US3898140A - Electrolytic hydrodimerization process improvement - Google Patents

Electrolytic hydrodimerization process improvement Download PDF

Info

Publication number
US3898140A
US3898140A US497808A US49780874A US3898140A US 3898140 A US3898140 A US 3898140A US 497808 A US497808 A US 497808A US 49780874 A US49780874 A US 49780874A US 3898140 A US3898140 A US 3898140A
Authority
US
United States
Prior art keywords
solution
acid
per liter
alkali metal
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US497808A
Inventor
Jr J Harvey Lester
James S Stewart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB4139073A external-priority patent/GB1419155A/en
Application filed by Monsanto Co filed Critical Monsanto Co
Priority to US497808A priority Critical patent/US3898140A/en
Priority to US05/599,255 priority patent/US3966566A/en
Priority to CA232,370A priority patent/CA1051819A/en
Priority to GB3145575A priority patent/GB1477782A/en
Priority to BR7504824*A priority patent/BR7504824A/en
Application granted granted Critical
Publication of US3898140A publication Critical patent/US3898140A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • C25B3/295Coupling reactions hydrodimerisation

Definitions

  • 204/73 A; 204/73 R of hydrogen at the Cathode can be Substantially [51] Int CL 07 121 02 07 12 2 07 29/0 inhibited and the current efficiency Of the PTOCBSS Sig- 5s 1 Field of Search 204/73 R, 73 A nificamly increased by including in the Solution a trilocarboxylic acid compound such as a salt of ethyl- [56] References Cited enediaminetetraacetic acid. Particularly good results UNITED STATES PATENTS are obtained when the solution also contains a boric acid, a condensed phosphoric acid or an alkali metal 2,685,564 8/1954 Emmett et a1.
  • the percentage of current consumed in the electrolysis by undesired production of molecular hydrogen is normally equal to 50 times the percentage by volume of hydrogen in the offgas divided by 100 less the percentage by volume of hydrogen in the offgas, i.e., 50 X %H l-%H
  • a concentration of by volume of hydrogen in an electrolysis offgas usually indicates that about 5.5% of the current consumed in the electrolysis was wasted on molecular hydrogen production and, accordingly, that the current efficiency of the hydrodimerization process was not possibly any greater than about 94.5%.
  • Olefinic compounds that can be hydrodimerized by the improved process of this invention include those having the structural formula R C CR-X wherein X is CN, CONR or COOR, R is hydrogen or R and R is C -C alkyl (i.e., methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl).
  • At least one R may be R while at least one other R is hydrogen and at least one R, if present, may be an alkyl group containing a given number of carbon atoms while at least one other R, if present, is an alkyl group containing a different number of carbon atoms.
  • Such compounds include olefinic nitriles such as, for example, acrylonitrile, methyacrylonitrile, crotononitrile, Z-methylenebutyronitrile, Z-pentenenitrile, 2-
  • olefinic carboxylates such as, for example, methyl acrylate, ethyl acrylate or ethyl crotonate
  • olefinic carboxamides such as, for example, acrylamide, methacrylamide, N-N- diethylacrylamide or N,N-diethylcrotonamide. Best results are generally obtained when the olefinic compound has at least one hydrogen atom directly attached to either of the two carbon atoms joined by the double bond in the aforedescribed structural formula.
  • R in that formula is methyl or ethyl, and particularly acrylonitrile, methyl acrylate and alpha-methyl acrylonitrile.
  • Products of hydrodimerization of such compounds have the structural formula XCl-IRCR CR CHR-X wherein X and R have the aforesaid significance, i.e., paraffinic dinitriles such as, for example, adiponitrile and 2,5-dimethyladiponitri1e; paraffinic dicarboxylates such as, for example, dimethyladipate and diethyl-3,4-dimethyladipate; and paraffinic dicarboxamides such as, for example adipamide, dimethyladipamide and N,N-dimethyl-2,5- dimethyladipamide.
  • paraffinic dinitriles such as, for example, adiponitrile and 2,5-dimethyladiponitri1e
  • paraffinic dicarboxylates such as, for example, dimethyladipate and diethyl-3,4-dimethyladipate
  • paraffinic dicarboxamides such as, for example adipamide, di
  • Such hydrodimers can be employed as monomers or as intermediates convertible by known processes into monomers useful in the manufacture of high molecular weight polymers including polyamides and polyesters.
  • the dinitriles for example, can be hydrogenated by known processes to prepare paraffinic diamines especially useful in the production of high molecular weight polyamides.
  • other examples of various olefinic compounds that can be hydrodimerized by the process of this invention and the hydrodimers thereby produced are identified in the aforecited U.S. Pat. Nos. 3,193,475-79 and 48l83.
  • the invention is herein described in terms of electrolyzing an aqueous solution having dissolved therein certain proportions of the olefinic compound to be hydrodimerized, quaternary ammonium or phosphonium cations and a conductive salt.
  • aqueous solution does not imply, however, that the electrolysis medium may not also contain an undissolved organic phase.
  • the process of this invention can be quite satisfactorily carried out by electrolyzing the aqueous solution in an electrolysis medium containing the recited aqueous solution and a dispersed but undissolved organic phase in any proportions at which the aqueous solution is the continuous phase of the electrolysis medium.
  • the aqueous solution may be suitably electrolyzed in an electrolysis medium containing essentially no undissolved organic phase, by which is meant either no measurable amount of undissolved organic phase or a minute proportion of undissolved organic phase having no significant effect on the hydrodimer selectivity achieved when the aqueous solution is electrolyzed in accordance with the process of this invention.
  • a minute proportion if present, would be typically less than 5% of the combined weight of the aqueous solution and the undissolved organic phase in the electrolysis medium.
  • the process of this invention can be carried out by electrolyzing the aqueous solution in an electrolysis medium consisting essentially of the recited aqueous solution and a dispersed but undissolved organic phase in a larger proportion (e.g. up to about or even more of the combined weight of the aqueous solu tion and the undissolved organic phase in the electrolysis medium) which may or may not significantly affect the hydrodimer selectivity depending on other conditions of the process.
  • an electrolysis medium consisting essentially of the recited aqueous solution and a dispersed but undissolved organic phase in a larger proportion (e.g. up to about or even more of the combined weight of the aqueous solu tion and the undissolved organic phase in the electrolysis medium) which may or may not significantly affect the hydrodimer selectivity depending on other conditions of the process.
  • such an organic phase is normally made up mainly (most commonly at least about 65% and even more typically at least about of the olefinic compound to be hydrodimerized and the hydrodimer product with some small amounts of organic hydrodimerization by-products, quaternary ammonium or phosphonium cations, etc. possible also present.
  • such an organic phase contains at least about 10%, preferably between about 15% and about 50%, and even more desirably between about 20% and about 40% of the olefinic compound to be hydrodimerized.
  • the concentrations of the constituents dissolved in the aqueous solution to be electrolyzed are with reference to the recited aqueous solution alone and not the combined contents of said aqueous solution and an undissolved organic phase which, as aforesaid, may be present but need not be present in the electrolysis medium as the invention is carried out.
  • the weight percentages of undissolved organic phase described herein are based on the combined weight of the aqueous solution and the undissolved organic phase in the electrolysis medium.
  • the olefinic compound to be hydrodimerized will be present in at least such a proportion that electrolysis of the solution, as described herein, results in a substantial amount of the desired hydrodimer being produced. That proportion is generally at least about 0.1% of the aqueous solution, more typically at least about 0.5% and, in some embodiments, preferably at least about 1% of the aqueous solution. Inclusion of one or more additional constituents which increase the solubility of the olefinic compound in the solution may permit carrying out the process with the solution containing relatively high proportions of the olefinic compound, e.g.
  • the aqueous solution contains less than about 5% (e.g. not more than 4.5%) of the olefinic compound and, in many of those embodiments, preferably not more than about 1.8% of the olefinic compound.
  • the minimum required proportion of quaternary ammonium or phosphonium cations is very small. In general, there need be only an amount sufficient to provide the desired hydrodimer selectivity (typically at least about 75%) although much higher proportions can be present if desired or convenient. In most cases, the quaternary ammonium or phosphonium cations are present in a concentration of at least about 10 gram mol per liter of the aqueous solution. Even more typically their concentration is at least about 10 gram mol per liter of the solution and, in some embodiments employing monovalent mono-quaternary ammonium or phosphonium cations, preferably at least about 5 X 10 gram mol per liter.
  • the quaternary ammonium or phosphonium cations are generally present in the aqueous solution in a concentration not higher than about 0.5 gram mol per liter and even more usually not higher than about 10 gram mol per liter.
  • the concentration of quaternary ammonium or phosphonium cations in the solution is between about and about lO' gram mol per liter.
  • the quaternary ammonium or phosphonium cations that are present in such concentrations are those positively-charged ions in which a nitrogen or phosphorous atom has a valence of five and is directly linked to other atoms (e.g. carbon) satisfying four fifths of that valence.
  • Such cations need contain only one pentavalent nitrogen or phosphorous atom as in, for example, various monovalent mono-quaternary ammonium (e.g. tetraalkylammonium) or mono-quaternary phosphonium (e.g.
  • tetraalkylphosphonium tetraalkylphosphonium cations
  • they may contain more than one of such pentavalent atoms as in, for example, various multivalent multiquaternary ammonium or phosphonium cations such as the bisquaternary ammonium or phosphonium cations, e.g. polymethylenebis (trialkylammonium or trialkylphosphonium) cations. Mixtures of such monovalent and multivalent quaternary ammonium and/or phosphonium cations can also be used.
  • Suitable monoquaternary ammonium or phosphonium cations may be cyclic, as in the case of the piperidiniums, pyrrolidiniums and morpholiniums, but they are more generally of the type in which a pentavalent nitrogen or phosphorous atom is directly linked to a total of four monovalent organic groups preferably devoid of olefinic unsaturation and desirably selected from the group consisting of alkyl and aryl radicals and combinations thereof.
  • Suitable multiquaternary-ammonium or phosphonium cations may likewise by cyclic, as in the case of the piperaziniums, and they are typically of a type in which the pentavalent nitrogen or phosphorous atoms are linked to one another by at least one divalent organic (e.g. polymethylene) radical and each further substituted by monovalent organic groups of the kind just mentioned sufficient in number (normally two or three) that four fifths of the valence of each such pentavalent atom is satisfied by such divalent and monovalent organic radicals.
  • divalent organic e.g. polymethylene
  • suitable aryl groups contain typically from six to 12 carbon atoms and preferably only one aromatic ring as in, for example, a phenyl or benzyl radical, and suitable alkyl groups can be straight-chain, branched or cyclic with each typically containing from one to twelve carbon atoms.
  • quaternary ammonium or phosphonium cations containing a combination of such alkyl and aryl groups e.g. benzyltriethylammonium or -phosphonium ions
  • many embodiments of the invention are preferably carried out with quaternary cations having no olefinic or aromatic unsaturation.
  • C -C tetraalkylphosphonium ions containing at least three C -C alkyl groups e.g. methyltributyl-, tetrapropyl-,'ethy1triamyl-, octyltriethylphosphonium, etc.
  • Particularly useful are the C -C tetraalkylphosphoniun ions containing at least three C C alkyl groups.
  • divalent polymethylenebis(trialkylammonium or trialkylphosphonium) ions particularly those containing a total of from l7 to 36 carbon atoms and in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups and the polymethylene radical is C -C i.e., a straight chain of from three of eight methylene radicals.
  • C C polymethylenebis(trialkylammonium or trialkylphosphonium) ions in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups and the polymethylene radical is C -C
  • the carbon atom content of such ions is preferably from 20 to 34.
  • C -C hexamethylenebis(trialkylammonium) ions e.g.
  • each trialkylammonium radical contains at least two C -C alkyl groups, partly because water-soluble salts of such cations can be relatively simply prepared from hexamethylenediamine which is readily available in commercial quantities at relatively lost cost.
  • hexamethylenebis(trialkylammonium or trialkylphosphonium) ions containing from 20 to 30 carbon atoms, e.g. those in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups, and especially the C -C hexamethylenebis(trialkylammonium) ions in which each trialkylammonium radical contains at least one and preferably two n-butyl groups.
  • any of such cations can be incorporated into the aqueous solution to be electrolyzed in any convenient manner, e.g. by dissolving the hydroxide or a salt (e.g. a C,C alkylsulfate) of the desired quaternary ammonium or phosphonium cation(s) in the solution in the amount required to provide the desired concentration of such cations.
  • a salt e.g. a C,C alkylsulfate
  • polymethylenebis(- trialkylammonium) or trialkyphosphonium) ions for use in the present invention is that relative to most of the corresponding tetraalkylammonium and tetraalkylphosphonium ions of the type described hereinbefore, they tend to distribute themselves in higher proportion toward the aqueous phase of a mixture of an aqueous solution of the type electrolyzed in accordance with the present invention and the undissolved organic phase which, as aforesaid, may be present in the aqueous solution during the electrolysis.
  • product hydrodimer is generally most conveniently removed from the electrolyzed solution by adding to the solution (either before or after the electrolysis) an amount of the olefinic starting material in excess of its solubility therein, mixing the solution and the excess olefinic compound until they are substantially equilibrated, and then separating (e.g. decanting) from the resulting mixture a first portion thereof that is richer than said mixture in the olefinic compound and therefore richer than said mixture in the hydrodimer product which is normally substantially more soluble in the olefinic compound than in the electrolyzed aqueous solution.
  • the hydrodimer product is separated from said first portion of the mixture (e.g. by distillation) while a second portion of the mixture comprising an aqueous solution of the type subjected to electrolysis in accor-' dance with the present invention is recycled and the aqueous solution comprised by said second portion is subjected to more of such electrolysis.
  • the type of conductive salt employed is not usually critical to inhibition of hydrogen formation by use of a nitrilocarboxylic acid compound as described herein.
  • the conductive salt can be a quaternary ammonium or phosphonium salt such as, for example, a tetraalkylammonium or phosphonium phosphate, sulfate, alkylsulfate, (e.g. ethylsulfate) or arylsulfonate (e.g. toluene sulfonate).
  • organic salts of that general type can be employed as the conductive salt in a divided or singlecompartment (undivided) cell
  • an alkali metal conductive salt i.e., a salt of sodium, potassium, lithium, cesium or rubidium
  • EHD undivided electrolytic hydrodimerization
  • alkali metal salts those of lithium and especially sodium and potassium are generally preferred for economic reasons.
  • salts of inorganic and/or polyvalent acids e.g. a tetraalkylammonium or phosphonium or alkali metal orthophosphate, borate, perchlorate, carbonate or sulfate and particularly an incompletely-substituted salt of that type, e.g., a salt in which the anion has at least one valence satisfied by hydrogen and at least one other valence satisfied by an alkali metal.
  • salts examples include disodium phosphate (Na HPO potassium acid phosphate (KH PO sodium bicarbonate (NaHCO and dipotassium borate (K HBO).
  • alkali metal salts of condensed acids such as pyrophosphoric, metaphosphoric metaboric, pyroboric and the like (e.g. sodium pyrophosphate, potassium metaborate, borax, etc.) and/or products of hydrolysis of such condensed acid salts.
  • the stoichiometric proportions of such anions and alkali metal cations in the solution may correspond to a mixture of two or more of such salts, e.g.
  • a mixture of sodium acid phosphate and disodium phosphate and accordingly, such mixtures of salts (as well as mixtures of salts of different cations, e.g. different alkali metals, and/or different acids, e.g. phosphoric and boric) are intended to be within the scope of the expressions conductive salt" and alkali metal phosphate, borate, perchlorate, carbonate or sulfate as used herein.
  • Any of the alkali metal salts may be dissolved in the aqueous solution as such or otherwise, e.g. as the alkali metal hydroxide and the acid necessary to neutralize the hydroxide to the extent of the desired acidity of the aqueous solution.
  • the concentration of conductive salt in the solution should be at least sufficient to substantially increase the electrical conductivity of the solution above its conductivity without such a salt being present. In most cases, a concentration of at least about 0.1% is favored. More advantageous conductivity levels are achieved when the solution has dissolved therein at least about 1% of the conductive salt or, even more preferably, at least about 2% of such a salt. In many cases, optimum process conditions include the solution having dissolved therein more than 5% (typically at least 5.5%) of the conductive salt. The maximum amount of salt in the solution is typically limited only by its solubility therein, which varies with the particular salt employed. With salts such as sodium or potassium phosphates and/0r borates, it is generally most desirable that the solution contain between about 8% and about 15% of such a salt or mixture thereof.
  • generation of molecular hydrogen at the cathode of a process of the type discussed herein can be substantially inhibited by including in the aqueous electrolysis medium at least one nitrilocarboxylic acid compound such as, for example, a nitriloacetic or nitrilopropionic acid compound having the formula Y N-(-Z-YN-) RCOOM wherein Y is a monovalent radical such as hydrogen, R"COOM, -(-CH OH or C -C alkyl (preferably C C alkyl such as ethyl, n-propyl, tert-butyl, n-hexyl, n-decyl, etc.); R" is t-CHW or +CHR"+; R is hydroxy, COOM, 4CH )mCOOM or C -C alkyl, hydroxalkyl (e.g.
  • Z is a divalent C -C hydrocarbon (e.g. alkylene) radical such as, for example, nhexylene, n-butylene, iso-butylene or, generally more desirably, ethylene or n-propylene;
  • M is a monovalent radical such as hydrogen, an alkali metal (e.g.
  • m is l or 2
  • n represents the number of repeating -(-ZYN-)-groups, if any, and may be 0, l, 2, 3 or 4
  • at least one Y in the formula is R"- COOM or t-CHWOH, i.e., the compound contains at least one R"COOM or t-CHWOH group in addition to the -R"-COOM group on the right hand end of the formula as shown hereinbefore.
  • At least one such additional RCOOM or t-CHWOH group is usually desirably attached to the nitrogen atom at the left-hand end of the formula but when n is 1, such an additional group may be attached (alternatively or otherwise) to the nitrogen atom in the +Z-YN) unit, and when n is 2, 3 or 4, any one or more of the nitrogen atoms in the repeating -(-ZYN+units may have such an additional RCOOM or +Cl-lmOl-l group attached thereto.
  • the sequesterant is an aminopolycarboxylic acid compound, i.e., one in which there are at least two RCOOM groups. It is also generally desirable for Y to be C -C alkylene and for n to be 0, 1,2 or 3 (even more desirable 0, l or 2 and most preferably 1 or 2).
  • nitrilotriacetic acid diethylenetriaminepentaacetic acid, N,N-di(2-hydroxyethyl)glycine, ethylenediaminetetrapropionic acid, N-N'- ethylenebis[2-(o-hydroxyphenyl)]glycine and, typically most favored, ethylenediaminetetraacetic acid and N-hydroxyethylethylenediaminetriacetic acid (hereinafter sometimes represented as EDTA and HEDTA, respectively).
  • EDTA and HEDTA ethylenediaminetetraacetic acid
  • HEDTA N-hydroxyethylethylenediaminetriacetic acid
  • alkali metal salts of such nitrilocarboxylic acid compounds can be prepared by re acting an appropriate amine (e.g. ethylenediamine) with an alkali metal salt of a chloracetic acid in the presence of an alkali metal hydroxide, or with hydrogen cyanide and formaldehyde and then an alkali metal hydroxide, or with ethylene glycol to provide hydroxyethyl substituents of nitrogen atom(s) of the amine and then reacting the hydroxyethyl-substituted amine with an alkali metal hydroxide in the presence of cadmium oxide to convert the hydroxyethyl substituents to alkali metal acetate substituents in the proportion desired, or with acrylonitrile in the presence of a base (e.g.
  • the minimum concentration of the nitrilocarboxylic acid compound in the aqueous electrolysis medium is only that sufficient to inhibit formation of molecular hydrogen at the cathodic surface of the process.
  • at least about 0.025 millimol of the nitrilocarboxylic acid compound per liter of the solution is desirable and at least about 0.1 millimol per liter is preferred.
  • at least about 0.5 millimol per liter is more desirable and at least about 2.5 millimols per liter usually provides even better results.
