EP0629714A1 - Acier inoxydable martensitique à usinabilité améliorée - Google Patents

Acier inoxydable martensitique à usinabilité améliorée Download PDF

Info

Publication number
EP0629714A1
EP0629714A1 EP94401246A EP94401246A EP0629714A1 EP 0629714 A1 EP0629714 A1 EP 0629714A1 EP 94401246 A EP94401246 A EP 94401246A EP 94401246 A EP94401246 A EP 94401246A EP 0629714 A1 EP0629714 A1 EP 0629714A1
Authority
EP
European Patent Office
Prior art keywords
equal
less
steel
proportion
martensitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94401246A
Other languages
German (de)
English (en)
Other versions
EP0629714B1 (fr
Inventor
Olivier Bletton
Jacques Bayol
Pascal Terrien
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugitech SA
Original Assignee
Ugine Savoie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9448102&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0629714(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ugine Savoie SA filed Critical Ugine Savoie SA
Priority to SI9430316T priority Critical patent/SI0629714T1/xx
Publication of EP0629714A1 publication Critical patent/EP0629714A1/fr
Application granted granted Critical
Publication of EP0629714B1 publication Critical patent/EP0629714B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Definitions

  • the present invention relates to a martensitic type stainless steel with improved machinability.
  • stainless steels iron alloys containing at least 10.5% chromium.
  • Martensite steels generally include 12 to 18% chromium and carbon contents of up to approximately 1%.
  • Many alloying elements, such as Ni, Mo, Si, Ti, V, Nb ... allow a wide range of properties and lead to applications as varied as: mechanical engineering, tools, cutlery, hot oxides ...
  • the structure of the final product and its mechanical characteristics largely depend on the heat treatments.
  • the three common treatments are quenching, tempering, and softening annealing.
  • the purpose of hardening is to give the steel a martensitic structure and a very high hardness.
  • the tempering increases the ductility which is very low after quenching and the softening annealing makes it possible to obtain a metal which can undergo sophisticated processing operations, such as certain modes of machining or forming.
  • Martensitic stainless steels are difficult to machine. There are several reasons for this.
  • Tool wear therefore has different origins for martensitic steels (high hardness, high friction) than for austenitic steels (work hardening, poor thermal conductivity, poor chip fractionation).
  • selenium serves as a complement to the sulfur, it tends to globulate the sulphides and thereby improves the mechanical characteristics in the cross direction. In addition to the cost, this element is highly toxic.
  • tellurium also makes it possible to globulate the sulphides, and therefore tends to reduce the anisotropy of the steel, in particular the anisotropy of its mechanical properties. It also improves, in itself, the machinability but has the drawback of reducing the ability to be processed hot. For this reason, its use is limited.
  • FR-A-2 648 477 discloses a resulfurized austenitic steel with improved machinability containing in its weight composition a proportion of calcium and oxygen which improves the machinability.
  • austenitic stainless steels are difficult to machine, largely because of their low thermal conductivity, resulting in poor flow of the heat produced at the tip of a cutting tool and rapid deterioration. of the tool and their high hardenability locally inducing zones of high hardness.
  • austenitic steels do not require any significant heat treatment capable of modifying the physico-chemical state of the steel and of the inclusions.
  • Martensitic steels are hardenable and have the characteristics of being of high hardness. As a result, the problem of the difficulty of the machining is not entirely resolved.
  • the object of the invention is to reduce the difficulties encountered in the machining of martensitic steels, while retaining their hot and cold deformability or forgeability properties, their mechanical characteristics and their particularities in heat treatments.
  • Martensitic steels have completely different compositions and above all a structure, compared to steels, for example austenitic.
  • the behavior of martensitic steels during machining is linked to specific problems.
  • a change in the composition of martensitic steels does not surely make it possible to preserve their properties or even more to improve them.
  • Martensitic steels are hardenable and have the characteristics of being of high hardness.
  • These steels are metallurgically very different from austenitic steels. On the one hand, they can be quenched and the crystalline structure obtained when cold on these steels is not comparable to the austenitic structure.
  • Tempering rapid cooling from a high temperature below a temperature at the start of martensitic transformation which depends on the composition of the steel
