumped back into the electrolytic cell.
  • the organic phase consisted of:
  • the two phases were pumped around equilibrated so that acrylonitrile is dissolved in the aqueous phase was (about 2 wt .-%).
  • the remaining components were distributed according to their distributional equilibrium between the two Phases.
  • the conductive salt and approx. 4 wt .-% water in the organic phase so that the acrylonitrile concentration was about 26% by volume in the organic phase.
  • the electrolysis was operated continuously for 90 hours. After The massive lead cathode showed a corrosion rate of 90 hours of 0.35 mm / year (0.2 mg / Ah). The selectivity for adiponitrile was 90.3%.
  • the electrolysis was operated continuously for 90 hours. After The corrosion rate of the lead coating was 90 h of 0.25 mm / year (0.14 mg / Ah), the selectivity for adiponitrile was 90.4%.
  • the electrolysis was operated continuously for 200 hours. After A corrosion rate of 0.05 mm / year resulted for 200 h (0.03 mg / Ah), the selectivity was 90.9%.
  • the electrolysis was operated continuously for 209 hours. After The corrosion rate of the lead / copper cathode was 209 h of 0.16 mm / year (0.09 mg / Ah), the selectivity was 91.4%.
  • the electrolysis was operated continuously for 96 hours. After The corrosion rate of the lead / copper cathode was 96 h of 0.07 mm / year (0.04 mg / Ah), the selectivity was 90.4%.
  • the electrolysis was operated continuously for 90 hours. After The corrosion rate of the lead / copper cathode was 90 h of 0.05 mm / year (0.03 mg / Ah), the selectivity was 88.8%.
  • the electrolysis was operated continuously for 96 hours. After The corrosion rate of the lead / copper cathode was 96 h of 0.08 mm / year (0.045 mg / Ah), the selectivity was 90.0%.
  • the electrolysis was operated continuously for 96 hours. After The corrosion rate of the lead / copper cathode was 96 h of 0.09 mm / year (0.05 mg / Ah), the selectivity was 90.9%.
  • the electrolysis was operated continuously for 96 hours. After The corrosion rate of the lead / copper cathode was 96 h of 0.05 mm / year (0.03 mg / Ah), the selectivity was 90.9%.
  • the aqueous phase was pumped through the electrolytic cell.
  • the adiponitrile formed separated as organic in a separating vessel Phase. Then the aqueous electrolyte was restored returned to the electrolytic cell.
  • the organic phase consisted of: 30 vol% acrylonitrile and 70 vol% adiponitrile.
  • the two phases were pumped around equilibrated so that acrylonitrile is dissolved in the aqueous phase was (about 2 wt .-%).
  • the remaining components were distributed according to their distributional equilibrium between the two Phases.
  • the conductive salt and approx. 4 wt .-% water in the organic phase so that the acrylonitrile concentration was about 24% by volume in the organic phase.
  • the alloy electrode After 650 h, the alloy electrode showed a corrosion rate of 0.05 mm / year (0.03 mg / Ah), the selectivity for adiponitrile was 91.4%.
  • the bathroom had the following composition: Catholyte free methanesulfonic acid 48 g / l Lead methanesulfonate 64 g / l Copper methanesulfonate 5 g / l Lutensol® AP 10 10 g / l Anolyte free methanesulfonic acid 42 g / l Lead methanesulfonate 95 g / l
  • Electroplating was carried out for 2 hours at a current density of 12.5 mA / cm 2 .
  • the layer thickness was 60 ⁇ m.
  • the alloy contained 0.8% by weight of copper.
  • the electrolysis was operated continuously for 132 hours. After The lead coating showed a corrosion rate of 132 h of 0.14 mm / year (0.08 mg / Ah), the selectivity for adiponitrile was 90.6%.
  • the electrolysis was operated continuously for 90 hours. After The corrosion rate of the lead / copper cathode was 90 h of 0.08 mm / year (0.045 mg / Ah), the selectivity for adiponitrile was 90.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)