  • not more than about 50 millimols per liter are required, although higher concentrations may be employed if desired.
  • the concentration of the nitrilocarboxylic acid compounds in the solution is not greater than 25 millimols per liter.
  • concentrations it should be understood that the nitrilocarboxylic acid compounds used herein may degrade under the conditions of the process, e.g. to compounds that have lower molecular weight and/or fewer R-COOM or +CH2)mOH groups but which nevertheless provide the advantages of this invention in substantial meas ure, and accordingly such degradation products should be considered as equivalent to the undegraded nitrilocarboxylic acid compounds to the extent that they provide the advantages thereof, when measuring or otherwise identifying a nitrilocarboxylic acid compound concentration with reference to the process of this invention.
  • nitrilocarboxylic acid compounds may also be used in the process of this invention and accord- 5 ingly, such mixtures are meant to be within the scope of the expression a nitrilocarboxylic acid compound as used in this disclosure and the appended claims.
  • boric acid preferably the cation of the conductive salt
  • a condensed phosphoric acid or an alkali metal salt thereof.
  • the boric acid or borate may be added to the solution as orthoboric acid, metaboric acid or pyroboric acid and then neutralized to the desired solution pH, e.g. with an alkali metal (preferably the cation of the conductive salt) hydroxide or as a completely or incompletely substituted alkali metal salt of such an acid (e.g.
  • the condensed phos phoric acid or phosphate may be added as a polyphosphoric (e.g. pyrophosphoric or triphosphoric) acid and then neutralized to the desired solution pH or as a completely or incompletely substituted alkali metal salt thereof (e.g. tetrasoduim pyrophosphate or potassuim hexametaphosphate or triphosphate).
  • a polyphosphoric e.g. pyrophosphoric or triphosphoric
  • alkali metal salt thereof e.g. tetrasoduim pyrophosphate or potassuim hexametaphosphate or triphosphate.
  • the condensed phosphoric acids and their alkali metal salts tend to hydrolyze in the clectolysis meduim at rates dependent on their concentration, the solution pH, etc. It is believed, however, that the products of such hydrolysis continue to inhibit the generation of hydrogen at the cathode so long as they remain condensed to at least some degree, i.e., so long as they have not been hydrolyzed to the orthophosphate form, and hence the preferred concentrations of such condensed phosphoric acid compounds are herein expressed in terms of weight percent of a condensed phosphoric acid (which may be that originally added to the solution or hydrolysis products thereof having a lower but conventionally recognizable degree of mo- 5 lecular condensation) or the molar equivalent of an alkali metal salt thereof.
  • the solution When such a condensed phosphoric acid is used in the process of this invention, and particularly in an undivided cell having a metallic anode (e.g. an anode comprising a ferrous metal such as carbon steel, alloy steel, iron or magnetite), it is generally advantageous for the solution to contain at least about 0.01% preferably between about 0.02% and about 3%, and often most desirably between about 0.02and about 2% of the condensed phosphoric acid or the molar equivalent (molecularly equivalent amount) of an alkai metal salt thereof.
  • a metallic anode e.g. an anode comprising a ferrous metal such as carbon steel, alloy steel, iron or magnetite
  • the solution it is generally advantageous for the solution to contain at least about 0.01% preferably between about 0.02% and about 3%, and often most desirably between about 0.02and about 2% of the condensed phosphoric acid or the molar equivalent (molecularly equivalent amount) of an alkai metal
  • boric acids and alkali metal salts thereof tend to relatively rapidly form in the electrolysis medium a variety of boroncontaining ions having relative proportions normally dependent on their concentrations, the solution pH, etc., and generally including both uncondensed (i.e., orthoborate) and condensed (e.g. metaborate, tetraborate, polymeric, ring-containing, etc.) ions, regardless of whether the acids and/or salts originally added to the electrolysis medium were in condensed or uncondensed form at that time.
  • condensed borates e.g.
  • tetraborates normally convert in the electrolysis medium in part to orthoborate ions and in part to other condensed borate ions, while orthoborates added as such generally form various condensed borate ions, depending largely on the solution pH, etc.
  • the boron-containing ions are effective for purposes of this invention whether they are present in condensed or uncondensed forms or a mixture thereof and accordingly, preferred concentrations of the boric acids or salts are herein expressed (on the basis of one liter of solution) interms of gram atoms of boron which may be present in the ionic form of condensed or uncondensed borates or other boroncontaining moieties provided by interaction between the electrolysis medium and the boric acids and/or salts added thereto.
  • the boron concentration in the electrolysis medium is generally desirable for the boron concentration in the electrolysis medium to be at least about 0.01 and preferably 0.02 gram atom of boron per liter of solution. It is generally not necessary that theh boron concentration in the solution be greater than about 0.09 gram atom per liter and in many cases it need not be greater than about 0.05 gram atom per liter, although higher concentrations are not necessarily detrimental and may be advantageous, e.g. if it is intended that a boric acid salt provide a substantial portion of the electrical conductivity of the electrolysis medium.
  • the pH of the bulk of the electrolysis medium is at least about two, preferably at least about five, more preferably at least about six and most conveniently at least about seven, especially when the process is carried out in an undivided cell having a metallic anode.
  • the overall solution pH is generally not higher than about 12, typically not higher than about I l and, with the use of sodium or potassium phosphates and/or borates, generally not substantially higher than about 10.
  • the temperature of the solution may be at any level compatible with existence of such of the solution itself, i.e., above its freezing point but below its boiling point under the pressure employed. Good results can be achieved between about and about 75C. or at even higher temperatures if pressures substantially above one atmosphere are employed.
  • the optimum temperature range will vary with the specific olefinic compound and hydrodimer, among other factors, but in hydrodimerization of acrylonitrile to adiponitrile, electrolysis temperatures of at least about 25 are usually preferred and those between about 40 and about 65C. are especially desirable.
  • electrolytic hydrodimerization of an olefinic compound having a formula as set forth hereinbefore must be carried out in contact with a cathodic surface having a cathode potential sufficient for hydrodimerization of that compound.
  • a current density of at least about 0.01 amp per square centimeter (amp/em of the cathodic surface is used and a current density of at least about 0.05 amp/cm is usually preferred.
  • a liquid-impermeable cathode is usually preferred.
  • the aqueous solution to be electrolyzed is generally passed between the anode and cathode at a linear velocity with reference to the adjacent cahtodic surface of at least about 0.3 meter per second, preferably at least about 0.6 meter per second and even more preferably between about 0.9 and about 2.4 meters per second although a solution velocity up to 6 meters per sec- 0nd or higher can be employed if desired.
  • the gap between the anode and cathode can be very norrow, e.g.
  • the cathodic potential can be provided and which is not dissolved or correded at an intolerable rate.
  • the process can be czrried out with a cathode consisting essentially of cadmium, mercury, thallium, lead, zinc, manganese, tin (possibly not suitable with some nitrile reactants) or graphite, by which is meant that the cathodic surface contains a high percentage (generally at least about and preferably at least about 98%) of one or a combination (e.g.
  • cathodes consisting essentially of cadmium, lead, zinc, manganese, graphite or an alloy of one of such metals, and especially cathodes consisting essentially of cadmium.
  • Cathodes employed in this invention can be prepared by various techniques such as, for example, electroplating of the desire cahtode material on a suitably-shaped substrate of some other material, e.g. a metal having greater structural rigidity, or by chemically, thermally and/or mechanically bonding a layer of the cathode material to a similar substrate.
  • a plate, sheet, rod or any other suitable configuration consisting essentially of the desired cathode material may be used without such a substrate, if convenient.
  • the process of this invention can be carried out in a divided cell having a cation-permeable membrane, diaphragm or the like separating the anode and cathode compartments of the cell in such a way that the aquious solution containing the olefinic compound undergoing hydrodimerization at the cathode of the cell is not in simultaneous direct contact with an anode of the cell.
  • it is especially advantageously carried out in cells not divided in that manner, i.e., in cells which the solution being electrolyzed is in direct physical contact with an anode and cathode of the cell.
  • metals having a specific gravity greater than 4.0 such as, for example, platinum, ruthenium, nickel, lead, lead dioxide and, of particular advantage when the conductive salt is a phosphate, borate or carbonate, ferrous materials such as carbon steels, alloy steels, iron and magnetite
  • an especially preferred embodiment of the invention is carried out in an undivided cell having an anode comprising a ferrous metal and with the use of an alkali metal phosphate, borate or carbonate conductive salt and an electrolysis medium having a pH not substantially below seven.
  • each anode in the cell may be in the form of a plate, sheet, strip, rod or any other configuration suitable for the use intended. In a preferred embodiment, however, the anode is in the form of a sheet (e.g. of cold-rolled carbon steel) essentially parallel to and closely spaced from a cathodic surface of approximately the same dimensions.
  • the nitrilocarboxylic acid compounds (and probably to a lesser extent, if present, the boric and/or condensed phosphoric acid compounds) at least partially sequester heavy metals which tend to accumulate in the electrolysis medium (e.g. as a result of corrosion of the cathode and/or, with use of an undivided cell, corrosion of the anode) and that such sequestration inhibits the deposition of those metals on the cathode of the cell.
  • acrylonitrile and adiponitrile are generally represented by AN and ADN, respectively.
  • EXAMPLE I In a continuous process, an aqueous solution having dissolved therein approximately 1.5% AN, 1.2% ADN, 0.2% AN EHD byproducts, 4 X 10 gram mol per liter of ethyltributylammonium cations, 10% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 9, 0.3% of tetrasodium pyrophosphate and 0.018% (0.5 millimols per liter) of the tetrasodium of ethylenediaminetetraacetic acid (EDTA) was circulated at 55C.
  • EDTA ethylenediaminetetraacetic acid
  • the solution which also had entrained therein approximately 0.8% by weight of an organic phase containing about 55% ADN, 28% AN, 9% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell of about 3.8 volts and a current density of about 0.16 amp/cm 2 of cathodic surface and then fed into a decanter for equilibration with an accumulated upper layer having approximately the composition of the aforedescribed organic phase and withdrawal of equilibrated lower (aqueous) layer for recycle through the cell.
  • Example 1 When Example 1 was repeated except that the tetrasodium salt of EDTA was omitted, it was found after 78 hours that the average ADN selectivity had been 86.6%, the anode had corroded at essentially the same average rate and the volume percentage of hydrogen in the offgas had averaged 11.3% with a final value of 24.3%.
  • EXAMPLE II In a continuous process, an aqueous solution having dissolved therein approximately 1.6% AN, 1.2% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 9 and 25 X 10 gram mol per liter, 9% of a mixture of incompletelysubstituted sodium orthophosphates corresponding to the solution pH of 9, 0.1% of tetrasodium pyrophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium pryophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium salt of EDT was circulated at a temperature between 50 and 55C.
  • Example 1 a velocity between 0.91 and 1.22 meters per second through an undivided electrolytic cell having an AlSl 1020 carbon steel anode separated by a gap of 3.18 millimmeters from a cathode composed of a rolled sheet of cadmium having the composition described in Example I.
  • the solution which also had entrained therein approximately 4% by weight of an organic phase containing about 54% ADN, 29% AN, 9% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell of 4.5 volts and a current density of 0.23 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in Example 1.
  • EXAMPLE 111 In a continuous process, an aqueous solution having dissolved therein approximately 1.6% AN, 1.2% ADN, 0.2% AN EHD byproducts, 5.8 X 10' gram mol per liter of ethyltributylammonium cations, 10% of a mixture of incompletly-substituted sodium orthophosphates corresponding to the solution pH of 9, 0.1% of tetrasodium pyrophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium salt of EDTA was circulated at 55C.
  • EXAMPLE V In a continuous process, an aqueous solution having dissolved therein approximately 1.1% AN, 1.1% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 5.1 and 8.7 X 10' gram mol per liter, 10.3% of a mixture of imcompletely-substituted sodium orthophosphates corresponding to the solution pH of 9 and 0.3% (8.5 millimols per liter) of the tetrasodium salt of EDTA was circulated at 5055C.
  • EXAMPLE V1 In a continuous process, an aqueous solution havng dissolved therein an average of approximately 1.1% AN, 1.1% ADN, 0.2% AN EHD byproducts, 1.7 X 10* gram mol per liter of tetrabutylammonium cations, 12.2% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 10, and 0.3% (8.5 millimols per liter) of the tetrasodium salt of EDTA was circulated at 50C. and a velocity of 1.22 meters per second through an undivided electrolytic cell having an AlSl 1020 carbon steel anode separated by a gap of 2.72 millimeters from a lead cathode.
  • the solution which also had entrained therein approximately 4% by weight of an organic phase containing an average of about 61% ADN, 21% AN, AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell averaging 4.25 volts and a current density of 0.22 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in previous Examples.
  • COMPARATIVE EXAMPLE B In a continuous process, an aqueous solution having dissolved therein approximately 2% AN, 1% ADN, 0.2% AN EHD byproducts, 1.6 X 10' gram mol per liter of ethyltributylammonium cations and 1 1.3% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 10 and devoid of any nitrilocarboxylic acid compound was circulated at 50C. and a velocity of 1.22 meters per second through an undivided electrolytic cell having an A181 1020 carbon steel anode separated by a gap of 2.72 millimeters from a lead cathode of the type employed in Example V1.
  • the solution which also had entrained therein approximately 4% by weight of an organic phase containing an average of about 47% ADN, 37% AN, 8% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell averaging 4.6 volts and a current density of 0.22 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in previous Examples.
  • EXAMPLE VII In a continuous process, an aqueous solution having dissolved therein approximately 1.5% AN, 1.2% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 2 and 9 X 10 gram mol per liter, 10% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 8.5, 0.5% (14.2 millimols per liter) of the tetrasodium salt of EDTA and the mixture of sodium borates produced by neutralizing orthoboric acid in amount corresponding to 2% of the solution (036 gram atoms of boron per liter of the solution) with sodium hydroxide to the solution pH of 8.5 was circulated at a temperature of 55C.
  • a liquid electrolysis medium composed between 85.9% and 87.5% by (1) an aque ous solution having dissolved therein between 1.4% and 1.6% AN, about 1.2% ADN, 9.69.9% ofa mixture of sodium orthophosphates, 0.8-2.5 X 10 mole per liter of ethyltributylammonium ions, about 0.6% 17.0 millimoles per liter) of tetrasodium ethylenediaminetetraacetate (Na,EDTA) and the sodium borates produced by neutralizing orthoboric acid in an amount corresponding to about 2% of the solution to the solution pH of 8.5-9 and between 12.5% and 14.1% by (2) a dispersed but undissolved organic phase conaining 26-29% AN, 54-59% ADN, 7-9% AN EHD byproducts and 8% water was circulated at 55C.
  • a liquid electrolysis medium composed about 99% by (1) an aqueous solution having dissolved therein between 1.4% and 1.6% AN, about 1.2% ADN, of a mixture of sodium orthophosphates, 0.6-1.4 X10 'mole per liter of methyltributylphosphonium ions, about 0.5% 14.2 millimoles per liter) of Na EDTA and the sodium borates produced by neutralizing orthoboric acid in an amount corresponding to about 2% of the solution to the solution pH of about 8.5 and about 1% by (2) a dispersed but undissolved organic phase containing 27-29% AN, 54-58% ADN, 7-9% AN EHD byproducts and 8% water was circulated at 55C.
  • EXAMPLE X In a process essentially as described in Example lX except that the quaternary cations in the aqueous solution were 0.2-7.9 X 10" mole per liter of hexamethylenebis(ethyldibutylammonium) ions instead of the 0.6-1.4 X 10' mole per liter of methyltributylphosphonium ions, it was found after 330 hours of electrolysis that AN had been converted to ADN with average and final selectivities of 88-89%, the steel anode had corroded at an average rate below 0.5 millimeter per year and the volume percent of hydrogen in the offgas had averaged below 2% with a final value of 4.9%.
  • EXAMPLE Xl In a process essentially as described in Example 1X except that the quaternary cations in the aqueous solution were 0.4-2.6 X 10 mole per liter of tetramethylenebis(tributylammonium) ions instead of the ().6-l.4 X 10 mole per liter of methyltributylphosphonium ions, it was found after 171 hours of electrolysis that AN had been converted to ADN with averge and final selectivities of 87-88%, the steel anode had corroded at an average rate below 0.5 millimeter per year and the volume percent of hydrogen in the offgas had averaged below 7% with a final value of 1 1.1%.
  • a liquid electrolysis medium composed about 99% by (1) an aqueous solution having dissolved therein between 1.4% and 1.8% AN, about 1.2% ADN, 10-1 1% of a mixture of sodium orthophosphates, about 1.4 X10- mole per liter of ethyltributylammonium ions about 0.6% (16.3 millimoles per liter) of trisodium hydroxyethylethylenediaminetriacetate (Na HEDTA) and the sodium borates produced by lettralizing orthoboric acid in an amount corresponding to 2% of the solution to the solution pH of 8.5 and about 1% by (2) a dispersed but undissolved organic phase containing 27-32% AN, 53-59% ADN, 6-7% AN dimerization byproducts and 8% water was circulated at 55C.
  • nitrilocarboxylic acid compound is selected from the group consisting of ethylenediamenetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaaetic acid, nitrilotriacetic acid, N,N-di(2-hydroxye thyl)glycine and the alkali metal and ammonium salts of such acids.
  • the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
  • an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
  • the conductive salt is an alkali metal phosphate, borate or carbonate and the anode comprises a ferrous metal.
  • nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethyletylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N- di(2-hydroxyethyl) glycine and the alkali metal and ammonium salts of such acids.
  • the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
  • an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
  • R" is +CH lor (CHR"'');
  • R' is l'lydI'OXy,' COOM,-(-CH -)m- COOM or C -C5 alkyl, hydroxyalkyl or hydroxyphenyl;
  • Z is a divalent C5-C hydrocarbon radical;
  • M is hydrogen, alkali metal or ammonium, m is l or 2;
  • n is an integer from 0 to 4 and at least one Y is R"COOM or +CHl OH.
  • nitrilocarboxylic acid compound has the formula Y N+Z-YN-) ,Cl-l COOM wherein Y is Cl-l COOM or CH CH OH; Z is C C, alkylene; M is hydrogen, alkali metal or ammonium; and n is an integer of 0 to 2.
  • nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N- hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
  • the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to between about 0.02 and about 0.9 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to between about 0.02% and about 3% by weight of the corresponding condensed phosphoric acid.
  • an alkali metal salt selected from the group consisting of borate in a concentration corresponding to between about 0.02 and about 0.9 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to between about 0.02% and about 3% by weight of the corresponding condensed phosphoric acid.
  • nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N- hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
  • aqueous solution having dissolved therein at least about 0.5% but less than about 5% by weight of acrylonitrile, between about and about 10 gram mol per liter of quaternary ammonium ions and at least about l% by weight of sodium or potassium salt selected from phosphate and borate in an undivided cell having a ferrous metal anode with a current density of at least about 0.1 amp/cm said solution having a pH between about 7 and about l l and a temperature between about 40 and about 65C.
  • the improvement which comprises including in the solution between about 0.5 and about 25 millimols per liter of a nitrilocarboxylic acid compound selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid and the alkali metal salts of such acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