  • income maintenance at an intermediate temperature depending on the steel
  • martensitic steels undergo softening treatments. The latter is used when the metal has to undergo sophisticated processing operations, such as certain machining or forming modes.
  • the metal structure is no longer a martensitic structure, but a ferritic structure with chromium carbides at the grain boundaries.
  • martensitic steels are very different from that of austenitic steels, which is partly explained by the need to have the martensitic transformation start temperature Ms high enough. They contain little nickel (minus 6%), low chromium contents for stainless steels (11 to 19% chromium).
  • the chosen oxides that is to say lime silicoaluminates of the anorthide and / or pseudowollastonite and / orabilityite type represented on the diagram ternary of FIG. 1, retain the main properties of martensitic steel after the heat treatments that said steel undergoes, without degradation of the mechanical properties and by significantly improving the machinability properties,
  • the gain in machinability is in no case made at the expense of characteristics such as forgeability or hot or cold deformability.
  • the introduction of the malleable oxides is done without taking into account the level of carbon added with nitrogen, the reduction of which, as it is proven, tends to reduce the mechanical characteristics.
  • the invention also relates to a martensitic steel in which it has been added, in its composition by weight from 2 to 6% of nickel and from 1 to 5% of copper or even less than 3% of molybdenum.
  • Nickel is necessary in steels containing more than 16% chromium to obtain, after quenching, a martensitic structure.
  • nickel in addition to its role previously mentioned (reduction in the quantity of delta ferrite), will form with copper the "NI3Cu” phase which will harden the metal. Curing is not obtained here only by carbon, which, moreover, is relatively low.
  • Copper allows in combination with metal to obtain a structural hardening and therefore to increase the mechanical characteristics.
  • Molybdenum improves resistance to corrosion and has a beneficial effect on hardness after tempering and it also improves resilience.
  • steel A contains, on a residual basis, less than 0.5% of nickel and less than 0.2% of copper.
  • This steel was compared to two reference steels, the compositions of which are as follows: VS Yes Mn Or Ref. 1 0.184 0.359 0.530 0.180 Ref. 2 0.194 0.364 0.731 0.313 Cr Mo Cu S P NOT 12.63 0.135 0.084 0.022 0.018 0.056 12.77 0.093 0.088 0.002 0.017 0.049
  • the turning is carried out with solid carbide inserts, test designated by Vb 30 / 0.3, which consists in determining the speed for which the wear in clearance is 0.3mm after 30mn of machining and also, with inserts in coated carbide, test designated by Vb 15 / 0.15 which consists in determining the speed at which the wear in clearance is 0.15 mm after 15 minutes of machining.
  • a martensitic steel according to the invention and the only weight composition of which is as follows: VS Yes Mn Cr Mo STEEL B 0.196 0.444 0.555 12.10 0.073 9 P NOT It O Ca / O SteelB 0.0263 0.019 0.053 41.10 ⁇ 4 99.10 ⁇ 4 0.41
  • steel B contains, on a residual basis, less than 0.5% of nickel and less than 0.2% of copper.
  • This steel was compared to a standard reference steel which does not contain malleable oxides in its composition and whose composition is as follows: VS Yes Mn Or Cr Mo REF 3 0.214 0.344 0.564 0.354 12.32 0.097 Cu S P NOT It O Ca / O REF 3 0.106 0.261 0.017 0.054 45.10 ⁇ 4
  • Table 3 below presents characteristic values of the machining tests and shows that the steels treated according to the invention give a machinability gain of 25 to 30%.
  • METALLURGICAL CONDITION TREATY SOFTENED test Vb 30 / 0.3 (m / min) Vb 15 / 0.15 (m / min) Vb 30 / 0.3 (m / min) Vb 15 / 0.15 (m / min) Steel ref 1 195 250 - - Steel ref 2 150 205 - - Steel ref 3 230 250 200 220 Steel A 250 - - - Steel B 250 290 - - TABLE 3
  • These reference steels contain copper and nickel in their composition and are among the grades with structural hardening.
  • the steel D according to the invention was treated by machining in the quenched state. This means that it has been quenched at 1050 ° C in oil. It appeared, as shown on the curves of FIG. 2, that the presence of malleable oxides did indeed increase the machinability which is observed on the curves by the reduction in the wear of the tools. This wear actually goes from 0.15 mm after 15 minutes of machining at a speed of 190 m / min, an advance of 0.15 mm / revolution, a depth of cut of 1.5 mm for steel reference 4 , at a wear of 0.125 mm for steel D.
  • Steel D according to the invention made it possible to obtain in the softened state a cutting speed of 240 m / min while reference steel 5 allowed a cutting speed of 210 m / min.
  • the gain recorded is 20%.
  • martensitic steels containing in their composition malleable oxides have improved machinability, the oxides not deteriorating the other characteristics of said steels.