Description

Die vorliegende Erfindung betrifft eine verbesserte Elektrode, bestehend aus einem elektrisch leitfähigen Kern aus im wesentlichen Eisen und einem elektrisch leitfähigen Überzug aus im wesentlichen Blei.
Außerdem betrifft die vorliegende Erfindung Verfahren zur Herstellung der erfindungsgemaßen Elektrode, deren Verwendung zur reduktiven Kupplung von olefinischen Reaktionspartnern sowie ein verbessertes Verfahren zur reduktiven Kupplung von olefinischen Reaktionspartnern.
Die Verwendung von Bleikathoden in elektrochemischen Prozessen, z.B. bei der Elektrohydrodimerisierung von Acrylnitril zu Adipodinitril ("ADN"), ist bekannt. So beschreiben die US-A 3,193,481, US-A 3,193,482 und US-A 3,193,483 die elektrochemische Herstellung von ADN in einer geteilten Zelle, wobei als Kathode reines Blei eingesetzt wird. In Organic Electrochemistry, Edit. Baizer und Lund, Marcel Dekker, New York, 1984, 986, wird zur analogen Herstellung von ADN eine Kathode aus Blei, enthaltend 7 Gew.-% Antimon verwendet.
Die DE-A 2,338,341 beschreibt den Einsatz von reinen Bleikathoden in ungeteilten elektrochemischen Zellen zur Herstellung von ADN.
Der Nachteil der vorstehend genannten Elektroden besteht darin, daß, unabhängig davon, ob die Kathoden aus Blei oder einem anderen Material, beispielsweise Cadmium, aufgebaut sind, die Anoden und Kathoden während der Reaktion korrodieren und dabei störende Abbauprodukte produzieren, die u.a. zu Ablagerungen auf den Elektroden führen können. Insbesondere können diese Ablagerungen bei der Elektrohydrodimerisierung von Acrylnitril zu einer Abnahme der Selektivität hinsichtlich Adipodinitril und zu einer vermehrten Wasserstoffbildung führen. Es ist daher wichtig, Ablagerungen, hervorgerufen durch Elektrodenabbau, u.a. auf der Kathodenoberfläche, zu verhindern.
Eine Möglichkeit solche Ablagerungen zu verhindern, beschreibt die US-A 3,898,140, in deren Verfahren Ethylendiamintetraacetat ("EDTA") als Einschlußmittel eingesetzt wird. Die Verwendung von Trialkylolaminen mit dem gleichen Effekt beschreibt die GB-A 1,501,313.
Ein Nachteil solcher Einschlußmittel ist allerdings, daß die Bleikathode zu schnell verbraucht wird (JP-A 84/59888). Um diesen Nachteil zu umgehen, wurde vorgeschlagen, auf den Einsatz von Einschlußmitteln zu verzichten, indem man statt dessen den Elektrolyten kontinuierlich von Elektrodenabbauprodukten dadurch befreit, daß man ihn über eine Säule, enthaltend ein chelathaltiges Harz, leitet.
Eine Weiterentwicklung bei der Herstellung von ADN in einer ungeteilten elektrochemischen Zelle ist in der EP-A 270 390 beschrieben. In diesem Dokument wird als Kathode eine Bleilegierung beansprucht, enthaltend 1 Gew.-% oder weniger an Kupfer und Tellur. Nachteilig hierbei ist, daß die Elektrohydrodimerisierung in Gegenwart einer bestimmten Menge an Ethyltributylammoniumsalz erfolgen muß. Selbst unter diesen Bedingungen ist die Korrosionsrate noch zu hoch.
Aufgabe der vorliegenden Erfindung war es daher, eine Elektrode mit einer gegenüber aus Blei oder Bleilegierungen bestehenden Kathode erhöhten Beständigkeit gegen Korrosion zur Verfügung zu stellen. Insbesondere sollte hierdurch die Herstellung von Adipodinitril durch Elektrohydrodimerisierung von Acrylnitril wirtschaftlicher und umweltschonender gemacht werden.
Demgemäß wurde eine Elektrode, bestehend aus einem elektrisch leitfähigen Kern aus im wesentlichen Eisen und einem elektrisch leitfähigen, einschichtigen Überzug aus Blei und 0,3 bis 3,5 Gew.-% Kupfer und gegebenenfalls weiteren Elementen, ausgewählt aus der Gruppe Silber, Selen, Tellur, Bismut und Antimon, gefunden.
Ferner wurden Verfahren zur Herstellung dieser Elektrode, die Verwendung der erfindungsgemäßen Elektrode zur reduktiven Kupplung von olefinischen Reaktionspartnern sowie ein verbessertes Verfahren zur reduktiven Kupplung von olefinischen Reaktionspartnern gefunden.
Die erfindungsgemäße Elektrode besteht aus einem elektrisch leitfähigen Kern aus im wesentlichen Eisen und einem elektrisch leitfähigen, einschichtigen Überzug aus Blei und 0,3 bis 3,5 Gew.-% Kupfer und gegebenenfalls weiteren ELementen, ausgewählt aus der Gruppe Silber, Selen, Tellur, Bismut und Antimon.
Die Wahl des verwendeten Eisens ist nach den bisherigen Beobachtungen unkritisch. Für eine Reihe von Prozessen kann es jedoch von Vorteil sein, besonders korrosionsbeständige Eisenstähle einzusetzen.
Die Gestaltung der Elektroden ist ebenfalls unkritisch, so daß der Fachmann aus der Vielzahl der gängigen Elektrodenarten wie planparallele Platten, Rohre, Netze und Scheiben geeignete Elektrodenarten auswählen kann. Bevorzugt wählt man planparallele Platten.
Der elektrisch leitfähige Überzug besteht erfindungsgemäß aus Blei und 0,3 bis 3,5 Gew.-% Kupfer. Neben Blei kann der Überzug noch weitere Elemente wie Silber, Selen, Tellur, Bismut und Antimon in Mengen bis zu 3,5 Gew.-%, bevorzugt von 0,5 bis 2 Gew.-%, besonders bevorzugt von 0,8 bis 1,5 Gew.-%, enthalten. Bevorzugt ist nach den bisherigen Beobachtungen ein Überzug mit folgender Zusammensetzung: 96,5 bis 99,5, vorzugsweise 98 bis 99,5 Gew.-% Blei, 0,3 bis 3, vorzugsweise 0,5 bis 2 Gew.-% Kupfer, 0 bis 3, vorzugsweise 0 bis 2 Gew.-% Silber und/oder Bismut und/oder Selen und/oder Tellur und/oder Antimon.
Der elektrisch leitfähige Überzug kann nach den üblichen Verfahren aufgebracht werden. Besonders bevorzugt ist das Aufbringen durch Galvanisieren, d.h. elektrolytisch, und durch physikalische Depositionsverfahren, ausgewählt aus der Gruppe bestehend aus Aufdampfen, Kathodenzerstäuben ("Sputtern", d.h. Metallbedampfung) oder Lichtbogenbeschichtung.
Der Vorgang des Galvanisierens ist hinreichend bekannt, z.B. aus "Modern Electroplating" (Editor: Lowenheim, J.Wiley, New York, 1974), so daß sich nähere Ausführungen hierzu erübrigen. Des weiteren ist nach den bisherigen Beobachtungen die Art der Galvanisierbäder von untergeordneter Bedeutung.
Bevorzugt verwendet man ein Galvanisierbad mit einem Eisen- oder Stahlblech als Kathode und einem Bleistreifen als Anode, wobei die beiden Elektroden zweckmäßig parallel zueinander angeordnet sind (s. "Modern Electroplating").
Die Elektrolytlösung enthält üblicherweise das abzuscheidende Blei sowie gewünschtenfalls weitere Elemente in Form ihrer wasserlöslichen Salze.
Bevorzugt verwendet man als Elektrolytlösung eine wäßrige Kieselfluorwasserstoffsäure, eine wäßrige Fluoroborat- oder eine C1-C4-Alkansulfonsäure-Lösung wie Methan-, Ethan-, Propan- oder Butansulfonsäure-Lösung, bevorzugt Methansulfonsäure-Lösung.
Bei einem Fluoroboratbad besteht im allgemeinen die Elektrolytlösung im wesentlichen aus Bleifluoroborat. Zweckmäßig enthält die Elektrolytlösung noch übliche Hilfsstoffe wie Fluoroborsäure, Borsäure und übliche organische Zusätze wie ein Pepton, Resorcin oder Hydrochinon zur Erzielung feinkörniger glatter Niederschläge.
Die folgenden Konzentrationsangaben beziehen sich, soweit nicht anders vermerkt, auf 1 1 Elektrolytlösung.