In a process for hydrodimerizing an olefinic nitrile, amide or ester by electrolyzing an aqueous solution of the olefinic starting material, quaternary ammonium or phosphonium cations and a conductive salt, formation of hydrogen at the cathode can be substantially inhibited and the current efficiency of the process significantly increased by including in the solution a nitrilocarboxylic acid compound such as a salt of ethylenediaminetetraacetic acid. Particularly good results are obtained when the solution also contains a boric acid, a condensed phosphoric acid or an alkali metal salt thereof.

Description

United States Patent Lester, Jr. et a1. Aug. 5, 1975 [54] ELECTROLYTIC HYDRODIMERIZATION 3,245,889 4/1966 Baizer 204/73 A PROCESS IMPROVEMENT 3,250,690 5/1966 Baizer 204/73 A 3,427,234 2/1969 Guthke et a1. 204/73 A [75] Inventors: J. H rv y L r, Jr., P n 3,475,298 10/1969 Andreades 204 73 A James S. Stewart, Cantonment, both 3,595,764 7/1971 Seko et a1 204/73 A Of Fla. 3,616,321 10/1971 Verheyden et al. 204/73 A 3,634,217 1/1972 Bedi et a1 204/129.95 1 1 Asslgneel Monsanto Company, LOUIS, 3,689,382 9/1972 FOX et al. 204/73 A 1 1 Filed: g- 15, 1974 FOREIGN PATENTS OR APPLICATIONS [21] A N 497,808 1,089,707 11/1967 United Kingdom 204/73 A 1,204,912 9/1970 United Kingdom 204/73 A Related US. Application Data Continuation-in-part of S61. NO. 385,767, Aug. 6, Prjynary E -gn1iner F Edmundson 1973, abandoned, which is a continuation-in-part of Attorney, Agent or Firm GeOrge Beck Ser. No. 347,948, April 4, 1973, abandoned, which is a continuation-in-part of Ser. No. 285,975, Sept. 5, 1972, abandoned. [57] ABSTRACT In a process for hydrodimerizing an olefinic nitrile, [30] Foreign Application Priority Data amide or ester by electrolyzing an aqueous solution of Sept 3 1973 United Kingdom H 41390/73 the olefinic starting materiahquaternary ammonium or phosphonium cations and a conductive salt, forma- 52 us. Cl. 204/73 A; 204/73 R of hydrogen at the Cathode can be Substantially [51] Int CL 07 121 02 07 12 2 07 29/0 inhibited and the current efficiency Of the PTOCBSS Sig- 5s 1 Field of Search 204/73 R, 73 A nificamly increased by including in the Solution a trilocarboxylic acid compound such as a salt of ethyl- [56] References Cited enediaminetetraacetic acid. Particularly good results UNITED STATES PATENTS are obtained when the solution also contains a boric acid, a condensed phosphoric acid or an alkali metal 2,685,564 8/1954 Emmett et a1. 204/129.95 X salt thereof 3,116,105 12/1963 Kerst 21/2.7 R 3,193,480 7/1965 29 Claims, N0 Drawings Baizer et a1 204/73 A ELECTROLYTIC HYDRODIMERIZATION PROCESS IMPROVEMENT CROSS-REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of our copending application Ser. No. 385,767 filed Aug. 6, 1973, now abandoned, as a continuation-in-part of our now-abandoned application Ser. No. 347,948 filed Apr. 4, 1973, as a continuation-in-part our nowabandoned application Ser. No. 285,975 filed Sept. 5, 1972.
BACKGROUND OF THE INVENTION Production of paraffinic dinitriles, dicarboxamides or dicarboxylates by electrolytic hydrodimerization of an alpha, beta-olefinic nitrile, carboxamide or carboxylate is well known, e.g. from U.S. Pat. Nos. 3,193,475-79 and 3,193,481-83 issued July 6, 1965, to M. M. Baizer. Although the process has been sufficiently attractive that it has been in commercial use for over nine years, efforts to develop improvements thereon have been continued with particular emphasis on lowering elec tric power costs and mitigating electrode corrosion and fouling tendencies because of which it has been heretofore commercially preferable to carry out the process with a cell-dividing membrane.
With the object of maintaining high electrolyte conductivity while employing an electrolysis medium containing organic salts in a proportion small enough for attractive use of a singlecompartment (membraneless) cell, one approach to improvement of the process has been to use as the electrolysis medium an aqueous solution of a mixture of quaternary ammonium and alkali metal salts together with the olefinic compound to be hydrodimerized. An example of such an approach is described in Netherlands Patent Application 66,10378 laid open for public inspection Jan. 24, 1967, and further development thereof is described in U.S. Pat. No. 3,616,321 issued Oct. 26, 1971, to A. Verheyden et al. and U.S. Pat. No. 3,689,382 issued Sept. 5, 1972, to H. N. Fox et al. However, all known variations of the process are characterized by some degree of inefficiency in use of the electrolyzing current, and this problem is typically even more significant in those process variations that utilize such an undivided cell.
For example, not all of the electroreduction that occurs at the cell cathode takes the form of the desired hydrodimerization reaction or even the generally undesired simple hydrogenation of the olefinic starting material. Instead, a minor but significant proportion normally results in generation of molecular hydrogen. This hydrogen ordinarily accumulates in the electrolysis offgas together with oxygen produced at the anode and, in fact, the proportion of hydrogen in the offgas is a fairly accurate indicator of the proportion of consumed electrolysis current that was wasted on such hydrogen production. At relatively low concentrations of hydrogen in the offgas, the percentage by volume of hydrogen in the offgas is generally about twice the percentage of current consumed in the electrolysis by undesired production of molecular hydrogen. More specifically, the percentage of current consumed in the electrolysis by undesired production of molecular hydrogen is normally equal to 50 times the percentage by volume of hydrogen in the offgas divided by 100 less the percentage by volume of hydrogen in the offgas, i.e., 50 X %H l-%H For example, a concentration of by volume of hydrogen in an electrolysis offgas usually indicates that about 5.5% of the current consumed in the electrolysis was wasted on molecular hydrogen production and, accordingly, that the current efficiency of the hydrodimerization process was not possibly any greater than about 94.5%.
Clearly, the higher the proportion of the electrolyzing current that produces molecular hydrogen rather than the desired hydrodimer, the greater the cost of production of the hydrodimer will be. Accordingly, a process improvement whereby an olefinic compound from the aforementioned class can be electrolytically hydrodimerized with a resultingly lowered production of molecular hydrogen and a thereby increased current efficiency is highly desirable, and it is an object of this invention to provide such an improvement. Additional objects of the invention will be apparent from the following description and Examples in which all percentages are by weight except where otherwise noted.
SUMMARY OF THE INVENTION It has now been discovered that in a process for hydrodimerizing an olefinic compound having the formula R C CRX wherein X is CN, CONR or COOR, R is hydrogen or R and R is C -C alkyl by electrolyzing an aqueous solution having dissolved therein at least about 0.1% by weight of the olefinic compound, at least about 10 gram mol per liter of quaternary ammonium of phosphonium cations and at least about 0.1% by weight of conductive salt in contact with a cathodic surface having a cathode potential sufficient for hydrodimerization of the olefinic compound, formation of hydrogen at the cathodic surface can be substantially inhibited and the current efficiency of the process significantly increased by including in the solution at least one nitrilocarboxylic acid compound such as, for example, a nitriloacetic or nitrilopropionic acid compound having the formula Y N-(-Z-YN),,R"-- COOM wherein Y is a monovalent radical such as hydrogen, R"COOM, l-CHWOH or C C alkyl; R-is l- CH-m or 4- CHR"-)-;R" is hydroxy, COOM, l-CHWCOOM or C,C alkyl, hydroxyalkyl or hydroxyphenyl; Z is a divalent C -C hydrocarbon radical; M is a monovalent radical such as hydrogen, alkali metal or ammonium; m is l or 2; n is 0-4; and at least one Y is RCOOM or +CHmOH. Particularly good results are obtained when the solution also contains a small amount of a boric acid, a condensed phosphoric acid or an alkali metal salt thereof.
DETAILED DESCRIPTION OF THE INVENTION Olefinic compounds that can be hydrodimerized by the improved process of this invention include those having the structural formula R C CR-X wherein X is CN, CONR or COOR, R is hydrogen or R and R is C -C alkyl (i.e., methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl). Compounds having that formula are known as having alpha, beta mono-unsaturation and in each such compound, at least one R may be R while at least one other R is hydrogen and at least one R, if present, may be an alkyl group containing a given number of carbon atoms while at least one other R, if present, is an alkyl group containing a different number of carbon atoms. Such compounds include olefinic nitriles such as, for example, acrylonitrile, methyacrylonitrile, crotononitrile, Z-methylenebutyronitrile, Z-pentenenitrile, 2-
methylenevaleronitrile, Z-methylenehexanenitrile, tiglonitrile or Z-ethyIidenehexanenitrile; olefinic carboxylates such as, for example, methyl acrylate, ethyl acrylate or ethyl crotonate; and olefinic carboxamides such as, for example, acrylamide, methacrylamide, N-N- diethylacrylamide or N,N-diethylcrotonamide. Best results are generally obtained when the olefinic compound has at least one hydrogen atom directly attached to either of the two carbon atoms joined by the double bond in the aforedescribed structural formula. Also presently of greater utility in the process of this invention are those olefinic compounds wherein R in that formula is methyl or ethyl, and particularly acrylonitrile, methyl acrylate and alpha-methyl acrylonitrile.
Products of hydrodimerization of such compounds have the structural formula XCl-IRCR CR CHR-X wherein X and R have the aforesaid significance, i.e., paraffinic dinitriles such as, for example, adiponitrile and 2,5-dimethyladiponitri1e; paraffinic dicarboxylates such as, for example, dimethyladipate and diethyl-3,4-dimethyladipate; and paraffinic dicarboxamides such as, for example adipamide, dimethyladipamide and N,N-dimethyl-2,5- dimethyladipamide. Such hydrodimers can be employed as monomers or as intermediates convertible by known processes into monomers useful in the manufacture of high molecular weight polymers including polyamides and polyesters. The dinitriles, for example, can be hydrogenated by known processes to prepare paraffinic diamines especially useful in the production of high molecular weight polyamides. other examples of various olefinic compounds that can be hydrodimerized by the process of this invention and the hydrodimers thereby produced are identified in the aforecited U.S. Pat. Nos. 3,193,475-79 and 48l83.
The invention is herein described in terms of electrolyzing an aqueous solution having dissolved therein certain proportions of the olefinic compound to be hydrodimerized, quaternary ammonium or phosphonium cations and a conductive salt. Such use of the term aqueous solution" does not imply, however, that the electrolysis medium may not also contain an undissolved organic phase. To the contrary, the process of this invention can be quite satisfactorily carried out by electrolyzing the aqueous solution in an electrolysis medium containing the recited aqueous solution and a dispersed but undissolved organic phase in any proportions at which the aqueous solution is the continuous phase of the electrolysis medium. Hence in some embodiments of the invention, the aqueous solution may be suitably electrolyzed in an electrolysis medium containing essentially no undissolved organic phase, by which is meant either no measurable amount of undissolved organic phase or a minute proportion of undissolved organic phase having no significant effect on the hydrodimer selectivity achieved when the aqueous solution is electrolyzed in accordance with the process of this invention. Such a minute proportion, if present, would be typically less than 5% of the combined weight of the aqueous solution and the undissolved organic phase in the electrolysis medium. In other embodiments, the process of this invention can be carried out by electrolyzing the aqueous solution in an electrolysis medium consisting essentially of the recited aqueous solution and a dispersed but undissolved organic phase in a larger proportion (e.g. up to about or even more of the combined weight of the aqueous solu tion and the undissolved organic phase in the electrolysis medium) which may or may not significantly affect the hydrodimer selectivity depending on other conditions of the process. In some continuous process embodiments involving recycle of unconverted olefinic compound and whether present in a minute or larger proportion, such an organic phase is normally made up mainly (most commonly at least about 65% and even more typically at least about of the olefinic compound to be hydrodimerized and the hydrodimer product with some small amounts of organic hydrodimerization by-products, quaternary ammonium or phosphonium cations, etc. possible also present. Typically, such an organic phase contains at least about 10%, preferably between about 15% and about 50%, and even more desirably between about 20% and about 40% of the olefinic compound to be hydrodimerized. In any event, however, the concentrations of the constituents dissolved in the aqueous solution to be electrolyzed, as set forth herein, are with reference to the recited aqueous solution alone and not the combined contents of said aqueous solution and an undissolved organic phase which, as aforesaid, may be present but need not be present in the electrolysis medium as the invention is carried out. On the other hand, the weight percentages of undissolved organic phase described herein are based on the combined weight of the aqueous solution and the undissolved organic phase in the electrolysis medium.
Referring to the constituents of the aqueous phase, the olefinic compound to be hydrodimerized will be present in at least such a proportion that electrolysis of the solution, as described herein, results in a substantial amount of the desired hydrodimer being produced. That proportion is generally at least about 0.1% of the aqueous solution, more typically at least about 0.5% and, in some embodiments, preferably at least about 1% of the aqueous solution. Inclusion of one or more additional constituents which increase the solubility of the olefinic compound in the solution may permit carrying out the process with the solution containing relatively high proportions of the olefinic compound, e.g. at least about 5% or even 10% or more, but in most embodiments, the aqueous solution contains less than about 5% (e.g. not more than 4.5%) of the olefinic compound and, in many of those embodiments, preferably not more than about 1.8% of the olefinic compound.
The minimum required proportion of quaternary ammonium or phosphonium cations is very small. In general, there need be only an amount sufficient to provide the desired hydrodimer selectivity (typically at least about 75%) although much higher proportions can be present if desired or convenient. In most cases, the quaternary ammonium or phosphonium cations are present in a concentration of at least about 10 gram mol per liter of the aqueous solution. Even more typically their concentration is at least about 10 gram mol per liter of the solution and, in some embodiments employing monovalent mono-quaternary ammonium or phosphonium cations, preferably at least about 5 X 10 gram mol per liter. Although higher proportions may be present in some cases, as aforesaid, the quaternary ammonium or phosphonium cations are generally present in the aqueous solution in a concentration not higher than about 0.5 gram mol per liter and even more usually not higher than about 10 gram mol per liter.
In some preferred embodiments, the concentration of quaternary ammonium or phosphonium cations in the solution is between about and about lO' gram mol per liter.
The quaternary ammonium or phosphonium cations that are present in such concentrations are those positively-charged ions in which a nitrogen or phosphorous atom has a valence of five and is directly linked to other atoms (e.g. carbon) satisfying four fifths of that valence. Such cations need contain only one pentavalent nitrogen or phosphorous atom as in, for example, various monovalent mono-quaternary ammonium (e.g. tetraalkylammonium) or mono-quaternary phosphonium (e.g. tetraalkylphosphonium) cations, but they may contain more than one of such pentavalent atoms as in, for example, various multivalent multiquaternary ammonium or phosphonium cations such as the bisquaternary ammonium or phosphonium cations, e.g. polymethylenebis (trialkylammonium or trialkylphosphonium) cations. Mixtures of such monovalent and multivalent quaternary ammonium and/or phosphonium cations can also be used. Suitable monoquaternary ammonium or phosphonium cations may be cyclic, as in the case of the piperidiniums, pyrrolidiniums and morpholiniums, but they are more generally of the type in which a pentavalent nitrogen or phosphorous atom is directly linked to a total of four monovalent organic groups preferably devoid of olefinic unsaturation and desirably selected from the group consisting of alkyl and aryl radicals and combinations thereof. Suitable multiquaternary-ammonium or phosphonium cations may likewise by cyclic, as in the case of the piperaziniums, and they are typically of a type in which the pentavalent nitrogen or phosphorous atoms are linked to one another by at least one divalent organic (e.g. polymethylene) radical and each further substituted by monovalent organic groups of the kind just mentioned sufficient in number (normally two or three) that four fifths of the valence of each such pentavalent atom is satisfied by such divalent and monovalent organic radicals. As such monovalent organic radicals, suitable aryl groups contain typically from six to 12 carbon atoms and preferably only one aromatic ring as in, for example, a phenyl or benzyl radical, and suitable alkyl groups can be straight-chain, branched or cyclic with each typically containing from one to twelve carbon atoms. Although quaternary ammonium or phosphonium cations containing a combination of such alkyl and aryl groups (e.g. benzyltriethylammonium or -phosphonium ions) can be used, many embodiments of the invention are preferably carried out with quaternary cations having no olefinic or aromatic unsaturation. Good results are generally obtained with tetraalkylammonium or tetraalkylphosphonium ions containing at least three C -C alkyl groups and a total of from 8 to 24 carbon atoms in the four alkyl groups, e.g. tetraethyl-, ethyltripropyl-, ethyltributyl-, ethyltriamyl-, ethyltrihexyl-, octytriethyl-, tetrapropyl-, methyltripropyl-, decyltripropyl-, methyltributyl-, tetrabutyl-, amyltributyl-, tetraamyl-, tetrahexyl-, ethyltrihexyl-, diethyldioctylammonium or -phosphoniun and many others referred to in the aforecited US. Pat. Nos. 3,193,475 79 and 481 83. Generally most practical from the economic standpoint are those tetraalkylammonium ions in which each alkyl group contains from two to five carbon atoms, e.g. diethyldiamyl-, tetrapropyl tetrabutyl-, amyltripropyL, tetraamylammonium,