Abstract

L'invention a pour objet un acier inoxydable martensitique à usinabilité améliorée, caractérisé en ce que sa composition pondérale est la suivante :
  • carbone inférieur à 1,2%
  • silicium inférieur ou égal à 2%
  • manganèse inférieur ou égal à 2%
  • chrome : 10,5<Cr<19%
  • soufre inférieur ou égal à 0,55%
  • calcium supérieur à 32.10⁻⁴%
  • Oxygène supérieur à 70.10⁻⁴%,
  • le rapport de la teneur en calcium et en oxygène Ca/O étant 0,2<Ca/O<0,6,ledit acier étant soumis à au moins un traitement thermique de trempe pour lui conférer une structure martensitique.

Description

  • La présente invention concerne un acier inoxydable du type martensitique à usinabilité améliorée.
  • On désigne par aciers inoxydables les alliages de fer contenant au moins 10,5% de chrome.
  • D'autres éléments entrent dans la composition de l'acier afin de modifier la structure et les propriétés de l'alliage. Les quatre principales structures sont:
    • les aciers martensitiques,
    • les aciers ferritiques,
    • les aciers austénitiques,
    • les aciers austéno-ferritiques.
  • Les aciers martensites comprennent en général 12 à 18% de chrome et des teneurs en carbone pouvant aller jusqu'à 1% environ. De nombreux éléments d'alliage, tels Ni,Mo, Si, Ti, V, Nb... permettent un large éventail de propriétés et conduisent à des applications aussi variées que : construction mécanique, outillage, coutellerie, oxydes à chaud...
  • Leur originalité est d'allier à une bonne résistance à la corrosion due essentiellement au chrome, des caractéristiques mécaniques élevées qui s'expliquent par la structure martensitique.
  • Il existe une vaste étendue d'aciers inoxydables martensitiques, aux compositions et propriétés d'emploi très variées. Parmi les nuances les plus courantes, on peut citer :
    • les nuances au chrome-carbone sans nickel. Les caractéristiques recherchées sont la dureté, la résistance à la corrosion, la polissabilité.
    • les nuances à 16% de chrome plus nickel. La présence de chrome leur confère une bonne résistance à la corrosion, le nickel (2 à 4%) permet d'obtenir une structure martensitique après trempe.
    • les nuances à durcissement structural. Elles ont une excellente résistance à la corrosion avec de hautes caractéristiques mécaniques.
    • les 12% de chrome améliorées (addition d'éléments comme le vanadium, le molybdène, le tungstène, le silicium, le niobium, le titane...). Le but est d'optimiser une ou plusieurs propriétés d'emploi du matériau, comme résistance à chaud, le fluage, le résilience, la résistance à la corrosion...
  • Pour toutes ces nuances, la structure du produit final et ses caractéristiques mécaniques dépendent largement des traitements thermiques. Les trois traitements courants sont la trempe, le revenu et le recuit d'adoucissement.
  • La trempe a pour but de donner à l'acier une structure martensitique et une dureté très élevée.
  • Le revenu permet d'augmenter la ductilité qui est très faible après la trempe et le recuit d'adoucissement permet d'obtenir un métal pouvant subir des opérations de mise en oeuvre sophistiquées, telles que certains modes d'usinage ou de formage.
  • Tous les traitements sont définis en fonction de la composition de la nuance (ajustement de la température de revenu, de sa durée, du type de refroidissement...).
  • Les aciers inoxydables martensitiques sont difficiles à usiner. Plusieurs raisons expliquent cet état de fait.
  • En effet, leur grande dureté provoque une fatigue mécanique des outils qui subissent des efforts de coupe très importants et peuvent voir leur limite de rupture dépassée.
  • Par ailleurs, les forces de frottements élevées, ajoutées à une conductivité thermique médiocre vont induire des températures élevées à l'interface outil/matière, d'où une fatigue thermique et une dégradation par diffusion.
  • D'autre part, les domaines de fractionnement des copeaux sont bien souvent réduits.
  • Enfin, la présence d'oxydes durs tels que l'alumine ou la chromite est un facteur aggravant l'usure des outils de coupe.
  • Les usures des outils ont donc des origines différentes pour les aciers martensitiques (dureté élevée, frottements importants) que pour les aciers austénitiques (écrouissabilité, mauvaise conductivité thermique mauvais fractionnement des copeaux).
  • De nombreuses voies sont utilisées pour améliorer l'usinabilité, mais toutes ont des inconvénients.
  • L'addition du soufre, qui va former avec le manganèse des sulfures, parfois substitués au chrome, détériore la résistance à la corrosion, la déformabilité à chaud et à froid, la soudabilité, ainsi que les caractéristiques mécaniques en sens travers.
  • L'addition de sélénium sert de complément au soufre, il tend à globuliser les sulfures et améliore de ce fait les caractéristiques mécaniques en sens travers. En plus du coût, cet élément est hautement toxique.
  • L'addition de tellure permet, elle aussi, de globuliser les sulfures, et tend donc à diminuer l'anisotropie de l'acier en particulier l'anisotropie de ses propriétés mécaniques. Il améliore également, en soi, l'usinabilité mais a l'inconvénient de réduire l'aptitude à la transformation à chaud. Pour cette raison, son emploi est limité.
  • L'addition de plomb qui est insoluble dans l'acier apparait sous forme de nodules sphériques, mais cet élément à l'inconvénient d'être toxique et de dégrader la forgeabilité.
  • On connaît par le FR-A-2 648 477, un acier austénitique résulfuré à usinabilité améliorée contenant dans sa composition pondérale une proportion de calcium et d'oxygène qui améliore l'usinabilité.
  • Or, il est bien connu que les aciers inoxydables austénitiques sont difficiles à usiner, en grande partie à cause de leur faible conductibilité thermique, d'où un mauvais écoulement de la chaleur produite à la pointe d'un outil de coupe et une détérioration rapide de l'outil et de leur forte écrouissabilité induisant localement des zones de dureté élevée.