Üblicherweise setzt man dabei Bleifluoroborat in Konzentrationen im Bereich von 5 bis 500 g/l, vorzugsweise von 20 bis 400 g/l, und Kupfer in Form seines Fluorborat-Salzes, Oxids, Hydrids oder Carbonats in Konzentrationen im Bereich von 0,1 bis 10, vorzugsweise von 0,5 bis 10 g/l, ein. Fluoroborsäure setzt man im allgemeinen im Bereich von 10 bis 150, vorzugsweise von 15 bis 90 g/l ein. Borsäure verwendet man in der Regel im Bereich von 5 bis 50, vorzugsweise von 10 bis 30 g/l. Übliche organische Zusätze setzt man im allgemeinen in Mengen im Bereich von 0,1 bis 5 g/l ein.
Die zusätzlich zum Blei und Kupfer möglichen weiteren Elemente wie Silber, Selen, Tellur, Bismut und/oder Antimon, setzt man zweckmäßig in Form ihrer Fluoroborat-Salze, Oxide, Hydroxide oder Carbonate in Konzentrationen im Bereich von 0,1 bis 10, vorzugsweise von 0,5 bis 10 g/l, ein.
Im Falle eines C1-C4-Alkansulfonsäurebades, insbesondere eines Methansulfonsäurebades, setzt man Blei üblicherweise in Form seines Salzes der Methansulfonsäure in Mengen im Bereich von 10 bis 200, vorzugsweise von 10 bis 60 g/l und Kupfer in Form des entsprechenden C1-C4-Alkansulfonsäure-Salzes, Oxids, Hydroxids oder Carbonats in Mengen im Bereich von 0,1 bis 20, vorzugsweise von 0,5 bis 10 g/l ein. Analog zum Fluoroboratbad enthält die Elektrolytlösung noch übliche Hilfsstoffe wie die entsprechende C1-C4-Alkansulfonsäure, in der Regel Methansulfonsäure, in einer Menge im Bereich von 20 bis 150, vorzugsweise von 30 bis 80 g/l, und Tenside, beispielsweise ein solches auf Basis von Alkylphenolethoxylaten wie Lutensol® AP 10 (BASF AG), in Mengen im Bereich von 1 bis 20, vorzugsweise von 5 bis 15 g/l. Zusätzlich zum Blei und Kupfer kann der Elektrodenüberzug die weiter oben bereits aufgeführten Elemente wie Silber, Selen, Tellur, Bismut und/oder Antimon enthalten, die man zweckmäßig in Form ihrer entsprechenden C1-C4-Alkansulfonsäure-Salze, Oxide, Hydroxide oder Carbonate in Mengen im Bereich von 0,1 bis 20, vorzugsweise von 0,5 bis 10 g/l, der Elektrolytlösung zusetzt.
Beim Galvanisieren legt man in der Regel an die Elektroden eine Gleichspannung von 0,5 bis 20, bevorzugt von 1 bis 10 Volt an. Die Stromdichte während des Galvanisierens liegt in der Regel im Bereich von 1 bis 200, vorzugsweise von 5 bis 40 mA/cm2.
Die Dauer des Galvanisierens hängt von den gewählten Reaktionsparametern und der gewünschten Schichtdicke des Überzugs ab und liegt üblicherweise im Bereich von 0,5 bis 10 h. Im allgemeinen wählt man die Schichtdicke im Bereich von 1 bis 500, vorzugsweise von 20 bis 200 µm.
Die Temperatur während des Galvanisierens wählt man vorzugsweise im Bereich von 10 bis 70°C, bevorzugt führt man die Reaktion bei Raumtemperatur durch.
Der gewählte Druckbereich ist im allgemeinen unkritisch, bevorzugt arbeitet man bei Atmosphärendruck.
Der pH-Wert hängt im wesentlichen von den eingesetzten Elektrolyten und Zusätzen ab und liegt in der Regel im Bereich von 0 bis 2.
Anstelle einer Gleichspannung kann man auch Pulsstromtechniken (pulsed current techniques) verwenden (s. J.-C. Puippe, Pulse-Plating, E. Lenze Verlag, Saulgau, 1990).
Eine weitere bevorzugte Ausführungsform besteht in der galvanischen Abscheidung in einer durch eine Ionenaustauschermembran wie Kationen- oder Anionenaustauschermembran, vorzugsweise eine Anionenaustauschermembran, geteilten Zelle. Diese Verfahrensweise hat den Vorteil, daß unerwünschte Abscheidungen weiterer eingesetzter Elemente, insbesondere von Kupfer, auf der Anode unterdrückt werden können.
Als Galvanisierzelle kann man prinzipiell jede hierfür geeignete Form verwenden, insbesondere die weiter oben genannten Galvanisierzellen. Die Verfahrensparameter sind im allgemeinen mit den oben genannten identisch.
Als Anionenaustauschermembran kann man handelsübliche Anionenaustauschermembranen wie Selemion® AMV (Asahi Glass), Neosepta® ACH 45T AM1, -AM2, -AM3 (Tokoyama Soda) oder Aciplex® A 101, -102 (Asahi Chemical) einsetzen.
Als weitere bevorzugte Ausführungsform kann man die Herstellung der erfindungsgemäßen Elektroden auch durch physikalische Depositionsverfahren wie Aufdampfen, Kathodenzerstäuben ("Sputtern") oder Lichtbogenbeschichtung vornehmen.
Die Kathodenzerstäubung erlaubt es, die Schichtdicke des Elektrodenüberzugs im Bereich zwischen 5 Angström und 100 µm einzustellen. Des weiteren gestattet die Kathodenzerstäubung die einfache und reproduzierbare Herstellung einer mehrkomponentigen Schicht, wobei nach der bisherigen Erkenntnis keine Begrenzung hinsichtlich der Anzahl der aufgebrachten Elemente zu beobachten ist.
Ferner kann man mittels Kathodenzerstäubung die Mikrostruktur der Elektrodenbeschichtung durch Variation des Prozeßgasdrucks und/ oder durch Anlegen einer negativen Vorspannung (Bias) beeinflussen. So führt beispielsweise ein Prozeßgasdruck im Bereich von 4*10-3 bis 8*10-3 mbar zu einer sehr dichten, feinkristallinen Schicht mit einer hohen Korrosionsstabilität.
Und das Anlegen einer negativen Vorspannung während der Beschichtung bewirkt im allgemeinen einen intensiven Ionenbeschuß des Substrats, was in der Regel zu einer sehr dichten Schicht sowie zu einer innigen Verzahnung der aufgebrachten Schicht mit dem Substrat führt.
Bei der Kathodenzerstäubung wird im allgemeinen das Beschichtungsmaterial in fester Form als sogenanntes Target auf die Kathode eines Plasmasystems aufgebracht, dann unter vermindertem Druck, beispielsweise von 1*10-4 bis 1 mbar, vorzugsweise 5*10-4 bis 5*10-2 mbar, in einer Prozeßgasatmosphäre durch Anlegen eines Plasmas zerstäubt und auf dem zu beschichtenden Substrat (Anode) abgeschieden (s. R.F.Bhunshah et al., "Deposition Technologies for Films and Coatings", Noyes Publications, 1982). Als Prozeßgas wählt man im allgemeinen mindestens ein Edelgas wie Helium, Neon oder Argon, bevorzugt Argon.
Das Plasma besteht in der Regel aus geladenen (Ionen und Elektronen) und neutralen (zum Teil radikalen) Bestandteilen des Prozeßgases, die über Stoß- und Strahlungsprozesse miteinander in Wechselwirkung stehen.
Zur Herstellung des Elektrodenüberzugs können verschiedene methodische Varianten der Kathodenzerstäubung wie Magnetron-Sputtern, DC- und RF- Sputtern oder Bias-Sputtern sowie deren Kombinationen angewendet werden. Beim Magnetron-Sputtern befindet sich in der Regel das zu zerstäubende Target in einem äußeren Magnetfeld, welches das Plasma in den Bereich des Targets konzentriert und damit eine Erhöhung der Zerstäubungsrate bewirkt. Beim DC- bzw. RF-Sputtern erfolgt im allgemeinen die Anregung des Zerstäubungsplasmas durch eine Gleichspannung (DC) oder durch eine Wechselspannung (RF), beispielsweise mit einer Frequenz im Bereich von 10 kHz bis 100 MHz, vorzugsweise 13,6 MHz. Beim Bias-Sputtern wird üblicherweise das zu beschichtende Substrat mit einer in der Regel negativen Vorspannung (Bias) belegt, welche im allgemeinen während der Beschichtung zu einem intensiven Beschuß des Substrats mit Ionen führt.