etc., and those C -C tetraalkylphosphonium ions containing at least three C -C alkyl groups, e.g. methyltributyl-, tetrapropyl-,'ethy1triamyl-, octyltriethylphosphonium, etc. Particularly useful are the C -C tetraalkylphosphoniun ions containing at least three C C alkyl groups. Similarly good results are obtained by use of the divalent polymethylenebis(trialkylammonium or trialkylphosphonium) ions, particularly those containing a total of from l7 to 36 carbon atoms and in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups and the polymethylene radical is C -C i.e., a straight chain of from three of eight methylene radicals. Presently most attractive from the economic standpoint are the C, C polymethylenebis(trialkylammonium or trialkylphosphonium) ions in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups and the polymethylene radical is C -C In many embodiments of the invention employing such polymethylenebis(trialkylammonium) ions, the carbon atom content of such ions is preferably from 20 to 34. Presently of specific interest for potential commercial use in the process of this invention are the C -C hexamethylenebis(trialkylammonium) ions, e.g. those in which each trialkylammonium radical contains at least two C -C alkyl groups, partly because water-soluble salts of such cations can be relatively simply prepared from hexamethylenediamine which is readily available in commercial quantities at relatively lost cost. Also generally preferred are the hexamethylenebis(trialkylammonium or trialkylphosphonium) ions containing from 20 to 30 carbon atoms, e.g. those in which each trialkylammonium or trialkylphosphonium radical contains at least two C -C alkyl groups, and especially the C -C hexamethylenebis(trialkylammonium) ions in which each trialkylammonium radical contains at least one and preferably two n-butyl groups. Any of such cations can be incorporated into the aqueous solution to be electrolyzed in any convenient manner, e.g. by dissolving the hydroxide or a salt (e.g. a C,C alkylsulfate) of the desired quaternary ammonium or phosphonium cation(s) in the solution in the amount required to provide the desired concentration of such cations. One significant advantage of the polymethylenebis(- trialkylammonium) or trialkyphosphonium) ions for use in the present invention is that relative to most of the corresponding tetraalkylammonium and tetraalkylphosphonium ions of the type described hereinbefore, they tend to distribute themselves in higher proportion toward the aqueous phase of a mixture of an aqueous solution of the type electrolyzed in accordance with the present invention and the undissolved organic phase which, as aforesaid, may be present in the aqueous solution during the electrolysis. Whether or not such an organic phase is present in substantial proportion in the aqueous solution during the electrolysis, product hydrodimer is generally most conveniently removed from the electrolyzed solution by adding to the solution (either before or after the electrolysis) an amount of the olefinic starting material in excess of its solubility therein, mixing the solution and the excess olefinic compound until they are substantially equilibrated, and then separating (e.g. decanting) from the resulting mixture a first portion thereof that is richer than said mixture in the olefinic compound and therefore richer than said mixture in the hydrodimer product which is normally substantially more soluble in the olefinic compound than in the electrolyzed aqueous solution. Normally, the hydrodimer product is separated from said first portion of the mixture (e.g. by distillation) while a second portion of the mixture comprising an aqueous solution of the type subjected to electrolysis in accor-' dance with the present invention is recycled and the aqueous solution comprised by said second portion is subjected to more of such electrolysis. In process embodiments in which the hydrodimer product is separated from the electrolyzed solution in the manner just described and in view of the importance of having sufficient quaternary ammonium or phosphonium cations in the aqueous solution to maintain a high hydrodimer selectivity on further electrolysis of the solution, the use of a quaternary cation that distributes itself in relatively high proportion in the aqueous portion of a substantially equilibrated mixture of the type just described is highly attractive from the standpoint of lessening the costs of recovering such cations from the separated (e.g. decanted) organic portion of the mixture and/or loss of such cations due to incomplete recovery from said organic portion of the mixture. Surprisingly, and despite their generally higher carbon content, various bis-quaternary cations of the class defined hereinbefore have been found to distribute themselves toward the aqueous solution in ratios significantly higher (e.g. up to at least 3-4 times higher) than those of the corresponding monoquaternary cations.
The type of conductive salt employed is not usually critical to inhibition of hydrogen formation by use of a nitrilocarboxylic acid compound as described herein. Hence the conductive salt can be a quaternary ammonium or phosphonium salt such as, for example, a tetraalkylammonium or phosphonium phosphate, sulfate, alkylsulfate, (e.g. ethylsulfate) or arylsulfonate (e.g. toluene sulfonate). Although organic salts of that general type can be employed as the conductive salt in a divided or singlecompartment (undivided) cell, it is generally preferred to use an alkali metal conductive salt, i.e., a salt of sodium, potassium, lithium, cesium or rubidium, especially in undivided electrolytic hydrodimerization (EHD) cells, and many attractive embodiments of the invention are carried out with enough alkali metal salt dissolved in the aqueous solution to provide alkali metal cations constituting more than half of the total weight of all cations in the solution. When such alkali metal salts are used, those of lithium and especially sodium and potassium are generally preferred for economic reasons.
Also preferred for such use are the salts of inorganic and/or polyvalent acids, e.g. a tetraalkylammonium or phosphonium or alkali metal orthophosphate, borate, perchlorate, carbonate or sulfate and particularly an incompletely-substituted salt of that type, e.g., a salt in which the anion has at least one valence satisfied by hydrogen and at least one other valence satisfied by an alkali metal. Examples of such salts include disodium phosphate (Na HPO potassium acid phosphate (KH PO sodium bicarbonate (NaHCO and dipotassium borate (K HBO Also useful are the alkali metal salts of condensed acids such as pyrophosphoric, metaphosphoric metaboric, pyroboric and the like (e.g. sodium pyrophosphate, potassium metaborate, borax, etc.) and/or products of hydrolysis of such condensed acid salts. Depending on the acidity of the solution to be electrolyzed, the stoichiometric proportions of such anions and alkali metal cations in the solution may correspond to a mixture of two or more of such salts, e.g. a mixture of sodium acid phosphate and disodium phosphate, and accordingly, such mixtures of salts (as well as mixtures of salts of different cations, e.g. different alkali metals, and/or different acids, e.g. phosphoric and boric) are intended to be within the scope of the expressions conductive salt" and alkali metal phosphate, borate, perchlorate, carbonate or sulfate as used herein. Any of the alkali metal salts may be dissolved in the aqueous solution as such or otherwise, e.g. as the alkali metal hydroxide and the acid necessary to neutralize the hydroxide to the extent of the desired acidity of the aqueous solution.
The concentration of conductive salt in the solution should be at least sufficient to substantially increase the electrical conductivity of the solution above its conductivity without such a salt being present. In most cases, a concentration of at least about 0.1% is favored. More advantageous conductivity levels are achieved when the solution has dissolved therein at least about 1% of the conductive salt or, even more preferably, at least about 2% of such a salt. In many cases, optimum process conditions include the solution having dissolved therein more than 5% (typically at least 5.5%) of the conductive salt. The maximum amount of salt in the solution is typically limited only by its solubility therein, which varies with the particular salt employed. With salts such as sodium or potassium phosphates and/0r borates, it is generally most desirable that the solution contain between about 8% and about 15% of such a salt or mixture thereof.
As aforesaid, generation of molecular hydrogen at the cathode of a process of the type discussed herein can be substantially inhibited by including in the aqueous electrolysis medium at least one nitrilocarboxylic acid compound such as, for example, a nitriloacetic or nitrilopropionic acid compound having the formula Y N-(-Z-YN-) RCOOM wherein Y is a monovalent radical such as hydrogen, R"COOM, -(-CH OH or C -C alkyl (preferably C C alkyl such as ethyl, n-propyl, tert-butyl, n-hexyl, n-decyl, etc.); R" is t-CHW or +CHR"+; R is hydroxy, COOM, 4CH )mCOOM or C -C alkyl, hydroxalkyl (e.g. hydroxyethyl) or hydroxyphenyl (e.g. orthohydroxyphenyl); Z is a divalent C -C hydrocarbon (e.g. alkylene) radical such as, for example, nhexylene, n-butylene, iso-butylene or, generally more desirably, ethylene or n-propylene; M is a monovalent radical such as hydrogen, an alkali metal (e.g. lithium or, usually more desirably, sodium or potassium) or ammonium; m is l or 2; n represents the number of repeating -(-ZYN-)-groups, if any, and may be 0, l, 2, 3 or 4; and at least one Y in the formula is R"- COOM or t-CHWOH, i.e., the compound contains at least one R"COOM or t-CHWOH group in addition to the -R"-COOM group on the right hand end of the formula as shown hereinbefore. At least one such additional RCOOM or t-CHWOH group is usually desirably attached to the nitrogen atom at the left-hand end of the formula but when n is 1, such an additional group may be attached (alternatively or otherwise) to the nitrogen atom in the +Z-YN) unit, and when n is 2, 3 or 4, any one or more of the nitrogen atoms in the repeating -(-ZYN+units may have such an additional RCOOM or +Cl-lmOl-l group attached thereto.
Preferably, but not necessarily, the sequesterant is an aminopolycarboxylic acid compound, i.e., one in which there are at least two RCOOM groups. It is also generally desirable for Y to be C -C alkylene and for n to be 0, 1,2 or 3 (even more desirable 0, l or 2 and most preferably 1 or 2). Representative of such compounds are nitrilotriacetic acid, diethylenetriaminepentaacetic acid, N,N-di(2-hydroxyethyl)glycine, ethylenediaminetetrapropionic acid, N-N'- ethylenebis[2-(o-hydroxyphenyl)]glycine and, typically most favored, ethylenediaminetetraacetic acid and N-hydroxyethylethylenediaminetriacetic acid (hereinafter sometimes represented as EDTA and HEDTA, respectively). In the low concentrations generally employed, they may be added to the electrolysis medium as acids or, usually more conveniently and particularly at the alkaline pHs favored for most embodiments of the invention, as partially or fully neutralized salts thereof (e.g. the water-soluble ammonium or alkali metal salts of such acids). In accordance with procedures known in the art, alkali metal salts of such nitrilocarboxylic acid compounds can be prepared by re acting an appropriate amine (e.g. ethylenediamine) with an alkali metal salt of a chloracetic acid in the presence of an alkali metal hydroxide, or with hydrogen cyanide and formaldehyde and then an alkali metal hydroxide, or with ethylene glycol to provide hydroxyethyl substituents of nitrogen atom(s) of the amine and then reacting the hydroxyethyl-substituted amine with an alkali metal hydroxide in the presence of cadmium oxide to convert the hydroxyethyl substituents to alkali metal acetate substituents in the proportion desired, or with acrylonitrile in the presence of a base (e.g. sodium hydroxide) and then hydrolyzing the cyanoethylated amine in the presence of an alkali metal hydroxide. Conveniently utilized salts of EDTA, HEDTA and other such nitrilocarboxylic acid compounds are also available commercially. See keys to Chelation, Dow Chemical Company, Midland, Mich. (1969).
The minimum concentration of the nitrilocarboxylic acid compound in the aqueous electrolysis medium is only that sufficient to inhibit formation of molecular hydrogen at the cathodic surface of the process. In gen eral, at least about 0.025 millimol of the nitrilocarboxylic acid compound per liter of the solution is desirable and at least about 0.1 millimol per liter is preferred. In most cases having a greater attraction for commercial use, at least about 0.5 millimol per liter is more desirable and at least about 2.5 millimols per liter usually provides even better results. Generally, not more than about 50 millimols per liter are required, although higher concentrations may be employed if desired. Even more typically, economic results are better when the concentration of the nitrilocarboxylic acid compounds in the solution is not greater than 25 millimols per liter. With reference to such concentrations, it should be understood that the nitrilocarboxylic acid compounds used herein may degrade under the conditions of the process, e.g. to compounds that have lower molecular weight and/or fewer R-COOM or +CH2)mOH groups but which nevertheless provide the advantages of this invention in substantial meas ure, and accordingly such degradation products should be considered as equivalent to the undegraded nitrilocarboxylic acid compounds to the extent that they provide the advantages thereof, when measuring or otherwise identifying a nitrilocarboxylic acid compound concentration with reference to the process of this invention. Mixtures of two or more of the aforedescribed nitrilocarboxylic acid compounds may also be used in the process of this invention and accord- 5 ingly, such mixtures are meant to be within the scope of the expression a nitrilocarboxylic acid compound as used in this disclosure and the appended claims.
ln substantial measure when carrying out the present process in a cell divided by a cation-permeable meml0 brane and particularly when carrying out the process in a single-compartment cell, generation of hydrogen at the cathode is even more significantly inhibited by including in the electrolysis medium a boric acid, a condensed phosphoric acid or an alkali metal salt thereof. The boric acid or borate may be added to the solution as orthoboric acid, metaboric acid or pyroboric acid and then neutralized to the desired solution pH, e.g. with an alkali metal (preferably the cation of the conductive salt) hydroxide or as a completely or incompletely substituted alkali metal salt of such an acid (e.g.
disodium or monosodium orthoborate, potassium metaborate, sodium tetraborate or the hydrated form thereof commonly called borax). The condensed phos phoric acid or phosphate may be added as a polyphosphoric (e.g. pyrophosphoric or triphosphoric) acid and then neutralized to the desired solution pH or as a completely or incompletely substituted alkali metal salt thereof (e.g. tetrasoduim pyrophosphate or potassuim hexametaphosphate or triphosphate).
In general, the condensed phosphoric acids and their alkali metal salts tend to hydrolyze in the clectolysis meduim at rates dependent on their concentration, the solution pH, etc. It is believed, however, that the products of such hydrolysis continue to inhibit the generation of hydrogen at the cathode so long as they remain condensed to at least some degree, i.e., so long as they have not been hydrolyzed to the orthophosphate form, and hence the preferred concentrations of such condensed phosphoric acid compounds are herein expressed in terms of weight percent of a condensed phosphoric acid (which may be that originally added to the solution or hydrolysis products thereof having a lower but conventionally recognizable degree of mo- 5 lecular condensation) or the molar equivalent of an alkali metal salt thereof. When such a condensed phosphoric acid is used in the process of this invention, and particularly in an undivided cell having a metallic anode (e.g. an anode comprising a ferrous metal such as carbon steel, alloy steel, iron or magnetite), it is generally advantageous for the solution to contain at least about 0.01% preferably between about 0.02% and about 3%, and often most desirably between about 0.02and about 2% of the condensed phosphoric acid or the molar equivalent (molecularly equivalent amount) of an alkai metal salt thereof.
The aforementioned boric acids and alkali metal salts thereof, on the other hand, tend to relatively rapidly form in the electrolysis medium a variety of boroncontaining ions having relative proportions normally dependent on their concentrations, the solution pH, etc., and generally including both uncondensed (i.e., orthoborate) and condensed (e.g. metaborate, tetraborate, polymeric, ring-containing, etc.) ions, regardless of whether the acids and/or salts originally added to the electrolysis medium were in condensed or uncondensed form at that time. In other words, condensed borates (e.g. tetraborates) normally convert in the electrolysis medium in part to orthoborate ions and in part to other condensed borate ions, while orthoborates added as such generally form various condensed borate ions, depending largely on the solution pH, etc. In any event, it appears that the boron-containing ions are effective for purposes of this invention whether they are present in condensed or uncondensed forms or a mixture thereof and accordingly, preferred concentrations of the boric acids or salts are herein expressed (on the basis of one liter of solution) interms of gram atoms of boron which may be present in the ionic form of condensed or uncondensed borates or other boroncontaining moieties provided by interaction between the electrolysis medium and the boric acids and/or salts added thereto. When such boric acids or salts are used in the process of this invention, and particularly in an undivided cell having a metallic anode (e.g. an anode comprising a ferrous metal such as carbon steel, alloy steel, iron or magnetite), it is generally desirable for the boron concentration in the electrolysis medium to be at least about 0.01 and preferably 0.02 gram atom of boron per liter of solution. It is generally not necessary that theh boron concentration in the solution be greater than about 0.09 gram atom per liter and in many cases it need not be greater than about 0.05 gram atom per liter, although higher concentrations are not necessarily detrimental and may be advantageous, e.g. if it is intended that a boric acid salt provide a substantial portion of the electrical conductivity of the electrolysis medium.