  • Pendant l'usinage de l'acier, du fait des températures de coupe élevées, ces inclusions jouent un rôle lubrifiant à l'interface-acier à usiner-outil de coupe, conduisant ainsi à une usure réduite des outils de coupe et à un meilleur aspect de surface des pièces usinées.
  • De plus, dans le domaine de l'usinage, les aciers austénitiques ne nécessitent pas de traitement thermique important susceptible de modifier l'état physico-chimique de l'acier et des inclusions.
  • Les aciers martensitiques sont eux trempables et ont pour caractéristiques d'être de haute dureté. De ce fait, le problème de la difficulté de l'usinage n'est pas résolu entièrement.
  • L'invention a pour but de réduire les difficultés rencontrées dans l'usinage des aciers martensitiques, tout en conservant leurs propriétés de déformabilité ou forgeabilité à chaud et à froid, leurs caractéristiques mécaniques et leurs particularités aux traitements thermiques.
  • L'invention a pour objet un acier martensitique à haute usinabilité, qui se caractérise par la composition pondérale suivante :
    • carbone inférieur à 1,2%
    • silicium inférieur ou égal à 2%
    • manganèse inférieur ou égal à 2%
    • chrome : 10,5<Cr<19%
    • soufre inférieur ou égal à 0,55%
    • calcium supérieur à 32.10⁻⁴%
    • oxygène supérieur à 70.10⁻⁴%
    • le rapport de la teneur en calcium et en oxygène Ca/O étant 0,2<Ca/O<0,6, ledit acier étant soumis à au moins un traitement thermique de trempe pour lui conférer une structure martensitique.
  • Selon d'autres caractéristiques de l'invention :
    • l'acier comprend du soufre dans une proportion inférieure ou égale à 0,035%,
    • l'acier comprend du soufre dans une proportion 0,15%<S<0,45%, ledit acier étant resulfuré,
    • l'acier comprend, en outre, du nickel dans une proportion inférieure ou égale à 6%,
    • l'acier comprend, en outre, du molybdène dans une proportion inférieure ou égale à 3%,
    • l'acier comprend, en outre, dans sa composition pondérale des éléments choisis parmi le tungstène, le cobalt, le niobium, le titane, le tantale, le zirconium, le vanadium, le molybdène dans les proportions pondérales suivantes :
      • tungstène inférieur ou égal à 4%
      • cobalt inférieur ou égal à 4,5%
      • niobium inférieur ou égal à 1%
      • titane inférieur ou égal à 1%
      • tantale inférieur ou égal à 1%
      • zirconium inférieur ou égal à 1%
      • vanadium inférieur ou égal à 1%
      • molybdène inférieur ou égale à 3%,
    • l'acier comprend du nickel dans une proportion 2%<Ni<6% et du cuivre dans une proportion de 1%<Cu<5%
    • l'acier contient des inclusions de silicoaluminate de chaux du type anorthide et/ou pseudo-wollastonite et/ou géhlénite.
  • Les essais décrits ci-dessous et les figures annexées feront mieux comprendre l'invention.
    • la figure 1 représente sur diagramme ternaire SiO₂ - CaO - Al₂O₃ donnant les compositions des oxydes introduit dans l'acier selon l'invention,
    • la figure 2 montre des courbes représentant l'évolution de l'usure d'un outil pour différents exemples donnés.
  • Les aciers martensitiques ont des compositions et surtout une structure totalement différentes, par rapport aux aciers, par exemple austénitiques. Les comportements des aciers martensitiques lors de l'usinage sont liés à des problèmes spécifiques.
  • Une modification de la composition des aciers martensitiques ne permet pas de façon sûre de conserver leurs propriétés ou plus encore de les améliorer.
  • Les aciers martensitiques sont trempables et ont pour caractéristiques d'être de haute dureté.
  • Ces aciers sont métallurgiquement très différents des aciers austénitiques. D'une part, ils peuvent subir la trempe et la structure cristalline obtenue à froid sur ces aciers n'est pas comparable à la structure austénitique.
  • D'autre part, l'élaboration des aciers martensitiques diffère en de nombreux points de celle des aciers austénitiques.
  • En particulier, les traitements thermiques sont nombreux sur les premiers et confèrent au métal ses caractéristiques d'emploi. La trempe (refroidissement rapide depuis une haute température en dessous d'une température Ms de début de transformation martensitique qui dépend de la composition de l'acier) permet d'obtenir, à partir d'une structure austénitique à chaud, une structure martensitique. Elle est généralement suivie d'un revenu (maintien à une température intermédiaire dépendant de l'acier) qui permet d'augmenter la ductilité qui est très faible après trempe.
  • Certaines nuances d'aciers martensitiques subissent des traitements d'adoucissement. Ce dernier est utilisé lorsque le métal doit subir des opérations de mise en oeuvre sophistiquées, telles que certains modes d'usinage ou de formage. La structure du métal n'est alors plus une structure martensitique, mais une structure ferritique avec des carbures de chrome au niveau des joints de grains.
  • Cependant, il retrouve sa structure martensitique et ses caractéristiques mécaniques après des traitements thermiques appropriés.
  • Enfin, la composition chimique des aciers martensitiques est très différente de celle des aciers austénitiques ce qui s'explique d'ailleurs en partie par la nécessité d'avoir la température de début de transformation martensitique Ms suffisamment haute. Ils ne contiennent que peu de nickel (moins 6%), des teneurs en chrome basses pour des aciers inoxydables (de 11 à 19% de chrome).
  • Selon l'invention, l'acier martensitique se caractérise par sa composition pondérale suivante :
    • carbone inférieur à 1,2%
    • silicium inférieur ou égal à 2%
    • manganèse inférieur ou égal à 2%
    • chrome : 10,5<Cr<19%
    • soufre inférieur ou égal à 0,4%
    • calcium supérieur à 32.10⁻⁴%
    • oxygène supérieur à 70.10⁻⁴%,