Zur Herstellung der Elektrodenüberzüge zerstäubt man im allgemeinen ein mehrkomponentiges Target, enthaltend Blei, Kupfer und gegebenenfalls weitere Elemente. Geeignete Targets sind beispielsweise homogene Legierungstargets, die in bekannter Weise durch Schmelz- bzw. pulvermetallurgische Verfahren herstellbar sind, und inhomogene Mosaiktargets, die in der Regel durch Zusammenfügen kleinerer Teilstücke unterschiedlicher chemischer Zusammensetzung oder durch Auflegen bzw. Aufkleben von kleinen scheibenförmigen Materialstücken auf homogene Targets herstellbar sind. Alternativ zu diesen Methoden kann man auch zwei oder mehr Targets unterschiedlicher Zusammensetzung gleichzeitig zerstäuben (simultanes Zerstäuben).
Die gewünschte Schichtdicke sowie die chemische Zusammensetzung und die Mikrostruktur des Elektrodenüberzugs sind im wesentlichen durch den Prozeßgasdruck, die Zerstäubungsleistung, den Sputtermodus, die Substrattemperatur und die Beschichtungszeit zu beeinflussen.
Die Zerstäubungsleistung ist hierbei die Leistung, die zur Anregung des Plasmas aufgewendet wird, und liegt in der Regel im Bereich von 50 W bis 10 kW.
Die Substrattemperatur wählt man im allgemeinen im Bereich von Raumtemperatur bis 350, vorzugsweise von 150 bis 250°C.
Die Beschichtungszeit hängt im wesentlichen von der angestrebten Schichtdicke ab. Typische Beschichtungsraten beim Sputtern liegen üblicherweise im Bereich von 0,1 bis 100 nm/s.
Eine weitere bevorzugte Ausführungsform ist die Herstellung des Elektrodenüberzugs durch Aufdampfen (s. L. Holland, Vacuum Deposition of Thin Films, Chapman and Hay Ltd., 1970). Das Beschichtungsmaterial wird dabei zweckmäßig in an sich bekannter Weise in eine geeignete Aufdampfquelle wie elektrisch geheizte Verdampferschiffchen oder Elektronenstrahlverdampfer eingefüllt. Das Beschichtungsmaterial wird danach unter vermindertem Druck, üblicherweise im Bereich von 10-7 bis 10-3 mbar, verdampft, wobei sich auf der in der Vakuumanlage eingebrachten Elektrode der gewünschte Überzug bildet.
Bei der Herstellung mehrkomponentiger Schichten kann das Verdampfungsmaterial entweder in der geeigneten Zusammensetzung aus einer gemeinsamen Quelle oder simultan aus verschiedenen Quellen verdampft werden.
Typische Beschichtungsraten beim Aufdampfen liegen im allgemeinen im Bereich von 10 nm/s bis 10 µm/s.
In einer besonders bevorzugten Ausführungsform kann das zu beschichtende Substrat vor oder während des Aufdampfprozesses mittels eines RF-Plasmas oder mittels einer üblichen Ionenkanone mit Ionen beschossen werden, um die Mikrostruktur und die Haftung der Schichten zu verbessern. Des weiteren kann man die Mikrostruktur und die Haftung der Schichten auch durch Heizen des Substrats beeinflussen.
Die erfindungsgemäßen Elektroden kann man zur reduktiven Kupplung von olefinischen Reaktionspartnern einsetzen. Hierbei werden üblicherweise die olefinischen Reaktionspartner durch Elektrohydrodimerisierung nach an sich üblichen Methoden zur Reaktion gebracht, indem sie in einer Elektrolysezelle mit einer Anode und einer erfindungsgemäßen Elektrode als Katode der Elektrolyse ausgesetzt werden.
Als olefinische Reaktionspartner setzt man bevorzugt Verbindungen der Formel R1R2C=CR3X ein, in der R1, R2 und R3 gleich oder verschieden Wasserstoff oder C1-C4-Alkyl wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, sec.-Butyl oder tert.-Butyl, und X -CN, -CONR1R2 oder -COOR1 bedeuten. Beispielhaft seien genannt olefinische Nitrile wie Acrylnitril, Methacrylnitril, Crotonsäurenitril, 2-Methylenbutyronitril, 2-Pentennitril, 2-Methylenvaleriansäurenitril oder 2-Methylenhexansäurenitril, olefinische Carboxylate wie Acrylsäureester, Methyl- oder Ethylacrylsäureester, olefinische Carboxamide wie Acrylamid, Methacrylamid, N,N-Dimethyl- oder N,N-Diethylacrylamid, besonders bevorzugt Acrylnitril.
In einer besonders bevorzugten Ausführungsform stellt man mit Hilfe der erfindungsgemäßen Elektroden Adipodinitril durch Elektrohydrodimerisierung von Acrylnitril her. Die folgenden Angaben beziehen sich daher auf dieses Verfahren.
Die Art der Elektrolysezelle ist nach bisherigen Beobachtungen unkritisch, so daß der Fachmann aus dem Spektrum der handelsüblichen Elektrolysezellen auswählen kann. Eine bevorzugte Ausführungsform der Elektrolysezelle stellt die ungeteilte Zelle dar, wobei Plattenstapelzellen oder Kapillarspaltzellen besonders bevorzugt werden. Solche Zellen sind beispielsweise in J. Electrochem. Soc. 131 (1984) 435c und J. Appl. Electrochem. 2 (1972) 59 ausführlich beschrieben.
Als Anode kann man bekannte Anoden verwenden, bevorzugt bei ungeteilten Zellen setzt man üblicherweise Materialien mit geringer Sauerstoffüberspannung, beispielsweise Kohlenstoffstahl, Stahl, Platin, Nickel, Magnetit, Blei, Bleilegierungen oder Bleidioxid, ein (s. Hydrocarbon Processing (1981) 161).
Die erfindungsgemäßen Elektroden werden als Kathoden eingesetzt, wobei man eine Zusammensetzung der folgenden Art nach den bisherigen Beobachtungen bevorzugt verwenden kann: 96,5 bis 100, vorzugsweise 98 bis 99,5 Gew.-% Blei, 0,3 bis 3, vorzugsweise 0,5 bis 2 Gew.-% Kupfer, 0 bis 3, vorzugsweise 0 bis 2 Gew.-% Silber und/oder Bismut und/oder Selen und/oder Tellur und/oder Antimon.
Üblicherweise enthält die Elektrolytlösung ein Leitsalz, insbesondere bei der Herstellung von Adipodinitril, da ansonsten in der Regel Propionitril zum Hauptprodukt wird und mit einer vermehrten Wasserstoffbildung zu rechnen ist. Im allgemeinen setzt man das Leitsalz in einer Menge im Bereich von 1 bis 100 mmol/kg wäßrige Elektrolytlösung, bevorzugt von 5 bis 50 mmol/kg, ein.
Als geeignete Leitsalze seien beispielhaft genannt: quartäre Ammoniumverbindungen wie Tetrabutylammoniumsalze, Ethyltributylammoniumsalze, quartäre Phosphoniumsalze, sowie Bisquartäre Ammonium- und Phosphoniumsalze wie Hexamethylenbis(dibutylethylammoniumhydroxid) (s. Hydrocarbon Processing 161 (1981); J. Electrochem. Soc. 131 (1984) 435c).
Des weiteren enthält die Elektrolytlösung üblicherweise einen Puffer wie Hydrogenphosphat, Hydrogencarbonat, bevorzugt in Form ihrer Natriumsalze, besonders bevorzugt Dinatriumhydrogenphosphat, in einer Menge im Bereich von 10 bis 150, vorzugsweise von 30 bis 100 g/kg wäßrige Elektrolytlösung.
Ferner enthält die Elektrolytlösung vorzugsweise einen Anodenkorrosionsinhibitor wie die für diese Zwecke bekannten Borate (s. Hydrocarbon Processing (1981) 161), bevorzugt Dinatriumdiborat und Orthoborsäure, in einer Menge im Bereich von 5 bis 50, bevorzugt von 10 bis 30 g/kg wäßriger Elektrolytlösung.
Ferner enthält die Elektrolytlösung vorzugsweise einen Komplexbildner, um die Ausfällung von Eisen- und Blei-Ionen zu verhindern. Beispielhaft seien genannt Ethylendiamintetraacetat ("EDTA"), Triethanolamin ("TEOA"), Nitrilotriacetat, bevorzugt EDTA in einer Menge im Bereich von 0 bis 50, vorzugsweise 2 bis 10 g/kg wäßriger Elektrolytlösung, und/oder TEOA in einer Menge im Bereich von 0 bis 10, vorzugsweise 0,5 bis 3 g/kg wäßriger Elektrolytlösung.