In most cases, the pH of the bulk of the electrolysis medium is at least about two, preferably at least about five, more preferably at least about six and most conveniently at least about seven, especially when the process is carried out in an undivided cell having a metallic anode. On the other hand, the overall solution pH is generally not higher than about 12, typically not higher than about I l and, with the use of sodium or potassium phosphates and/or borates, generally not substantially higher than about 10.
The temperature of the solution may be at any level compatible with existence of such of the solution itself, i.e., above its freezing point but below its boiling point under the pressure employed. Good results can be achieved between about and about 75C. or at even higher temperatures if pressures substantially above one atmosphere are employed. The optimum temperature range will vary with the specific olefinic compound and hydrodimer, among other factors, but in hydrodimerization of acrylonitrile to adiponitrile, electrolysis temperatures of at least about 25 are usually preferred and those between about 40 and about 65C. are especially desirable.
As is well-known, electrolytic hydrodimerization of an olefinic compound having a formula as set forth hereinbefore must be carried out in contact with a cathodic surface having a cathode potential sufficient for hydrodimerization of that compound. In general, there is no minimum current density with which the present process can be carried out at such a cathodic surface but in most cases, a current density of at least about 0.01 amp per square centimeter (amp/em of the cathodic surface is used and a current density of at least about 0.05 amp/cm is usually preferred. Although higher current densities may be practical in some instances, those generally employed in the present process are not higher than about 1.5 amp/cm and even more typically not higher than about 0.75 amp/cm of the aforedescribed cathodic surface. Depending on other process variables, current densities not higher than about 0.5 amp/cm may be preferred in some embodiments of the process.
Although not necessary, a liquid-impermeable cathode is usually preferred. With the use of such a cathode, the aqueous solution to be electrolyzed is generally passed between the anode and cathode at a linear velocity with reference to the adjacent cahtodic surface of at least about 0.3 meter per second, preferably at least about 0.6 meter per second and even more preferably between about 0.9 and about 2.4 meters per second although a solution velocity up to 6 meters per sec- 0nd or higher can be employed if desired. The gap between the anode and cathode can be very norrow, e.g. about 1 millimeter or less, or as wide as 12.5 millimeters or even wider, but is usually most conveniently of a width between about 1.5 and about 6.2 millimeters. In the process of this invention, the cathodic potential can be provided and which is not dissolved or correded at an intolerable rate. In general, the process can be czrried out with a cathode consisting essentially of cadmium, mercury, thallium, lead, zinc, manganese, tin (possibly not suitable with some nitrile reactants) or graphite, by which is meant that the cathodic surface contains a high percentage (generally at least about and preferably at least about 98%) of one or a combination (e.g. an alloy) of two or more of such materials, but it may contain a small amount of one or more constituents that do not alter the nature of the cathodic surface so as to prevent substantial realization of the advantages of the present invention, particularly as described herein. Such other constituents, if present in substantial concentration, are preferably other materials having relatively high hydrogen overvoltages. Of particular preference are cathodes consisting essentially of cadmium, lead, zinc, manganese, graphite or an alloy of one of such metals, and especially cathodes consisting essentially of cadmium. Best results are usually obtained with a cathodic surface having a cadmium content of at least about 99.5% even more typically at least about 99.8% and most desirably at least about 99.9% as in ASTM Designation B440-66T (issued 1966).
Cathodes employed in this invention can be prepared by various techniques such as, for example, electroplating of the desire cahtode material on a suitably-shaped substrate of some other material, e.g. a metal having greater structural rigidity, or by chemically, thermally and/or mechanically bonding a layer of the cathode material to a similar substrate. Alternatively, a plate, sheet, rod or any other suitable configuration consisting essentially of the desired cathode material may be used without such a substrate, if convenient.
The process of this invention can be carried out in a divided cell having a cation-permeable membrane, diaphragm or the like separating the anode and cathode compartments of the cell in such a way that the aquious solution containing the olefinic compound undergoing hydrodimerization at the cathode of the cell is not in simultaneous direct contact with an anode of the cell. However, it is especially advantageously carried out in cells not divided in that manner, i.e., in cells which the solution being electrolyzed is in direct physical contact with an anode and cathode of the cell. In fact, and particularly without the presence of a boric or condensed phosphoric acid or salt thereof in the preferred conentrations described hereinbefore, it has been found that the aforementioned nitrilocarboxylic acid compounds, and especially in the concentration cited hereinbefore, generally substantially inhibit the corrosion of metallic anodes when used such undivided cells. Anodes whose corrosion may be thereby inhibited include those composed of the heavy metals (i.e. metals having a specific gravity greater than 4.0) such as, for example, platinum, ruthenium, nickel, lead, lead dioxide and, of particular advantage when the conductive salt is a phosphate, borate or carbonate, ferrous materials such as carbon steels, alloy steels, iron and magnetite In fact, an especially preferred embodiment of the invention is carried out in an undivided cell having an anode comprising a ferrous metal and with the use of an alkali metal phosphate, borate or carbonate conductive salt and an electrolysis medium having a pH not substantially below seven. Of potential interest from the economic standpoint are those embodiments employing an anode consisting essentially ofcarbon steel, exemplary compositions of which are listed in the 1000 1100 and 1200 series of American Iron and Steel Institute and Society of Automotive Engineers standard steel compostion numbers, many of which may be found on page 62 of Volume 1, Metals Handbook, 8th Edition (1961) published by the American Society for Metals, Metals Park, Ohio.
In general, the carbon steels that are advantageously used as anode materials in the process of this invention contain between about 0.02% carbon (more typically at least about 0.05% carbon) and about 2% carbon. Normally, carbon steels such as those of the AIS] and SAE 1000 series of standard steel composition numbers are preferred and those conaining between about 0.1% and about 1.5% carbon are typically most desirable. Regardless of the material from which it is made, each anode in the cell may be in the form of a plate, sheet, strip, rod or any other configuration suitable for the use intended. In a preferred embodiment, however, the anode is in the form of a sheet (e.g. of cold-rolled carbon steel) essentially parallel to and closely spaced from a cathodic surface of approximately the same dimensions.
Although the invention described and claimed herein is not to be regarded as limited to any particular mechanism proposed therefor, it is presently believed that the nitrilocarboxylic acid compounds (and probably to a lesser extent, if present, the boric and/or condensed phosphoric acid compounds) at least partially sequester heavy metals which tend to accumulate in the electrolysis medium (e.g. as a result of corrosion of the cathode and/or, with use of an undivided cell, corrosion of the anode) and that such sequestration inhibits the deposition of those metals on the cathode of the cell. It is further believed that unsequestered heavy metals (or oxides and/or hydroxides thereof) tend to form colloidal particles in the electrolysis medium and after such deposition, alter the nature of the cathodic surface so as to increase the generation of molecular hydrogen at the expense of process current efficiency. Those beliefs are mainly based on observations that in creases in hydrogen production normally accompany increased deposition on the cathode of a relatively dense precipitate which has been identified as essentially completely composed of such heavy metals (principally iron in an undivided cell having a steel anode) and their oxides and hydroxides, and that deposition of the precipitare is substantialy inhibited by use of the process improvement described and claimed herein.
The following specific examples of the process of this invention are included for purposes of illustration only and do not imply any limitations on the scope of the invention. Also in these examples, acrylonitrile and adiponitrile are generally represented by AN and ADN, respectively.
EXAMPLE I In a continuous process, an aqueous solution having dissolved therein approximately 1.5% AN, 1.2% ADN, 0.2% AN EHD byproducts, 4 X 10 gram mol per liter of ethyltributylammonium cations, 10% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 9, 0.3% of tetrasodium pyrophosphate and 0.018% (0.5 millimols per liter) of the tetrasodium of ethylenediaminetetraacetic acid (EDTA) was circulated at 55C. and a velocity between 1.22 and 1.37 meters per second through an undivided electrolytic cell having an AISI 1020 (0.2%) carbon steel anode separated by a gap of about 2.29 millimeters from a cathode composed of cadmium conforming to ASTM Designation B440-66T (at least 99.9% Cd). The solution, which also had entrained therein approximately 0.8% by weight of an organic phase containing about 55% ADN, 28% AN, 9% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell of about 3.8 volts and a current density of about 0.16 amp/cm 2 of cathodic surface and then fed into a decanter for equilibration with an accumulated upper layer having approximately the composition of the aforedescribed organic phase and withdrawal of equilibrated lower (aqueous) layer for recycle through the cell. After 182 hours of electrolysis during which AN and water were continuously added to the circulating aqueous solution and an equivalent amount of the organic phase containing product ADN, byproducts and unreacted AN was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 87.6%, the carbon steel anode had corroded at the average rate of 0.46 millimeter per year and the volume percentage of hydrogen in the electrolysis offgas had averaged 6.4% with a final value of 8.4%.
COMPARATIVE EXAMPLE A When Example 1 was repeated except that the tetrasodium salt of EDTA was omitted, it was found after 78 hours that the average ADN selectivity had been 86.6%, the anode had corroded at essentially the same average rate and the volume percentage of hydrogen in the offgas had averaged 11.3% with a final value of 24.3%.
EXAMPLE II In a continuous process, an aqueous solution having dissolved therein approximately 1.6% AN, 1.2% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 9 and 25 X 10 gram mol per liter, 9% of a mixture of incompletelysubstituted sodium orthophosphates corresponding to the solution pH of 9, 0.1% of tetrasodium pyrophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium pryophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium salt of EDT was circulated at a temperature between 50 and 55C. and a velocity between 0.91 and 1.22 meters per second through an undivided electrolytic cell having an AlSl 1020 carbon steel anode separated by a gap of 3.18 millimmeters from a cathode composed of a rolled sheet of cadmium having the composition described in Example I. The solution, which also had entrained therein approximately 4% by weight of an organic phase containing about 54% ADN, 29% AN, 9% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell of 4.5 volts and a current density of 0.23 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in Example 1. After 325 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the organic phase containing product ADN, byproducts and unreacted AN was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 86. 1%, the steel anode had corroded at the average rate of 0.09 millimeters per year and the volume percentage of hydrogen in the electrolysis offgas had been stable throughout the run at 8 to 10%.
EXAMPLE 111 In a continuous process, an aqueous solution having dissolved therein approximately 1.6% AN, 1.2% ADN, 0.2% AN EHD byproducts, 5.8 X 10' gram mol per liter of ethyltributylammonium cations, 10% of a mixture of incompletly-substituted sodium orthophosphates corresponding to the solution pH of 9, 0.1% of tetrasodium pyrophosphate and 0.05% (1.4 millimols per liter) of the tetrasodium salt of EDTA was circulated at 55C. and a velocity between 1.22 and 1.37 meters per second through an undivided electrolytic cell having an AISl 1020 carbon steel anode separated by a gap of 272 milliliters from a cathode composed of a rolled sheet of cadmium having the composition described in Example I. The solution, which also had entrained therein approximately 1% by weight of an organic phase containing about 54% ADN, 29% AN, 9% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop of 4.7 volts and a current density of 0.27 amp/cm of cahtodic surface and then fed into a decanter for equilibration and recycle of lower layer as in Examples 1 and 11. After 776 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the organic phase containing product ADN, byproducts and unreacted AN was removed, it was found that AN in the solution had been converted to ADN with an average seletivity of 86.1%, the steel anode had corroded at the average rate of 0.86 millimeter per year and the volume percentage of hydrogen in the electrolysis offgas had gradually increased but to a final value no greater than EXAMPLE IV In a continuous process, an aqueous solution having dissolved therein approximately 1.4% AN, 1.2% ADN, 0.2% AN EHD byproducts, 6.8 X 10' gram mol per liter of ethyltributylammonium cations, 10% of a mixture of incompletely-substituted sodium orthosphosphates corresponding to thesolution pH of 9, 0.4% (11.3 millimols per liter) of the tetrasodium salt of sponding to 0.43 gram atom of boron per liter of the solution was circulated at 55C. and a velocity of 1.22 meters per second through an undivided electrolytic cell having an M51 1020 carbon steel anode separated by a gap of 2.28 millimeters from a cadmium cathode having the composition described in Example 1. The solution, which also had entrained therein approximately 0.8% by weight of an organic phase containing about 58% ADN, 8.5% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell averaging 3.85 volts and a current density of 0.16 amp/cm of cathodic surface in contact with the solution and then fed into a decanter for equilibration and recycle of lower layer as in the previous Examples. After 228 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the organic phase containing product ADN, byproducts and unreacted AN was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 87.7%. the carbon steel anode had corroded at the average rate of 0.38 millimeter per year and the volume percentage of hydrogen in the electrolysis offgas had averaged less than 10%.
EXAMPLE V In a continuous process, an aqueous solution having dissolved therein approximately 1.1% AN, 1.1% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 5.1 and 8.7 X 10' gram mol per liter, 10.3% of a mixture of imcompletely-substituted sodium orthophosphates corresponding to the solution pH of 9 and 0.3% (8.5 millimols per liter) of the tetrasodium salt of EDTA was circulated at 5055C. and a velocity of 1.37 meters per second through an undivided electrolytic cell having an AISl 1020 carbon steel anode separated by a gap of 272 millimeters from a cathode composed of cadmium having the composition described in Example I. The solution, which also had entrained therein approximately 4% by weight of an organic phase containing an average of about 61% ADN, 21% AN, 10% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cess averaging 4.35 volts and a current density averaging about 0.22 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in previous Examples. After 159 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the orrganic phase was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 88.3%, the carbon steel anode had corroded at the average rate of 1.27 millimeter per year and the volume percentage of hydrogen in the electrolysis offgas had averaged 5%.
EXAMPLE V1 In a continuous process, an aqueous solution havng dissolved therein an average of approximately 1.1% AN, 1.1% ADN, 0.2% AN EHD byproducts, 1.7 X 10* gram mol per liter of tetrabutylammonium cations, 12.2% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 10, and 0.3% (8.5 millimols per liter) of the tetrasodium salt of EDTA was circulated at 50C. and a velocity of 1.22 meters per second through an undivided electrolytic cell having an AlSl 1020 carbon steel anode separated by a gap of 2.72 millimeters from a lead cathode. The solution, which also had entrained therein approximately 4% by weight of an organic phase containing an average of about 61% ADN, 21% AN, AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell averaging 4.25 volts and a current density of 0.22 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in previous Examples. After 154 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the organic phase was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 82.2%, the steel anode had corroded at the average rate of about 1.52 millimeter per year and the proportion of hydrogen in the electrolysis offgas had averaged about 2% by volume.