       le rapport de la teneur en calcium et en oxygène Ca/O étant 0,2<Ca/O<0,6,ledit acier étant soumis à au moins une trempe pour lui conférer une structure martensitique.
  • D'une façon inattendue, en introduisant des oxydes malléables dans une composition martensitique, il s'est avéré que les oxydes choisis, c'est à dire des silicoaluminates de chaux du type anorthide et/ou pseudowollastonite et/ou géhlénite representés sur le diagramme ternaire de la figure 1, conservent les propriétés principales à l'acier martensitique après les traitements thermiques que ledit acier subit, sans dégradation des propriétés mécaniques et en améliorant de façon notable les propriétés d'usinabilité,
  • Or, les inclusions d'oxydes malléables n'ont une action favorable pour l'usinabilité uniquement parce que la matrice s'y prête.
  • La Demanderesse a été surprise de constater que dans une matrice de structure aussi différente que la structure des aciers martensitiques, ces oxydes ont aussi un effet bénéfique sur l'usinabilité.
  • De plus, il n'était pas évident que, du fait des différences d'élaboration, la Demanderesse arrive à obtenir le même type d'inclusions dans l'acier.
  • La Demanderesse a en particulier eu la surprise de constater que les traitements thermiques ne changaient rien à la nature des inclusions.
  • Il ne se produit pas, ou du moins pas de manière significative de modification de la composition analytique des inclusions, entre autre par diffusion à l'état solide et cela au cours des traitements thermiques que subissent les aciers martensitiques.
  • Les problèmes de l'usinage des aciers martensitiques sont en outre très différents des problèmes posés par les aciers austénitiques.
  • Contrairement à ces derniers, ils ne sont pas écrouissables et leur conductivité thermique n'est pas aussi mauvaise.
  • Par contre, le principal problème des aciers martensitiques pour l'usinage est la dureté.
  • Rien ne permettait de penser que des inclusions identiques puissent avoir un effet bénéfique alors que les problèmes d'usinage avaient des causes si différentes.
  • Il s'est avéré que lors de l'usinage des aciers martensitiques, les oxydes malléables, aux températures d'usinage de ces aciers, sont suffisamment chauffés pour former un film lubrifiant en permanence régénéré par les inclusions d'oxydes présents dans le métal. Ce film lubrifiant permet de diminuer les frottements de la matière sur l'outil. Ainsi, l'effet de la charge importante due à la grande dureté du matériau se trouve réduit.
  • Deux familles d'aciers martensitiques ont été testés, l'une comprenant dans sa composition pondérale du soufre dans une proportion comprise entre 0,15 et 0,45%, l'autre comprenant dans sa composition pondérale du soufre dans une proportion inférieure à 0,035%.
  • Il a été remarqué, que la présence des oxydes malléables dans l'acier ne modifie pas la résistance à la corrosion, soit par piqûre, soit caverneuse, aussi bien pour la composition à bas soufre que dans la composition resulfurée.
  • D'une manière générale, le gain apporté en usinabilité n'est fait, en aucun cas, au détriment de caractéristiques telles que la forgeabilité ou la déformabilité à chaud ou à froid.
  • Il a été également remarqué, que les oxydes introduits gardent leurs propriétés quelque soit le traitement thermique effectué.
  • Selon l'invention, l'introduction des oxydes malléables se fait sans tenir compte du taux de carbone additionné d'azote dont la diminution, tend comme il est prouvé, à diminuer les caractéristiques mécaniques.
  • L'invention concerne également un acier martensitique dans lequel il a été ajouté, dans sa composition pondérale de 2 à 6% de nickel et de 1 à 5% de cuivre ou encore moins de 3% de molybdène.
  • Le nickel est nécessaire dans des aciers contenant plus de 16% de chrome pour obtenir, après la trempe, une structure martensitique.
  • Dans la nuance dites à durcissement structural, le nickel, outre son rôle précédemment évoqué (diminution de la quantité de ferrite delta), va former avec le cuivre la phase "NI₃Cu" qui va durcir le métal. Le durcissement n'est pas ici obtenu seulement par le carbone, qui du reste est relativement bas.
  • Le cuivre permet en combinaison avec le métal d'obtenir un durcissement structural et donc d'augmenter les caractéristiques mécaniques.
  • Le molybdène améliore la résistance à la corrosion et a un effet bénéfique sur la dureté après un revenu et il améliore également la résilience.
  • L'acier martensitique selon l'invention peut contenir également des éléments stabilisant choisis parmi le tungstène, le cobalt, le niobium, le titane, le tantale, le zirconium dans les proportions pondérales suivantes :
    • tungstène inférieur ou égal à 4%
    • cobalt inférieur ou égal à 4,5%
    • niobium inférieur ou égal à 1%
    • titane inférieur ou égal à 1%
    • tantale inférieur ou égal à 1%
    • zirconium inférieur ou égal à 1%.
  • Dans un exemple d'application un acier martensitique A selon l'invention dont la composition est la suivante :
    Figure imgb0001
    Figure imgb0002