Acrylnitril setzt man im allgemeinen in einer Menge im Bereich von 10 bis 50, vorzugsweise von 20 bis 30 Gew.-%, bezogen auf die organische Phase, ein.
Die Reaktionstemperatur wählt man in der Regel im Bereich von 30 bis 80, vorzugsweise von 50 bis 60°C.
Der pH-Wert hängt im wesentlichen von der Zusammensetzung der Elektrolytlösung ab und liegt im allgemeinen im Bereich von 6 bis 10, vorzugsweise 7,5 bis 9.
Der Reaktionsdruck ist nach bisherigen Beobachtungen unkritisch. Man wählt ihn üblicherweise im Bereich von Normaldruck bis 10 bar.
Die Stromdichte wählt man im allgemeinen im Bereich von 1 bis 40, bevorzugt von 5 bis 30 A/dm2.
Die Strömungsgeschwindigkeit bei kontinuierlicher Arbeitsweise liegt in der Regel im Bereich von 0,5 bis 2 m/sec, vorzugsweise 0,8 bis 1,5 m/sec.
Der Vorteil der erfindungsgemäßen Elektrode liegt darin, daß beim Einsatz als Kathode bei der Elektrohydrodimerisierung von Acrylnitril zu Adipodinitril die Korrosion der Kathoden deutlich geringer ist als beim Einsatz massiver Blei- oder Bleilegierungselektroden, was zu längeren Standzeiten und einer geringeren Menge an Schwermetallen führt.
Beispiele
Die angegebenen Korrosionsgeschwindigkeiten der Elektroden wurden mittels Atomabsorptionsspektroskopie (Ermittlung der Konzentration an durch Korrosion freigesetzten Bleiionen (Kathode) und Eisenionen (Anode)) und durch Ermittlung des Gewichtsverlustes der Elektroden nach Beendigung der Reaktions bestimmt.
Die angegebenen Selektivitäten wurden mit Hilfe eines Gaschromatographen ermittelt.
Beispiel 1 (nicht erfindungsgemäß) Herstellung einer bleibeschichteten Elektrode durch galvanische Abscheidung aus einem Fluoroboratbad
Als Kathode wurde eine runde Stahlscheibe (Durchmesser 20 mm) verwendet, die vor der galvanischen Beschichtung wie üblich entfettet und gebeizt wurde. Als Anode diente ein Bleistreifen mit den gleichen Abmessungen wie die Kathode. Die Elektroden wurden in einem Tank parallel zueinander montiert. Die Reaktionsmischung im Bad wurde durch eine mechanische Rührung bewegt, die Badtemperatur betrug 25°C.
Das Beschichtungs-Bad (1 l) besaß folgende Zusammensetzung:
freie Fluoroborsäure 20 g/l
Borsäure 30 g/l
Bleifluoroborat 90 g/l
Pepton 0,5 g/l
Wasser zu 1 l
Es wurde mit einer Stromdichte von 10 mA/cm2 2,5 h galvanisiert. Die Schichtdicke betrug 50 µm.
Beispiel 2 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 1,8 Gew.-% Kupfer
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 2,6 g/l Kupferfluoroborat enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 3 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 0,8 Gew.-% Kupfer
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 0,7 g/l Kupferfluoroborat enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 4 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 1,3 Gew.-% Kupfer
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 1,6 g/l Kupferfluoroborat enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 5 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 3,7 Gew.-% Kupfer
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 5,6 g/l Kupferfluoroborat enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 6 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 2,2 Gew.-% Kupfer und 1,3 Gew.-% Bismut
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 1,25 g/l Kupferfluoroborat und 0,5 g/l Bismutnitrat enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 7 Herstellung einer erfindungsgemaßen Bleielektrode durch galvanische Abscheidung, enthaltend 1,3 Gew.-% Kupfer und 0,5 Gew.-% Tellur
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 1,5 g/l Kupferfluoroborat und 0,65 g/l Tellurdioxid enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 8 Herstellung einer erfindungsgemäßen Bleielektrode durch galvanische Abscheidung, enthaltend 1,3 Gew.-% Kupfer und 0,1 Gew.-% Selen
Es wurde wie in Beispiel 1 verfahren, mit dem Unterschied, daß das Beschichtungsbad zusätzlich 2,7 g/l Kupferfluoroborat und 0,15 g/l Selendioxid enthielt. Die Schichtdicke betrug 50 µm.
Beispiel 9 Herstellung einer erfindungsgemäßen Elektrode durch galvanische Abscheidung analog Beispiel 1
Als Kathode wurden Stahlbleche (3 cm x 80 cm) verwendet. Die Anode bestand aus einem Bleistreifen mit den gleichen Maßen.
Das Beschichtungsbad (10 1) wies folgende Zusammensetzung auf:
freie Methansulfonsäure 32 g/l
Bleimethansulfonat 70 g/l
Kupfermethansulfonat 5,2 g/l
Lutensol® AP 10 10 g/l
Es wurde mit einer Stromdichte von 12,5 mA/cm2 2 h galvanisiert. Die Schichtdicke betrug 60 µm. Der Überzug enthielt 1 Gew.-% Kupfer.
Beispiel 10
Eine runde Stahlelektrode mit einem Durchmesser von 20 mm wurde in eine Kathodenzerstäubungsanlage eingebracht. Parallel zu dem Stahlsubstrat wurde in einem Abstand von 60 mm ein rundes Mosaik-Target (Durchmesser 150 mm), bestehend aus Blei mit aufgelegten Kupfer-Scheiben (Durchmesser 2 mm), eingesetzt. Der Flächenbelegungsgrad ist in Tabelle 1 wiedergegeben. Die Anlage wurde mit einem zweistufigen Pumpsystem auf einen Druck von 10-6 mbar evakuiert.
Das Substrat wurde auf eine Temperatur von 200°C erwärmt. Danach wurde Argon bis zu einem Druck von 9 x 10-3 mbar eingelassen. Durch Anlegen einer RF-Spannung mit einer Leistung von 500 W an den Substrathalter wurde das Substrat für die Dauer von 1 min einer Sputterätzbehandlung unterzogen. Nach Abschluß der Sputterätzbehandlung wurde der Ar-Druck auf 5 x 10-3 mbar eingestellt. Durch Anlegen einer DC-Spannung an das Target (Leistung 1000 W) und einer RF-Spannung an den Substrathalter (Leistung 200 W) wurde ein Zerstäubungsplasma gezündet und auf dem Edelstahlsubstrat eine (Pb-Cu)-Schicht mit einer Dicke von 10 µm abgeschieden. Der Cu-Gehalt der so hergestellten Elektroden ist in Tabelle 1 wiedergegeben.
Flächenbelegung der Cu-Chips [%] Cu-Gehalt des Elektrodenüberzugs [Gew.-%]
a 0 0
b 0,43 0,3
c 0,86 0,8
d 1,7 1,2
e 3,4 2,4
f 4,2 3,0
g 18 13,0
Beispiel 11 Herstellung von Adipodinitril mit einer Kathode aus massivem Blei (Vergleich)
Apparatur Ungeteilte Elektrolysezelle
Anode Stahl
Kathode massives Blei
Elektrodenfläche jeweils 3,14 cm2
Elektrodenabstand 2 mm
Durchflußgeschwindigkeit 1,1 m/sec
Stromdichte 20 A/dm2
Temperatur 55°C
Durch die Elektrolysezelle wurde die Elektrolytlösung gepumpt. Von dort gelangte sie in ein Trenngefäß, wo sich das gebildete Adipodinitril als organische Phase abschied. Anschließend wurde der wäßrige Elektrolyt zurück in die Elektrolysezelle gepumpt.
Die wäßrige Phase bestand aus:
  • 7 Gew.-% Dinatriumhydrogenphosphat,
  • 2 Gew.-% Natriumdiborat,
  • 2 Gew.-% Acrylnitril,
  • 0,4 Gew.-% Ethylendiamintetraessigsäure,
  • 0,1 Gew.-% Triethanolamin,
  • 10,5 mmol/kg Hexamethylenbis(dibutylethylammonium)phosphat (Leitsalz).
    Der pH-Wert wurde mit Phosphorsäure auf 8,5 eingestellt.
  • Die organische Phase bestand aus:
    30 Vol-% Acrylnitril und 70 Vol-% Korksäuredinitril. Das Korksäuredinitril ermöglichte eine genaue Bestimmung des gebildeten Adipodinitrils.