COMPARATIVE EXAMPLE B In a continuous process, an aqueous solution having dissolved therein approximately 2% AN, 1% ADN, 0.2% AN EHD byproducts, 1.6 X 10' gram mol per liter of ethyltributylammonium cations and 1 1.3% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 10 and devoid of any nitrilocarboxylic acid compound was circulated at 50C. and a velocity of 1.22 meters per second through an undivided electrolytic cell having an A181 1020 carbon steel anode separated by a gap of 2.72 millimeters from a lead cathode of the type employed in Example V1. The solution, which also had entrained therein approximately 4% by weight of an organic phase containing an average of about 47% ADN, 37% AN, 8% AN EHD byproducts and 8% water, was electrolyzed as it passed through the cell with a voltage drop across the cell averaging 4.6 volts and a current density of 0.22 amp/cm of cathodic surface and then fed into a decanter for equilibration and recycle of lower layer as in previous Examples. After 22 hours of electrolysis during which AN and water were continuously added to the circulating solution and an equivalent amount of the organic phase was continuously removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 79.4%, the steel anode had corroded at the average rate of 10.2 millimeters per year and the volume percentage of hydrogen in the electrolysis offgas was 22%.
EXAMPLE VII In a continuous process, an aqueous solution having dissolved therein approximately 1.5% AN, 1.2% ADN, 0.2% AN EHD byproducts, ethyltributylammonium cations in a concentration that varied between 2 and 9 X 10 gram mol per liter, 10% of a mixture of incompletely-substituted sodium orthophosphates corresponding to the solution pH of 8.5, 0.5% (14.2 millimols per liter) of the tetrasodium salt of EDTA and the mixture of sodium borates produced by neutralizing orthoboric acid in amount corresponding to 2% of the solution (036 gram atoms of boron per liter of the solution) with sodium hydroxide to the solution pH of 8.5 was circulated at a temperature of 55C. and a velocity of AlSl 1020 carbon steel anode separated by a gap of 1.78 millimeters from a cathode composed of a rolled sheet of cadmium conformong to ASTM Designation B440-66T (at least 99.9% Cd.) The solution, which contained no measurable amount of undissolved organic phase, was electrolyzed as it passed through the cell with a voltage drop across the cell of 3.8 volts and a current density of 0.16 amp/cm of cathodic surface and then fed into a decanter for equilibration with an accumulated upper layer containing about 55% ADN, 28% AN, 9% AN EHD byproducts and 8% water and withdrawal of equlibrated lower (aqueous) layer for recycle through the cell. After 459 hours of electrolysis during which AN and water were cotinuously added to the circulating solution and an equivalent amount of accumulated upper layer was removed, it was found that AN in the solution had been converted to ADN with an average selectivity of 87.7%, the steel anode had corroded at the average rate of 0.33 millimeter per year and the volume percentage of hydrogen in the electrolysis offgas had been stable throughout the run at less than 8%.
EXAMPLE Vlll In a continuous process, a liquid electrolysis medium composed between 85.9% and 87.5% by (1) an aque ous solution having dissolved therein between 1.4% and 1.6% AN, about 1.2% ADN, 9.69.9% ofa mixture of sodium orthophosphates, 0.8-2.5 X 10 mole per liter of ethyltributylammonium ions, about 0.6% 17.0 millimoles per liter) of tetrasodium ethylenediaminetetraacetate (Na,EDTA) and the sodium borates produced by neutralizing orthoboric acid in an amount corresponding to about 2% of the solution to the solution pH of 8.5-9 and between 12.5% and 14.1% by (2) a dispersed but undissolved organic phase conaining 26-29% AN, 54-59% ADN, 7-9% AN EHD byproducts and 8% water was circulated at 55C. and 1.16 meters per second through an undivided electrolytic cell having an A181 1020 carbon steel anode separated by a gap of 2.25 millimeters from a cathode composed of a rolled sheet of cadmium conforming to ASTM Designation B440-66T B440-66T(at least 99.9% Cd) and electrolyzed as it passed through the cell with a current density of 0.2 amp/cm of the surface cathode. Organic phase containing product ADN, an EHD byproducts and unreacted AN was separated from the electrolyzed medium and make-up AN was added after which the medium was recirculated through the cell and electrolyzed again under the conditions just described. For each Faraday of current passed through the medium, 0.475 millimole of Na EDTA was added to the circulating medium and about 10 grams of the solution were purged from the system and replaced with water containing sufficient dissolved ethyltributylammonium ions and sodium orthophosphates and borates to maintain the concentration of those constituents of the solution at the aforedescribed levels and the total volume of the medium essentially constant. After 268 hours of electrolysis under those conditions, it was found that AN had been converted to ADN with average and final selectivities of 87-88%, the steel anode had corroded at the average rate of 0.5 millimeter per year and the volume percentage of hydrogen in the offgas had averaged about 6.5% with a final value of 10.4%.
EXAMPLE 1X In a continuous process, a liquid electrolysis medium composed about 99% by (1) an aqueous solution having dissolved therein between 1.4% and 1.6% AN, about 1.2% ADN, of a mixture of sodium orthophosphates, 0.6-1.4 X10 'mole per liter of methyltributylphosphonium ions, about 0.5% 14.2 millimoles per liter) of Na EDTA and the sodium borates produced by neutralizing orthoboric acid in an amount corresponding to about 2% of the solution to the solution pH of about 8.5 and about 1% by (2) a dispersed but undissolved organic phase containing 27-29% AN, 54-58% ADN, 7-9% AN EHD byproducts and 8% water was circulated at 55C. and 1.22 meters per second through an undivided electrolytic cell having an AlSl 1020 carbon steel anode separated by a gap of 1.76 millimeters from a cadmium cathode essentially the same as that used in Example V111 and electrolyzed as it passed through the cell with a current density of 0.185 amp/cm of the surface of the cathode. Organic phase containing product ADN, AN EHD byproducts and unreacted AN was separated from the electrolyzed medium and make-up AN was added after which the meduim was recirculated through the cell and electrolyzed again under the conditions just described. For each Faraday of current passed through the medium, 0.4 millimole of Na EDTA was added to the circulating medium and about 12 grams of the solution were purged from the system and replaced with water containing sufficient dissolved methyltributylphosphonium ions and sodium orthophosphates and borates to maintain the concentrations of those constituents of the solution at the aforedescribed levels and the total volume of the medium essentially constant. After 120 hours of electrolysis under those conditions, it was found that AN had been converted to ADN with average and final selectivities of 88%, the steel anode had corroded at an average rate less than 0.5 millimeter per year and the volume percent of hydrogen in the offgas had averaged below 1% with a final value of 0.8%.
EXAMPLE X In a process essentially as described in Example lX except that the quaternary cations in the aqueous solution were 0.2-7.9 X 10" mole per liter of hexamethylenebis(ethyldibutylammonium) ions instead of the 0.6-1.4 X 10' mole per liter of methyltributylphosphonium ions, it was found after 330 hours of electrolysis that AN had been converted to ADN with average and final selectivities of 88-89%, the steel anode had corroded at an average rate below 0.5 millimeter per year and the volume percent of hydrogen in the offgas had averaged below 2% with a final value of 4.9%.
EXAMPLE Xl In a process essentially as described in Example 1X except that the quaternary cations in the aqueous solution were 0.4-2.6 X 10 mole per liter of tetramethylenebis(tributylammonium) ions instead of the ().6-l.4 X 10 mole per liter of methyltributylphosphonium ions, it was found after 171 hours of electrolysis that AN had been converted to ADN with averge and final selectivities of 87-88%, the steel anode had corroded at an average rate below 0.5 millimeter per year and the volume percent of hydrogen in the offgas had averaged below 7% with a final value of 1 1.1%.
EXAMPLE XII In a continuous process, a liquid electrolysis medium composed about 99% by (1) an aqueous solution having dissolved therein between 1.4% and 1.8% AN, about 1.2% ADN, 10-1 1% of a mixture of sodium orthophosphates, about 1.4 X10- mole per liter of ethyltributylammonium ions about 0.6% (16.3 millimoles per liter) of trisodium hydroxyethylethylenediaminetriacetate (Na HEDTA) and the sodium borates produced by meutralizing orthoboric acid in an amount corresponding to 2% of the solution to the solution pH of 8.5 and about 1% by (2) a dispersed but undissolved organic phase containing 27-32% AN, 53-59% ADN, 6-7% AN dimerization byproducts and 8% water was circulated at 55C. and 1.22 meters per second through an undivided electrolytic cell havng an A151 1020 carbon steel anode separated by a gap of 1.78 millimeters from a cadmium (at least 99.9% Cd) cathode and electrolyzed as it passed through the cell with a current density of 0.185 amp/cm of the surface of the cathode. Organic phase containing product ADN, AN EHD byproducts and unreacted AN was separated from the electrolyzed medium and make-up AN was added after which the medium was recirculated through the cell and electrolyzed again under the conditions just described. For each Faraday of current passed through the medium, 0.495 millimole of Na l-lEDTA was added to the circulating medium and 12 grams of the solution were purged from the system and replaced with water containing sufficient dissolved ethyltributylammonium ions and sodium orthophosphates and 5 to maintain the concentrations of those constituents of the solution at the aforedescribed levels and the total volume of the meduim essentially constant. After 241 hours of electrolysis under those conditions, it was found that AN had been converted to ADN with average and final selectivities of 89.3% and 89.1% respectively, the steel anode had corroded at an average rate below 0.5 millimeter per year and the volume percentage of hydrogen in the offgas had averaged 4.5% with a final value of 5.4%.
We claim:
1. In a process for hydrodimerizing an olefinic coumpound having the formula R C=CRX wheren X is CN, CONR or COOR', R is hydrogen or R, R is C -C alkyl and at least one R directly attached to either of the two carbon atoms joined by the double bond in said formula is hydrogen by electrolyzing an aqueous solution having dissolved therein at least about 0.1% by weight of said olefinic compound, at least about 10 gram mol per liter of quaternary ammonium ions and at least about 0.1% by weight of conductive salt in contact with a cathodic surface having a cahtode potential sufficient for hydrodimerization of said olefinic compound, the improvement which comprises including in the solution between 0.1and about 50 millimols per liter of a nitrilocarboxylic acid compound having the formula Y N Z YN 4 R- COOM wherein Y is hydrogen, R "COOM, +CH OH or C -C alkyl; R"- is CH 4; or l- CHR' "1-; R is hydroxy, COOM, +CH COOM or C,C,, alkyl, hydroxyalkyl or hydroxyphenyl; Z is a divalent C -C hydrocatbon radical; M is hydrogen, alkali metal or ammonium; m is 1 or 2; n is an integer from to 4 and at least one Y is R"COOM or -(-CH 9,, Ol-1.
2. The process of claim 1 wherein Y is R"- COOM or +CHWOH, Z is C -C alkylene, m is l and n is an integer from 0 to 3.
3. The process of claim 1, said solution having dissolved therein between about 10 and about gram mol per liter of quaternary ammonium ions.
4. The process of claim 3 wherein Y is -R"- COOM or CHfi Ol-l, Z is C -C alkylene, m is l and n is an integer from 0 to 30 5. The process of claim 4 wherein R is +CH; T)',H, Z is ethylene and n is 0, l or 2.
6. The process of claim 5 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediamenetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaaetic acid, nitrilotriacetic acid, N,N-di(2-hydroxye thyl)glycine and the alkali metal and ammonium salts of such acids.
7. The process of claim 1 carried out in an undivided cell having a heavy metal anode in contact with said solution.
8. The process of claim 7 wherein Y is R"- COOM or ('CHflfiTfOH, Z is C -C alkylene, m is l and n is an integer from 0 to 3, said solution having dissolved therein between about 10 and about 10 gram mol per liter of quaternary ammonium ions.
9. The process of claim 8 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
10. The process of claim 8 wherein R" is -i-CH'1) Z is ethylene and n is 0, l or 2, said solution having dissolved therein at least about 1% by weight of alkali metal phosphate, borate, perchlorate, carbonate or sulfate.
11. The process of claim 8 wherein the conductive salt is an alkali metal phosphate, borate or carbonate and the anode comprises a ferrous metal.
12. The process of claim 11 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethyletylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N- di(2-hydroxyethyl) glycine and the alkali metal and ammonium salts of such acids.
13. The process of claim 11 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
14. In a process for hydrodimerizing an olefinic compound having the formula H C CRX wherein -X is CN is COOR, R is hydrogen or R and R is methyl or ethyl by electrolyzing an aqueous solution having dissolved therein COOM least about 0.5% by weight of said olefinic compound, between about 10 and about 0.5 gram mol per liter of quaternary ammonium ions and at least about 1% by weight of sodium or potassium phosphate, borate, carbonate or sulfate in contact with a cathodic surface consisting essentially of cadmium or lead with a current density of at least about 0.01 amp/cm of cathodic surface, said solution having a pH between about 5 and about 1 l and a temperature between about 5 and about C., the improvement which comprises including in the solution between about 0.1 and about 50 millimols per liter of nitrilocarboxylic acid compound having the formula Y wherein Y "is hydrogen, R"-COOM, (CH
OH or C -C alkyl; --R" is +CH lor (CHR"''); R' is l'lydI'OXy,' COOM,-(-CH -)m- COOM or C -C5 alkyl, hydroxyalkyl or hydroxyphenyl; Z is a divalent C5-C hydrocarbon radical; M is hydrogen, alkali metal or ammonium, m is l or 2; n is an integer from 0 to 4 and at least one Y is R"COOM or +CHl OH.
15. The process of claim 14, said solution containing between about 10' and about 10 gram mol per liter of quaternary ammonium ions selected from the group consisting of C -C tetraalkylammonium ions containing at least three C -C alkyl groups and C, C polymethylenebis(trialkylammonium) ions in which each trialkylammonium radical contains at least two C -C alkyl groups and the polymethylene radical is C c 16. The process of claim 15 wherein the nitrilocarboxylic acid compound has the formula Y N+Z-YN-) ,Cl-l COOM wherein Y is Cl-l COOM or CH CH OH; Z is C C, alkylene; M is hydrogen, alkali metal or ammonium; and n is an integer of 0 to 2.
17. The process of claim 16 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N- hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
18. The process of claim 16 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to between about 0.02 and about 0.9 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to between about 0.02% and about 3% by weight of the corresponding condensed phosphoric acid.
19. The process of claim 16 carried out in an undivided cell having a heavy metal anode in contact with said solution.
20. The process of claim 19 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N- hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
21. The process of claim 15 wherein the conductive salt is an alkali metal phosphate, borate or carbonate and the anode comprises a ferrous metal.
22. The process of claim 21 wherein Y is R"- COOM or +Cl-l OI-l, R is hydroxyphenyl, Z is ethylene, m is l and n is an integer from 0 to 2.
23. The process of claim 22 wherein the solution contains an alkali metal borate in a concentration corresponding to at least about 0.02 gram atom of boron per liter of solution.
24. In a process for hydrodimerizing acrylonitrile by electrolyzing an aqueous solution having dissolved therein at least about 0.5% but less than about 5% by weight of acrylonitrile, between about and about 10 gram mol per liter of quaternary ammonium ions and at least about l% by weight of sodium or potassium salt selected from phosphate and borate in an undivided cell having a ferrous metal anode with a current density of at least about 0.1 amp/cm said solution having a pH between about 7 and about l l and a temperature between about 40 and about 65C., the improvement which comprises including in the solution between about 0.5 and about 25 millimols per liter of a nitrilocarboxylic acid compound selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid and the alkali metal salts of such acids.
25. The process of claim 24, said anode consisting essentially of carbon steel.
26. The process of claim 24 wherein the solution contains at least about 2.5 millimols per liter of the nitrilocarboxylic acid compound.
27. The process of claim 26 wherein the solution contains sodium or potassium borates in a concentration corresponding to between about 0.02 and about 0.5 gram atom of boron per liter of solution.
28. The process of claim 24, said solution having dissolved therein between about 10" and about 10' gram mol per liter of G -C tetraalkylammonium ions having at least three C -C alkyl groups.
29. The process of claim 24 wherein the aqueous solution is electrolyzed in an electrolysis medium consisting essentially of said aqueous solution and up to about 20% by weight of an undissolved organic phase.
UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 1 3,898,140
' DATED August 5, 1975 INVENTOR(S) J. Harvey Lester, Jr.
James S. Stewart It IS certrfred that error appears m the above-ldentlfred patent and that said Letters Patent are hereby corrected as shown below:
Column 10, line 53, after 0.02 insert --Z,--. Column 11 line 24, delete "0.09" insert --0.9-; line 25 delete "0.05" insert -O.5-.
Column 12, line 20, insert after "cathodic" "surface can be made of virtually any material at which the requisite cathode-.
Column l and 15 lines 68, 69 and l, delete --pryophosphate and 0. 05% (1.4 millimols per liter) of the tetrasodium--. Column 15, line 1, delete "EDT" insert -EDTA--; line 23,
delete "O.,O9' insert -O.9--.
Column 16, line 10 after ADN insert -25 .570 A line 16 delete "228" insert 288-. 2
Column 17, line 26, delete "10' insert --10' line 68 after "of insert --l.22 meters per second through an undivided electrolytic cell having an-- Column 20, line 32, delete insert -borates--; line 38, delete "89.170" insert "89.0%".
Column 21, Claim 4, delete "30" insert --3. Claim 14, delete "COOM" insert --at- Column 22 Claim 14, line 16 delete "--CHWOH" insert Signed and Scaled this sixth D y of January 1976 [SEAL] Arrest:
RUTH C. MASON C. MARSHALL DA NN Allesfl'ng ff Commissioner nfPatents and Trademarks