    dans laquelle il est introduit :
       Ca = 30.10⁻⁴%
       O = 129.10⁻⁴ %
       le rapport de la teneur en calcium et un oxygène Ca/O étant égal à 0,22.
  • Dans cet exemple, l'acier A contient, à titre résiduel, moins de 0,5% de nickel et moins de 0,2% de cuivre.
  • Cet acier a été comparé à deux aciers de référence dont les compositions sont les suivantes :
    C Si Mn Ni
    Ref. 1 0,184 0,359 0,530 0,180
    Ref. 2 0,194 0,364 0,731 0,313
    Cr Mo Cu S P N
    12,63 0,135 0,084 0,022 0,018 0,056
    12,77 0,093 0,088 0,002 0,017 0,049
  • Les trois aciers ont subit des tests d'usinabilité de tournage.
  • Le tournage est effectué avec des plaquettes en carbure massif, test désigné par Vb 30/0,3, qui consiste à déterminer la vitesse pour laquelle l'usure en dépouille est de 0,3mm après 30mn d'usinage et également, avec des plaquettes en carbure revêtu, test désigné par Vb 15/0,15 qui consiste à déterminer la vitesse pour laquelle l'usure en dépouille est de 0,15 mm après 15mn d'usinage.
  • On constate sur le tableau 1 ci-dessous que les propriétés mécaniques ne sont nullement altérées par l'introduction d'inclusions d'oxydes malléables pour deux traitements thermiques d'adoucissement, c'est à dire comportant une trempe à l'huile à 950°C, un maintien pendant quatre heures à 820°C, un refroidissement lent jusqu'à 650°C, puis un refroidissement à l'air et "traité" c'est à dire ayant subit une trempe à 950°C, un revenu à 640°C et un refroidissement à l'air.
    NUANCE TRAITEMENT THERMIQUE Rm MPa
    INV A ADOUCI 535
    REF 2 ADOUCI 544
    REF 1 ADOUCI 544
    INV A TRAITE 858
    REF 2 TRAITE 967
    REF 1 TRAITE 899
    Rp0,2 MPa A% Z% DURETE HRB/HRC
    282 29 82
    296 29,2 64,1 82,3 HRB
    280 28,6 60,6 80,6 HRB
    737 14 51
    837 12 52,6 29,1 HRC
    754 15,5 55,8 27,3 HRC
    TABLEAU 1
  • Les tests ont montré que les aciers dits "traités" s'usinent mieux que les aciers adoucis.
  • Dans un autre exemple d'application, un acier martensitique selon l'invention et dont la composition pondérale est la seule suivante :
    C Si Mn Cr Mo
    ACIER B 0,196 0,444 0,555 12,10 0,073
    9 P N Ca O Ca/O
    AcierB 0,0263 0,019 0,053 41.10⁻⁴ 99.10⁻⁴ 0,41
  • Dans cet exemple, l'acier B contient, à titre résiduel, moins de 0,5% de nickel et moins de 0,2% de cuivre.
  • Cet acier a été comparé à un acier standard de référence ne contenant pas dans sa composition d'oxydes malléables et dont la composition est la suivante :
    C Si Mn Ni Cr Mo
    REF 3 0,214 0,344 0,564 0,354 12,32 0,097
    Cu S P N Ca O Ca/O
    REF 3 0,106 0,261 0,017 0,054 45.10⁻⁴
  • On remarque sur le tableau 2 ci-dessous que les caractéristiques mécaniques comparées entre l'acier de référence 3 et l'acier B selon l'invention ne présentent pas de différences significatives tant dans le cas d'un état adouci que traité.
    REF. 3 ACIER B
    ADOUCI TRAITE ADOUCI TRAITE
    Rm(MPa) 559 803 566 787
    Rp0,2(MPa) 418 636 408 600
    A% 29 18,7 29 19
    Z% 67,5 60,5 67 63
    TABLEAU 2
  • Le tableau 3 ci-dessous présente des valeurs caractéristiques des tests d'usinage et montre que les aciers traités selon l'invention donnent un gain d'usinabilité de 25 à 30%.
    ETAT METALLURGIQUE TRAITE ADOUCI
    test : Vb 30/0,3 (m/mn) Vb 15/0,15 (m/mn) Vb 30/0,3 (m/mn) Vb 15/0,15 (m/mn)
    Acier réf 1 195 250 - -
    Acier réf 2 150 205 - -
    Acier réf 3 230 250 200 220
    Acier A 250 - - -
    Acier B 250 290 - -
    TABLEAU 3
  • Dans un troisième exemple d'application deux aciers martensitiques C et D selon l'invention dont les compositions sont les suivantes :
    C Si Mn Ni Cr Mo
    Acier C 0,018 0,443 0,825 4,517 15,2 0,005
    Acier D 0,012 0,448 0,818 3,739 15,37 0,005
    Cu P N Nb S.10⁻⁴ Ca.10⁻⁴ 0.10⁻⁴
    3,189 0,01 0,018 0,202 110 65 132
    3,236 0,01 0,021 0,192 233 70 157
  • Les aciers C et D ont été comparés à des aciers de référence, ne contenant pas d'oxydes malléables et dont les compositions pondérales sont les suivantes:
    C Si Mn Ni Cr Mo
    Ref. 4 0,011 0,45 0,815 4,548 15,26 0,006
    Ref. 5 0,013 0,405 0,878 4,509 15,26 0,006
    Cu P N Nb S.10⁻⁴ Ca.10⁻⁴ 0.10⁻⁴
    3,245 0,011 0,017 0,182 270 <5 138
    3,228 0,011 0,016 0,202 110 <5 48
  • Ces aciers de référence contiennent en leur composition du cuivre et du nickel et font partie des nuances à durcissement structural.
  • Trois états métallurgiques correspondants à des traitements thermiques différents, sont couramment rencontrés :
    • l'état trempé : trempe huile à 1050°C, puis revenu à 250°C. Rm 1000 MPa,
    • l'état vieilli, dans lequel le métal a sa dureté maximale : trempe 1050°C, puis revenu vers 450°C. Rm 1400 MPa
    • l'état adouci : trempe 1050°C, revenu à 760°C pendant 4 heures, deuxième revenu vers 620°C. Rm 900 MPa
  • La particularité de ce type de nuances est qu'elle ne subit pas de variations dimensionnelles suite aux traitements thermiques. Elle peut donc être usinée, puis vieillie.
  • L'acier D selon l'invention a été traité par usinage à l'état trempé. C'est à dire qu'il a subit une trempe à 1050°C dans de l'huile. Il est apparu, comme représenté sur les courbes de la figure 2, que la présence d'oxydes malléables augmentait bien l'usinabilité ce qui se constate sur les courbes par la diminution de l'usure des outils. Cette usure passe en effet de 0,15 mm après 15 mn d'usinage à une vitesse de 190 m/mn, une avance de 0,15 mm/tour, une profondeur de passe de 1,5 mm pour l'acier référence 4, à une usure de 0,125 mm pour l'acier D.
  • L'acier D selon l'invention a permis d'obtenir à l'état adouci une vitesse de coupe de 240 m/mn alors que l'acier de référence 5 a permis une vitesse de coupe de 210 m/mn. Le gain enregistré est de 20%.
  • Il est bien mis en évidence avec ces différents exemples d'application, que les aciers martensitiques contenant dans leur composition des oxydes malléables ont une usinabilité améliorée, les oxydes ne détériorant pas les autres caractéristiques desdits aciers.