    Vor Beginn der Reaktion wurden die beiden Phasen durch Umpumpen äquilibriert, so daß Acrylnitril in der waßrigen Phase gelöst wurde (ca. 2 Gew.-%). Die restlichen Komponenten verteilten sich entsprechend ihrer Verteilungsgleichgewichte zwischen den beiden Phasen. Insbesondere lösten sich teilweise das Leitsalz sowie ca. 4 Gew.-% Wasser in der organischen Phase, so daß die Acrylnitrilkonzentration in der organischen Phase ca. 26 Vol-% betrug.
    Während der Elektrolyse wurde Acrylnitril so zudosiert, daß dessen Konzentration in der organischen Phase zwischen 23 und 26 Vol-% betrug. In der wäßrigen Phase wurden EDTA, TEOA und Leitsalz nachdosiert.
    Die Elektrolyse wurde 90 Stunden kontinuierlich betrieben. Nach 90 h ergab sich eine Korrosionsgeschwindigkeit der massiven Bleikathode von 0,35 mm/Jahr (0,2 mg/Ah). Die Selektivität für Adipodinitril betrug 90,3 %.
    Beispiel 12 (Vergleichsversuch zu Beispielen 13 - 19) Durchführung analog zu Beispiel 11, jedoch Verwendung einer galvanisch abgeschiedenen Bleischicht (0,05 mm) auf Stahl (Herstellung gemäß Beispiel 1)
    Die Elektrolyse wurde 90 Stunden kontinuierlich betrieben. nach 90 h ergab sich eine Korrosionsgeschwindigkeit der Bleibeschichtung von 0,25 mm/Jahr (0,14 mg/Ah), die Selektivität für Adipodinitril betrug 90,4 %.
    Beispiel 13 Wie Beispiel 11, jedoch Verwendung einer Legierungs-Kathode mit 1,8 Gew.-% Kupfer (Herstellung gemäß Beispiel 2)
    Die Elektrolyse wurde 200 Stunden kontinuierlich betrieben. Nach 200 h ergab sich eine Korrosionsgeschwindigkeit von 0,05 mm/Jahr (0,03 mg/Ah), die Selektivität betrug 90,9 %.
    Beispiel 14 Wie Beispiel 11, jedoch Verwendung einer Legierungs-Kathode mit 0,8 Gew.-% Kupfer (Herstellung gemäß Beispiel 3)
    Die Elektrolyse wurde 209 Stunden kontinuierlich betrieben. Nach 209 h ergab sich eine Korrosionsgeschwindigkeit der Blei/KupferKathode von 0,16 mm/Jahr (0,09 mg/Ah), die Selektivität betrug 91,4 %.
    Beispiel 15 Wie Beispiel 11, jedoch Verwendung einer Legierungs-Kathode mit 1,3 Gew.-% Kupfer (Herstellung gemäß Beispiel 4)
    Die Elektrolyse wurde 96 Stunden kontinuierlich betrieben. Nach 96 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,07 mm/Jahr (0,04 mg/Ah), die Selektivität betrug 90,4 %.
    Beispiel 16 (Vergleichsbeispiel) Wie Beispiel 11, jedoch Verwendung einer Legierungs-Kathode mit 3,7 Gew.-% Kupfer (Herstellung gemäß Beispiel 5)
    Die Elektrolyse wurde 90 Stunden kontinuierlich betrieben. Nach 90 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,05 mm/Jahr (0,03 mg/Ah), die Selektivität betrug 88,8 %.
    Beispiel 17 Wie Beispiel 11, jedoch Verwendung einer ternären Legierungs-Kathode mit 2,2 Gew.-% Kupfer und 1,3 Gew.-% Bi (Herstellung gemäß Beispiel 6)
    Die Elektrolyse wurde 96 Stunden kontinuierlich betrieben. Nach 96 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,08 mm/Jahr (0,045 mg/Ah), die Selektivität betrug 90,0 %.
    Beispiel 18 Wie Beispiel 11, jedoch Verwendung einer ternären Legierungs-Kathode mit 1,3 Gew.-% Kupfer und 0,5 Gew.-% Te (Herstellung gemäß Beispiel 7)
    Die Elektrolyse wurde 96 Stunden kontinuierlich betrieben. Nach 96 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,09 mm/Jahr (0,05 mg/Ah), die Selektivität betrug 90,9 %.
    Beispiel 19 Wie Beispiel 11, jedoch Verwendung einer ternären Legierungs-Kathode mit 1,3 Gew.-% Kupfer und 0,1 Gew.-% Se (Herstellung gemäß Beispiel 8)
    Die Elektrolyse wurde 96 Stunden kontinuierlich betrieben. Nach 96 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,05 mm/Jahr (0,03 mg/Ah), die Selektivität betrug 90,9 %.
    Beispiel 20
    Apparatur Ungeteilte Elektrolysezelle
    Anode Stahl
    Kathode galvanisch abgeschiedene Blei-Kupfer-Legierungsschicht auf Stahl mit 0,8 Gew.-% Kupfer (0,05 mm) (Herstellung gemäß Beispiel 28)
    Elektrodenfläche jeweils 80 cm · 2 cm
    Elektrodenabstand 1,3 mm
    Durchflußgeschwindigkeit 1,1 m/sec
    Stromdichte 21,8 A/dm2
    Temperatur 55°C
    Durch die Elektrolysezelle wurde die wäßrige Phase gepumpt. Das gebildete Adipodinitril schied sich in einem Trenngefäß als organische Phase ab. Anschließend wurde der wäßrige Elektrolyt wieder in die Elektrolysezelle zurückgeführt.
    Die wäßrige Phase bestand aus:
  • 88,5 Gew.-% Wasser,
  • 7 Gew.-% Dinatriumhydrogenphosphat,
  • 2 Gew.-% Natriumdiborat,
  • 2 Gew.-% Acrylnitril,
  • 0,4 Gew.-% Ethylendiamintetraessigsäure,
  • 0,1 Gew.-% Triethanolamin, sowie
  • 10,5 mmol/kg Hexamethylenbis(dibutylethylammonium)phosphat und hatte einen pH-Wert von 8,5.
  • Die organische Phase bestand aus:
    30 Vol-% Acrylnitril und 70 Vol-% Adipodinitril.
    Vor Beginn der Reaktion wurden die beiden Phasen durch Umpumpen äquilibriert, so daß Acrylnitril in der wäßrigen Phase gelöst wurde (ca. 2 Gew.-%). Die restlichen Komponenten verteilten sich entsprechend ihrer Verteilungsgleichgewichte zwischen den beiden Phasen. Insbesondere lösten sich teilweise das Leitsalz sowie ca. 4 Gew.-% Wasser in der organischen Phase, so daß die Acrylnitrilkonzentration in der organischen Phase ca. 24 Vol-% betrug.
    Während der Elektrolyse wurde kontinuierlich Acrylnitril so zudosiert, daß dessen Konzentration in der organischen Phase konstant blieb. Ebenso wurde kontinuierlich wäßrige Phase ersetzt. Gleichzeitig wurden aus beiden Phasen Teilströme entnommen.
    Nach 650 h ergab sich eine Korrosionsgeschwindigkeit der Legierungselektrode von 0,05 mm/Jahr (0,03 mg/Ah), die Selektivität für Adipodinitril betrug 91,4 %.
    Beispiel 21 Herstellung einer Legierungskathode durch galvanische Abscheidung in einer durch eine Anionenaustauschermembran geteilten Beschichtungszelle
    Es wurde verfahren wie in Beispiel 9, jedoch wurde der Katholyt und der Anolyt durch eine Anionenaustauschermembran (Aciplex® ACH-45T) getrennt. Dadurch konnte während der Beschichtung eine Abscheidung von Kupfer auf der Anode unterdrückt werden.
    Das Bad besaß folgende Zusammensetzung:
    Katholyt
    freie Methansulfonsäure 48 g/l
    Bleimethansulfonat 64 g/l
    Kupfermethansulfonat 5 g/l
    Lutensol® AP 10 10 g/l
    Anolyt
    freie Methansulfonsäure 42 g/l
    Bleimethansulfonat 95 g/l
    Es wurde 2 h mit einer Stromdichte von 12,5 mA/cm2 galvanisiert. Die Schichtdicke betrug 60 µm. Die Legierung enthielt 0,8 Gew.-% Kupfer.
    Beispiel 22 (Vergleichsversuch zu Beispiel 23) Wie Beispiel 11, jedoch Verwendung einer durch Sputtern aufgebrachten Bleischicht-Kathode (Herstellung gemäß Beispiel 10a)
    Die Elektrolyse wurde 132 Stunden kontinuierlich betrieben. Nach 132 h ergab sich eine Korrosionsgeschwindigkeit der Bleibeschichtung von 0,14 mm/Jahr (0,08 mg/Ah), die Selektivität für Adipodinitril betrug 90,6 %.
    Beispiel 23 Wie Beispiel 11, jedoch Verwendung einer gesputterten Blei-Kupfer-Kathode mit 2,4 Gew.-% Kupfer (Herstellung gemäß Beispiel 10e)
    Die Elektrolyse wurde 90 Stunden kontinuierlich betrieben. Nach 90 h ergab sich eine Korrosionsgeschwindigkeit der Blei/Kupfer-Kathode von 0,08 mm/Jahr (0,045 mg/Ah), die Selektivität für Adipodinitril betrug 90,3 %.