Claims (29)

1. IN A PROCESS FOR HYDRODIMERZING AN OLEFINIC COMPOUND HAVING THE FORMULA R2C=CR-X WHEREIN -X IS -CN CONR2 OR -COOR'', R IS HYDROGEN OR R'',R'' IS C1--C4 ALKYL AND AT LEAST ONE R DIRECTLY ATTACHED TO EITHER OF THE TWO CARBON ATOMS JOINED BY THE DOUBLE BOND IN SAID FORMULA IS HYDROGEN BY ELECTROLYZING AN AQUEOUS SOLUTION HAVING DISSOLVED THEREIN AT LEAST ABOUT 0.1% BY WEIGHT OF SAID OLEFINIC COMPOUND AT LEAST ABOUT 10-5 GRAM MOL PER LITER OF QUATERNARY AMMONIUM IONS AND AT LEAST ABOUT 0.1% BY WEIGHT OF CONDUCTIVE SALT IN CONTACT WITH A CATHODIC SURFACE HAVING A CAHTODE POTENTIAL SUFFICIENT FOR HYDRODIMERIZATION OF SAID OLEFINIC COMPOUND THE IMPROVEMENT WHICH COMPRISES INCLUDING IN THE SOLUTION BETWEEN 0.1 AND ABOUT 50 MILLIMOLS PER LITER OF A NITRILOCARBOXYLIC ACID COMPOUND HAVING THE FORMULA
2. The process of claim 1 wherein Y is -R''''-COOM or -CH2 m 1 OH, Z is C2-C4 alkylene, m is 1 and n is an integer from 0 to 3.
3. The process of claim 1, said solution having dissolved therein between about 10 5 and about 10 1 gram mol per liter of quaternary ammonium ions.
4. The process of claim 3 wherein Y is -R''''-COOM or - CH2 m 1 OH, Z is C2-C4 alkylene, m is 1 and n is an integer from 0 to 30
5. The process of claim 4 wherein -R''''- is - CH2 m , Z is ethylene and n is 0, 1 or 2.
6. The process of claim 5 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediamenetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaaetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
7. The process of claim 1 carried out in an undivideD cell having a heavy metal anode in contact with said solution.
8. The process of claim 7 wherein Y is -R''''-COOM or -CH2 m 1OH, Z is C2-C4 alkylene, m is 1 and n is an integer from 0 to 3, said solution having dissolved therein between about 10 5 and about 10 1 gram mol per liter of quaternary ammonium ions.
9. The process of claim 8 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
10. The process of claim 8 wherein -R''''- is -CH2 m, Z is ethylene and n is 0, 1 or 2, said solution having dissolved therein at least about 1% by weight of alkali metal phosphate, borate, perchlorate, carbonate or sulfate.
11. The process of claim 8 wherein the conductive salt is an alkali metal phosphate, borate or carbonate and the anode comprises a ferrous metal.
12. The process of claim 11 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethyletylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl) glycine and the alkali metal and ammonium salts of such acids.
13. The process of claim 11 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to at least about 0.01 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to at least about 0.01% by weight of the corresponding condensed phosphoric acid.
14. In a process for hydrodimerizing an olefinic compound having the formula H2C CR-X wherein -X is -CN is -COOR'', R is hydrogen or R'' and R'' is methyl or ethyl by electrolyzing an aqueous solution having dissolved therein COOM least about 0.5% by weight of said olefinic compound, between about 10 5 and about 0.5 gram mol per liter of quaternary ammonium ions and at least about 1% by weight of sodium or potassium phosphate, borate, carbonate or sulfate in contact with a cathodic surface consisting essentially of cadmium or lead with a current density of at least about 0.01 amp/cm2 of cathodic surface, said solution having a pH between about 5 and about 11 and a temperature between about 5* and about 75*C., the improvement which comprises including in the solution between about 0.1 and about 50 millimols per liter of nitrilocarboxylic acid compound having the formula Y2N-Z-YN)nR''''-COOM wherein Y is hydrogen, -R''''-COOM, -CH2 m 1OH or C1-C20 alkyl; -R''''- is -CH2 m or -CHR''''''-; R'''''' is hydroxy, -COOM, -CH2mCOOM or C1-C8 alkyl, hydroxyalkyl or hydroxyphenyl; Z is a divalent C2-C6 hydrocarbon radical; M is hydrogen, alkali metal or ammonium; m is 1 or 2; n is an integer from 0 to 4 and at least one Y is -R''''-COOM or -CHm 1OH.
15. The process of claim 14, said solution containing between about 10 5 and about 10 1 gram mol per liter of quaternary ammonium ions selected from the group consisting of C8-C24 tetraalkylammonium ions containing at least three C2-C6 alkyl groups and C17-C36 polymethylenebis(trialkylammonium) ions in which each trialkylammonium radical contains at least two C3-C6 alkyl groups and the polymethylene radical is C3-c8.
16. The process of claim 15 wherein the nitrilocarboxylic acid compound has the formula Y2N-Z-YN)nCH2COOM wherein Y is -CH2COOM or -CH2CH2OH; Z is C2-C4 alkylene; M is hydrogen, alkali metal or ammonium; and n is an integer of 0 to 2.
17. The process of claim 16 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
18. The process of claim 16 wherein the solution contains an alkali metal salt selected from the group consisting of borate in a concentration corresponding to between about 0.02 and about 0.9 gram atom of boron per liter of solution and condensed phosphate in an amount molecularly equivalent to between about 0.02% and about 3% by weight of the corresponding condensed phosphoric acid.
19. The process of claim 16 carried out in an undivided cell having a heavy metal anode in contact with said solution.
20. The process of claim 19 wherein the nitrilocarboxylic acid compound is selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, N,N-di(2-hydroxyethyl)glycine and the alkali metal and ammonium salts of such acids.
21. The process of claim 15 wherein the conductive salt is an alkali metal phosphate, borate or carbonate and the anode comprises a ferrous metal.
22. The process of claim 21 wherein Y is -R''''-COOM or -CH2 m 1OH, R'''''' is hydroxyphenyl, Z is ethylene, m is 1 and n is an integer from 0 to 2.
23. The process of claim 22 wherein the solution contains an alkali metal borate in a concentration corresponding to at least about 0.02 gram atom of boron per liter of solution.
24. In a process for hydrodimerizing acrylonitrile by electrolyzing an aqueous solution having dissolved therein at least about 0.5% but less than about 5% by weight of acrylonitrile, between about 10 4 and about 10 2 gram mol per liter of quaternary ammonium ions and at least about 1% by weight of sodium or potassium salt selected from phosphate and borate in an undivided cell having a ferrous metal anode with a current density of at least about 0.1 amp/cm2, said solution having a pH between about 7 and about 11 and a temperature between about 40* and about 65*C., the improvement which comprises including in the solution between about 0.5 and about 25 millimols per liter of a nitrilocarboxylic acid compound selected from the group consisting of ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid and the alkali metal salts of such acids.
25. The process of claim 24, said anode consisting essentially of carbon steel.
26. The process of claim 24 wherein the solution contains at least about 2.5 millimols per liter of the nitrilocarboxylic acid compound.
27. The process of claim 26 wherein the solution contains sodium or potassium borates in a concentration corresponding to between about 0.02 and about 0.5 gram atom of boron per liter of solution.
28. The process of claim 24, said solution having dissolved therein between about 10 4 and about 10 2 gram mol per liter of C8-C24 tetraalkylammonium ions having at least three C2-C6 alkyl groups.
29. The process of claim 24 wherein the aqueous solution is electrolyzed in an electrolysis medium consisting essentially of said aqueous solution anD up to about 20% by weight of an undissolved organic phase.
US497808A 1973-08-06 1974-08-15 Electrolytic hydrodimerization process improvement Expired - Lifetime US3898140A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US497808A US3898140A (en) 1973-08-06 1974-08-15 Electrolytic hydrodimerization process improvement
US05/599,255 US3966566A (en) 1974-08-15 1975-07-25 Electrolytic hydrodimerization process improvement
CA232,370A CA1051819A (en) 1974-08-15 1975-07-28 Electrolytic hydrodimerization of acrylonitrile using a nitrilocarboxylic acid compound
GB3145575A GB1477782A (en) 1974-08-15 1975-07-28 Electrolytic hydrodimerization of olefinic hydrocarbons
BR7504824*A BR7504824A (en) 1974-08-15 1975-07-28 IMPROVEMENT IN HIDRODIMERIZATION PROCESS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US38576773A 1973-08-06 1973-08-06
GB4139073A GB1419155A (en) 1972-09-05 1973-09-03 Electrolytic hydrodimerization process
US497808A US3898140A (en) 1973-08-06 1974-08-15 Electrolytic hydrodimerization process improvement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US38576773A Continuation-In-Part 1972-09-05 1973-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/599,255 Continuation US3966566A (en) 1974-08-15 1975-07-25 Electrolytic hydrodimerization process improvement