Claims (8)

  1. Acier inoxydable martensitique à usinabilité améliorée, caractérisé en ce que sa composition pondérale est la suivante :
    - carbone inférieur à 1,2%
    - silicium inférieur ou égal à 2%
    - manganèse inférieur ou égal à 2%
    - chrome : 10,5<Cr<19%
    - soufre inférieur ou égal à 0,55%
    - calcium supérieur à 32.10⁻⁴%
    - Oxygène supérieur à 70.10⁻⁴%
       le rapport de la teneur en calcium et en oxygène Ca/O étant 0,2<Ca/O<0,6, ledit acier étant soumis à au moins un traitement thermique de trempe pour lui conférer une structure martensitique.
  2. Acier selon la revendication 1, caractérisé en ce qu'il comprend du soufre dans une proportion inférieure ou égale à 0,035%.
  3. Acier selon la revendication 1, caractérisée en ce qu'il comprend du soufre dans une proportion 0,15%<S<0,45%, ledit acier étant resulfuré.
  4. Acier selon la revendication 1 à 3, caractérisé en ce qu'il comprend, en outre, du nickel dans une proportion inférieure ou égale à 6%.
  5. Acier selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend, en outre, du molybdène dans une proportion inférieure ou égale à 3%.
  6. Acier selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend, en outre, dans sa composition pondérale des éléments choisis parmi le tungstène, le cobalt, le niobium, le titane, le tantale, le zirconium, le vanadium, le molybdène dans les proportions pondérales suivantes :
    - tungstène inférieur ou égal à 4%
    - cobalt inférieur ou égal à 4,5%
    - niobium inférieur ou égal à 1%
    - titane inférieur ou égal à 1%
    - tantale inférieur ou égal à 1%
    - zirconium inférieur ou égal à 1%
    - vanadium inférieur ou égal à 1%
    - molybdène inférieur ou égale à 3%.
  7. Acier selon la revendication 6, caractérisé en ce qu'il comprend du nickel dans une proportion 2%<Ni<6% et du cuivre dans une proportion 1%<Cu<5%.
  8. Acier selon l'une des revendications 1 à 7, caractérisé en ce qu'il contient des inclusions de silicoaluminate de chaux de type anorthide et/ou pseudo-wollastonite et/ou géhlénite.
EP94401246A 1993-06-14 1994-06-06 Acier inoxydable martensitique à usinabilité améliorée Expired - Lifetime EP0629714B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9430316T SI0629714T1 (en) 1993-06-14 1994-06-06 Martensitic stainless steel with improved machinability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9307141A FR2706489B1 (fr) 1993-06-14 1993-06-14 Acier inoxydable martensitique à usinabilité améliorée.
FR9307141 1993-06-14

Publications (2)

Publication Number Publication Date
EP0629714A1 true EP0629714A1 (fr) 1994-12-21
EP0629714B1 EP0629714B1 (fr) 2000-04-12

Family

ID=9448102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401246A Expired - Lifetime EP0629714B1 (fr) 1993-06-14 1994-06-06 Acier inoxydable martensitique à usinabilité améliorée

Country Status (25)

Country Link
US (1) US5427635A (fr)
EP (1) EP0629714B1 (fr)
JP (1) JP3398772B2 (fr)
KR (1) KR100338886B1 (fr)
AT (1) ATE191753T1 (fr)
CA (1) CA2125732C (fr)
CZ (1) CZ292392B6 (fr)
DE (1) DE69423930T2 (fr)
DK (1) DK0629714T3 (fr)
EG (1) EG20378A (fr)
ES (1) ES2145109T3 (fr)
FI (1) FI106267B (fr)
FR (1) FR2706489B1 (fr)
GR (1) GR3033773T3 (fr)
IL (1) IL109919A (fr)
NO (1) NO303180B1 (fr)
PL (1) PL179128B1 (fr)
PT (1) PT629714E (fr)
RO (1) RO115276B1 (fr)
RU (1) RU2080410C1 (fr)
SG (1) SG48134A1 (fr)
SI (1) SI0629714T1 (fr)
TR (1) TR28472A (fr)
TW (1) TW304985B (fr)
UA (1) UA26151C2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036584A1 (fr) * 1998-01-16 1999-07-22 Crs Holdings, Inc. Acier inoxydable martensitique de decolletage
WO2000053821A1 (fr) * 1999-03-08 2000-09-14 Crs Holdings, Inc. Acier inoxydable durcissable par precipitation a usinabilite amelioree, destine a etre utilise dans des conditions extremes
EP1314792A1 (fr) * 2001-11-26 2003-05-28 Usinor Acier inoxydable ferritique au soufre, utilisable pour des pieces ferromagnétiques
US20180274081A1 (en) * 2015-07-08 2018-09-27 Safran Aircraft Engines Part coated with a coating for protection against cmas