    Claims (7)

    1. Elektrode, bestehend aus einem elektrisch leitfähigen Kern aus im wesentlichen Eisen und einem elektrisch leitfähigen, einschichtigen Überzug aus Blei und 0,3 bis 3,5 Gew.-% Kupfer und gegebenenfalls weiteren Elementen, ausgewählt aus der Gruppe Silber, Selen, Tellur, Bismut und Antimon.
    2. Elektrode gemäß Anspruch 1, dadurch gekennzeichnet, daß man den elektrisch leitfähigen Überzug durch Galvanisieren oder physikalische Depositionsverfahren, ausgewählt aus der Gruppe, bestehend aus Aufdampfen, Kathodenzerstäuben ("Sputtern") oder Lichtbogenbeschichtung, auf den elektrisch leitfähigen Kern aufbringt
    3. Elektrochemische Zelle mit mindestens einer als Kathode geschalteten Elektrode gemäß den Ansprüchen 1 bis 2.
    4. Verfahren zur Herstellung einer Elektrode gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man den elektrisch leitfähigen Überzug durch Galvanisieren oder physikalische Depositionsverfahren, ausgewählt aus der Gruppe, bestehend aus Aufdampfen, Kathodenzerstäuben ("Sputtern") oder Lichtbogenbeschichtung, auf den elektrisch leitfähigen Kern aufbringt.
    5. Verfahren zur reduktiven Kupplung von olefinischen Reaktionspartnern durch Elektrohydrodimerisierung in an sich bekannter Weise, dadurch gekennzeichnet, daß die Reaktionspartner in einer elektrochemischen Zelle gemäß Anspruch 3 der Elektrolyse ausgesetzt werden.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man als olefinische Reaktionspartner Verbindungen der allgemeinen Formel R1R2C=CR3X, in der R1, R2 und R3 gleich oder verschieden sind und Wasserstoff, C1-C4-Alkyl, und X CN, CONR1R2 oder COOR1 bedeuten, einsetzt.
    7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß man als olefinischen Reaktionspartner Acrylnitril einsetzt.
    EP94108425A 1993-06-16 1994-06-01 Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigem Überzug Expired - Lifetime EP0635587B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP97122734A EP0931856A3 (de) 1993-06-16 1994-06-01 Verfahren zur reduktiven Kupplung in einer Elektrolysezelle mit einer Kathode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigen Überzug