Publications (1)

Publication Number Publication Date
US3898140A true US3898140A (en) 1975-08-05

Family

ID=27259703

Family Applications (1)

Application Number Title Priority Date Filing Date
US497808A Expired - Lifetime US3898140A (en) 1973-08-06 1974-08-15 Electrolytic hydrodimerization process improvement

Country Status (1)

Country Link
US (1) US3898140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046651A (en) * 1975-07-28 1977-09-06 Monsanto Company Electrolytic hydrodimerization process improvement
US4155818A (en) * 1978-07-17 1979-05-22 Monsanto Company Semi-continuous electro-hydrodimerization of acrylonitrile to adiponitrile with replating of cathode
US4207151A (en) * 1976-06-04 1980-06-10 Monsanto Company Electrohydrodimerization process improvement and improved electrolyte recovery process
US4789442A (en) * 1986-10-30 1988-12-06 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing adiponitrile
US5593557A (en) * 1993-06-16 1997-01-14 Basf Aktiengesellschaft Electrode consisting of an iron-containing core and a lead-containing coating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685564A (en) * 1949-06-25 1954-08-03 Detrex Corp Electrolytic cleaning process
US3116105A (en) * 1961-02-15 1963-12-31 Dearborn Chemicals Co Zinc-sodium polyphosphate, sodium polyphosphate, chelating agent corrosion inhibiting composition
US3193480A (en) * 1963-02-01 1965-07-06 Monsanto Co Adiponitrile process
US3245889A (en) * 1963-02-25 1966-04-12 Monsanto Co Electrolytic method for preparing low weight polymers of acrylonitrile
US3250690A (en) * 1963-12-23 1966-05-10 Monsanto Co Electrolytic reductive coupling of cyano compounds
US3427234A (en) * 1965-04-14 1969-02-11 Basf Ag Electrochemical hydrodimerization of aliphatic alpha,beta-mono-olefinically unsaturated nitriles
US3475298A (en) * 1966-05-31 1969-10-28 Du Pont Electrochemical dimerization of beta-halopropionitriles in aqueous media
US3595764A (en) * 1966-06-14 1971-07-27 Asahi Chemical Ind Adiponitrile production by the electrolytic hydrodimerization of acrylonitrile
US3616321A (en) * 1968-06-06 1971-10-26 Ucb Sa Process for the production of adiponitrile
US3634217A (en) * 1968-08-20 1972-01-11 M & T Chemicals Inc Electrochemical stripping process
US3689382A (en) * 1970-11-23 1972-09-05 Huyck Corp Electrochemical reductive coupling

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685564A (en) * 1949-06-25 1954-08-03 Detrex Corp Electrolytic cleaning process
US3116105A (en) * 1961-02-15 1963-12-31 Dearborn Chemicals Co Zinc-sodium polyphosphate, sodium polyphosphate, chelating agent corrosion inhibiting composition
US3193480A (en) * 1963-02-01 1965-07-06 Monsanto Co Adiponitrile process
US3245889A (en) * 1963-02-25 1966-04-12 Monsanto Co Electrolytic method for preparing low weight polymers of acrylonitrile
US3250690A (en) * 1963-12-23 1966-05-10 Monsanto Co Electrolytic reductive coupling of cyano compounds
US3427234A (en) * 1965-04-14 1969-02-11 Basf Ag Electrochemical hydrodimerization of aliphatic alpha,beta-mono-olefinically unsaturated nitriles
US3475298A (en) * 1966-05-31 1969-10-28 Du Pont Electrochemical dimerization of beta-halopropionitriles in aqueous media
US3595764A (en) * 1966-06-14 1971-07-27 Asahi Chemical Ind Adiponitrile production by the electrolytic hydrodimerization of acrylonitrile
US3616321A (en) * 1968-06-06 1971-10-26 Ucb Sa Process for the production of adiponitrile
US3634217A (en) * 1968-08-20 1972-01-11 M & T Chemicals Inc Electrochemical stripping process
US3689382A (en) * 1970-11-23 1972-09-05 Huyck Corp Electrochemical reductive coupling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046651A (en) * 1975-07-28 1977-09-06 Monsanto Company Electrolytic hydrodimerization process improvement
US4207151A (en) * 1976-06-04 1980-06-10 Monsanto Company Electrohydrodimerization process improvement and improved electrolyte recovery process
US4155818A (en) * 1978-07-17 1979-05-22 Monsanto Company Semi-continuous electro-hydrodimerization of acrylonitrile to adiponitrile with replating of cathode
US4789442A (en) * 1986-10-30 1988-12-06 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing adiponitrile
US5593557A (en) * 1993-06-16 1997-01-14 Basf Aktiengesellschaft Electrode consisting of an iron-containing core and a lead-containing coating

Similar Documents

Publication Publication Date Title
PL94988B1 (en)
JPH0343351B2 (en)
US3898140A (en) Electrolytic hydrodimerization process improvement
CN102002726A (en) Method for preparing adiponitrile by electrolyzing acrylonitrile aqueous solution
US4207151A (en) Electrohydrodimerization process improvement and improved electrolyte recovery process
US3966566A (en) Electrolytic hydrodimerization process improvement
US3616321A (en) Process for the production of adiponitrile
US3897318A (en) Single-compartment electrolytic hydrodimerization process
US4306949A (en) Electrohydrodimerization process
CA1039231A (en) Electrolytic hydrodimerization process improvement
CA1051819A (en) Electrolytic hydrodimerization of acrylonitrile using a nitrilocarboxylic acid compound
US3960679A (en) Process for hydrodimerizing olefinic compounds
US4046651A (en) Electrolytic hydrodimerization process improvement
CA1067450A (en) Process for hydrodimerizing olefinic compounds
CA1050476A (en) Single-compartment electrolytic hydrodimerization process
CA1039229A (en) Process for hydrodimerizing olefinic compounds
CA1198081A (en) Process for electrowinning of massive zinc with hydrogen anodes
CA1039230A (en) Single-compartment electrolytic hydrodimerization process
US4157286A (en) Production of 1,2-bis(hydroxyphenyl)ethane-1,2-diols by electrolytic reduction
CA1039233A (en) Reductive coupling process improvement
SU784762A3 (en) Method of preparing adiponitrile
DE2344294C3 (en) Process for the hydrodimerization of an olefin compound
EP0873433B1 (en) Process for the preparation of tetraalkyl 1,2,3,4-butanetetracarboxylates
Weinberg et al. Electrohydrodimerization: Comparison of Acrylonitrile and Formaldehyde
JPS6012430B2 (en) Olefin reduction method