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4319951A DE4319951A1 (de) 1993-06-16 1993-06-16 Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigen Überzug
    DE4319951 1993-06-16

    Related Child Applications (1)

    Application Number Title Priority Date Filing Date
    EP97122734A Division EP0931856A3 (de) 1993-06-16 1994-06-01 Verfahren zur reduktiven Kupplung in einer Elektrolysezelle mit einer Kathode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigen Überzug

    Publications (2)

    Publication Number Publication Date
    EP0635587A1 EP0635587A1 (de) 1995-01-25
    EP0635587B1 true EP0635587B1 (de) 1998-09-23

    Family

    ID=6490464

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP94108425A Expired - Lifetime EP0635587B1 (de) 1993-06-16 1994-06-01 Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigem Überzug
    EP97122734A Withdrawn EP0931856A3 (de) 1993-06-16 1994-06-01 Verfahren zur reduktiven Kupplung in einer Elektrolysezelle mit einer Kathode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigen Überzug

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP97122734A Withdrawn EP0931856A3 (de) 1993-06-16 1994-06-01 Verfahren zur reduktiven Kupplung in einer Elektrolysezelle mit einer Kathode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigen Überzug

    Country Status (7)

    Country Link
    US (1) US5593557A (de)
    EP (2) EP0635587B1 (de)
    JP (1) JPH07305189A (de)
    BR (1) BR9402435A (de)
    CA (1) CA2125829A1 (de)
    DE (2) DE4319951A1 (de)
    ES (1) ES2121120T3 (de)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB9502665D0 (en) * 1995-02-11 1995-03-29 Ici Plc Cathode for use in electrolytic cell
    DE10039171A1 (de) 2000-08-10 2002-02-28 Consortium Elektrochem Ind Kathode für Elektrolysezellen
    WO2009071478A1 (de) * 2007-12-03 2009-06-11 Basf Se Verfahren zur reduktiven hydrodimerisierung von ungesättigten organischen verbindungen mittels einer diamantelektrode
    US8840770B2 (en) * 2010-09-09 2014-09-23 International Business Machines Corporation Method and chemistry for selenium electrodeposition
    US9005409B2 (en) 2011-04-14 2015-04-14 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
    US9017528B2 (en) 2011-04-14 2015-04-28 Tel Nexx, Inc. Electro chemical deposition and replenishment apparatus
    WO2013026737A2 (de) 2011-08-24 2013-02-28 Basf Se Verfahren zur elektrochemischen darstellung von γ-hydroxycarbonsäureestern und γ-lactonen
    WO2013180443A1 (ko) * 2012-05-29 2013-12-05 한국생산기술연구원 구리층을 갖는 철계부스바 및 그 제조방법
    US9303329B2 (en) 2013-11-11 2016-04-05 Tel Nexx, Inc. Electrochemical deposition apparatus with remote catholyte fluid management
    EP2985364A1 (de) 2014-08-14 2016-02-17 Basf Se Verfahren zur Herstellung von Alkoholen durch elektrochemische reduktive Kopplung
    US11313045B2 (en) * 2019-03-30 2022-04-26 New York University Electrohydrodimerization of aliphatic olefins with electrochemical potential pulses

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3193481A (en) * 1962-10-05 1965-07-06 Monsanto Co Electrolytic hydrodimerization alpha, beta-olefinic nitriles
    US3193482A (en) * 1964-01-14 1965-07-06 Monsanto Co Electrolysis of alpha, beta mono-olefinic carboxylates
    US3193483A (en) * 1964-01-14 1965-07-06 Monsanto Co Electrolysis of acrylamides
    US3844911A (en) * 1972-07-27 1974-10-29 Phillips Petroleum Co Method for producing adiponitrile
    JPS5127773B2 (de) * 1972-09-11 1976-08-14
    US3898140A (en) * 1973-08-06 1975-08-05 Monsanto Co Electrolytic hydrodimerization process improvement
    US4038170A (en) * 1976-03-01 1977-07-26 Rhees Raymond C Anode containing lead dioxide deposit and process of production
    US4306949A (en) * 1979-12-19 1981-12-22 Monsanto Company Electrohydrodimerization process
    CA1232227A (en) * 1982-02-18 1988-02-02 Christopher Vance Manufacturing electrode by immersing substrate in aluminium halide and other metal solution and electroplating
    JPS59193866U (ja) * 1983-06-13 1984-12-22 高安 清澄 不溶性鉛電極
    JPS6396299A (ja) * 1986-10-13 1988-04-27 Yoshizawa Kiko Toubu Kk 鉛合金製不溶性陽極
    JPS63111193A (ja) * 1986-10-30 1988-05-16 Asahi Chem Ind Co Ltd アジポニトリルの製法

    Also Published As

    Publication number Publication date
    CA2125829A1 (en) 1994-12-17
    JPH07305189A (ja) 1995-11-21
    EP0931856A2 (de) 1999-07-28
    US5593557A (en) 1997-01-14
    ES2121120T3 (es) 1998-11-16
    BR9402435A (pt) 1995-01-24
    EP0635587A1 (de) 1995-01-25
    DE4319951A1 (de) 1994-12-22
    EP0931856A3 (de) 1999-08-18
    DE59406960D1 (de) 1998-10-29

    Similar Documents

    Publication Publication Date Title
    EP0306612B2 (de) Verfahren zur Aufbringung von Schichten auf Substraten
    EP0635587B1 (de) Elektrode, bestehend aus einem Eisen-haltigen Kern und einem Blei-haltigem Überzug
    DE19911746A1 (de) Diamantelektroden
    CN110325669B (zh) 由有机浴添加剂的降解减少的碱性镀浴电沉积锌和锌合金涂层的方法
    US4555317A (en) Cathode for the electrolytic production of hydrogen and its use
    EP2394288A1 (de) Modifizierbare magnetkonfiguration für arc-verdampungsquellen
    DE2119066A1 (de) Verfahren zum Herstellen von edel metall und/oder edelmetalloxid beschich teten Gegenstanden, insbesondere Elektro den
    US4746584A (en) Novel amorphous metal alloys as electrodes for hydrogen formation and oxidation
    EP0164200A1 (de) Elektrolytische Verfahren mit Sauerstoffanoden aus amorpher Metallegierung auf Platinbasis
    DE3022751A1 (de) Elektrode mit niedriger ueberspannung und verfahren zu ihrer herstellung
    DE10013298A1 (de) Verfahren zum Aufbringen einer Metallschicht auf Leichtmetalloberflächen, Anwendung des Verfahrens sowie nanokristalline Eisen/Phosphor-Schicht
    DD215589B5 (de) Verfahren zur elektrolytischen Metallabscheidung bei erzwungener Konvektion
    EP4050120A1 (de) Vorrichtung zur oberflächenbeschichtung eines bandförmigen substrats aus einem metall für die herstellung von bipolarplatten, elektroden oder elektrischen stromableitern
    EP0791226B1 (de) Vorrichtung zum beschichten von substraten mit einem materialdampf im unterdruck oder vakuum
    US4692226A (en) Process to manufacture glyoxylic acid by electrochemical reduction of oxalic acid
    DE2636552C3 (de) Verwendung von Ferro-Nickel-Granalien
    WO2010046392A2 (de) Elektrochemisches beschichtungsverfahren
    EP0356804B1 (de) Verfahren zur Herstellung von Alkalidichromaten und Chromsäure
    US6103088A (en) Process for preparing bismuth compounds
    DE3620013A1 (de) Verfahren zur herstellung von alkoxyessigsaeuren
    US2313372A (en) Electrodeposition of lead
    DE2948999A1 (de) Galvanisches bad zur abscheidung von gold
    DE1903656C3 (de) Elektrolytisches Verfahren zur Elektrolyse einer wässrigen Sulfatlösung
    DE2636552B5 (de)
    JPH10317187A (ja) 亜鉛系メッキ鋼板の製造方法

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19941126

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): BE CH DE ES FR GB IT LI NL

    17Q First examination report despatched

    Effective date: 19950905

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE CH DE ES FR GB IT LI NL

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59406960

    Country of ref document: DE

    Date of ref document: 19981029

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2121120

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19981023

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20000516

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20000524

    Year of fee payment: 7

    Ref country code: CH

    Payment date: 20000524

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20000601

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20000606

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20000627

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20000717

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010601

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

    Effective date: 20010628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010630

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010630

    BERE Be: lapsed

    Owner name: BASF A.G.

    Effective date: 20010630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20010601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020228

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20020101

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030303

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050601