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720410B1 (fr) * 1994-05-31 1996-06-28 Ugine Savoie Sa Acier inoxydable ferritique à usinabilité améliorée.
FR2740783B1 (fr) * 1995-11-03 1998-03-06 Ugine Savoie Sa Acier inoxydable ferritique utilisable pour la production de laine d'acier
JP3284092B2 (ja) * 1997-12-05 2002-05-20 理研ダイヤモンド工業株式会社 切断破砕用カッター
CN1113974C (zh) * 1999-05-18 2003-07-09 住友金属工业株式会社 无缝钢管用马氏体不锈钢
FR2811683B1 (fr) * 2000-07-12 2002-08-30 Ugine Savoie Imphy Acier inoxydable ferritique utilisable pour des pieces ferromagnetiques
US6461452B1 (en) * 2001-05-16 2002-10-08 Crs Holdings, Inc. Free-machining, martensitic, precipitation-hardenable stainless steel
FR2933990B1 (fr) * 2008-07-15 2010-08-13 Aubert & Duval Sa Acier martensitique durci a teneur faible en cobalt, procede de fabrication d'une piece a partir de cet acier, et piece ainsi obtenue
DE102009030489A1 (de) * 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh Verfahren zum Herstellen eines warmpressgehärteten Bauteils, Verwendung eines Stahlprodukts für die Herstellung eines warmpressgehärteten Bauteils und warmpressgehärtetes Bauteil
UA111115C2 (uk) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. Рентабельна феритна нержавіюча сталь
RU2507297C1 (ru) * 2012-10-05 2014-02-20 Леонид Михайлович Клейнер Стали со структурой пакетного мартенсита
EP2728028B1 (fr) 2012-11-02 2018-04-04 The Swatch Group Research and Development Ltd. Alliage d'acier inoxydable sans nickel
CN102943211B (zh) * 2012-11-27 2015-12-23 黄山市新光不锈钢材料制品有限公司 一种高碳马氏体不锈钢带的制造方法
CN102965580B (zh) * 2012-11-27 2016-01-20 黄山市新光不锈钢材料制品有限公司 一种高碳马氏体不锈钢
US9181597B1 (en) 2013-04-23 2015-11-10 U.S. Department Of Energy Creep resistant high temperature martensitic steel
US9556503B1 (en) 2013-04-23 2017-01-31 U.S. Department Of Energy Creep resistant high temperature martensitic steel
CN103725994B (zh) * 2013-12-16 2016-06-08 泰州俊宇不锈钢材料有限公司 一种高性能马氏体钢丝及其制造方法
RU2557850C1 (ru) * 2014-10-21 2015-07-27 Юлия Алексеевна Щепочкина Сталь
DE102016219350A1 (de) * 2016-10-06 2018-04-12 Kjellberg-Stiftung Düsenschutzkappe, Lichtbogenplasmabrenner mit dieser Düsenschutzkappe sowie eine Verwendung des Lichtbogenplasmabrenners
RU2650945C1 (ru) * 2017-12-19 2018-04-18 Юлия Алексеевна Щепочкина Сталь
RU2672165C1 (ru) * 2018-07-20 2018-11-12 Юлия Алексеевна Щепочкина Сталь

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445388A1 (fr) * 1978-12-25 1980-07-25 Daido Steel Co Ltd Acier de decolletage contenant des particules incluses de sulfure ayant un allongement, une taille et une distribution determines
FR2456785A1 (fr) * 1979-05-17 1980-12-12 Daido Steel Co Ltd Acier de decolletage contenant des inclusions determinees et un procede de sa preparation
EP0403332A1 (fr) * 1989-06-16 1990-12-19 Ugine Savoie Acier inoxydable austénitique resulfuré à usinabilité améliorée

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690869A (en) * 1970-08-26 1972-09-12 Yakov Mikhailovich Potak Martensite stainless steel
JPS55122858A (en) * 1979-03-13 1980-09-20 Daido Steel Co Ltd High carbon high manganese steel with high machinability
JPS5970748A (ja) * 1982-10-12 1984-04-21 Kawasaki Steel Corp オ−トバイデイスクブレ−キ用のじん性に優れる低炭素マルテンサイト系ステンレス鋼熱延板材
JPH0215143A (ja) * 1988-06-30 1990-01-18 Aichi Steel Works Ltd 冷間鍛造用軟磁性ステンレス鋼
JPH02104633A (ja) * 1989-07-28 1990-04-17 Daido Steel Co Ltd 高強度非磁性高マンガン鋼
FR2690169B1 (fr) * 1992-04-17 1994-09-23 Ugine Savoie Sa Acier inoxydable austénitique à haute usinabilité et à déformation à froid améliorée.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445388A1 (fr) * 1978-12-25 1980-07-25 Daido Steel Co Ltd Acier de decolletage contenant des particules incluses de sulfure ayant un allongement, une taille et une distribution determines
FR2456785A1 (fr) * 1979-05-17 1980-12-12 Daido Steel Co Ltd Acier de decolletage contenant des inclusions determinees et un procede de sa preparation
EP0403332A1 (fr) * 1989-06-16 1990-12-19 Ugine Savoie Acier inoxydable austénitique resulfuré à usinabilité améliorée
FR2648477A1 (fr) * 1989-06-16 1990-12-21 Ugine Savoie Sa Acier inoxydable austenitique resulfure a usinabilite amelioree

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOUDREMONT: "Handbuch der Sonderstahlkunde, vol.2, pages 1279-1290", 1956, SPRINGER-VERLAG, BERLIN/GöTTINGEN/HEIDELBERG *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999036584A1 (fr) * 1998-01-16 1999-07-22 Crs Holdings, Inc. Acier inoxydable martensitique de decolletage
US6146475A (en) * 1998-01-16 2000-11-14 Crs Holdings, Inc. Free-machining martensitic stainless steel
WO2000053821A1 (fr) * 1999-03-08 2000-09-14 Crs Holdings, Inc. Acier inoxydable durcissable par precipitation a usinabilite amelioree, destine a etre utilise dans des conditions extremes
KR100437960B1 (ko) * 1999-03-08 2004-07-01 씨알에스 홀딩즈 인코포레이티드 엄격한 용도에 적합한 고절삭성 석출 경화형의 스테인리스강
CZ303180B6 (cs) * 1999-03-08 2012-05-16 Crs Holdings, Inc. Nerezavející ocel pro kritické aplikace, kalitelná precipitací a se zlepšenou obrobitelností
EP1314792A1 (fr) * 2001-11-26 2003-05-28 Usinor Acier inoxydable ferritique au soufre, utilisable pour des pieces ferromagnétiques
FR2832734A1 (fr) * 2001-11-26 2003-05-30 Usinor Acier inoxydable ferritique au soufre, utilisable pour des pieces ferromagnetiques
US6921511B2 (en) 2001-11-26 2005-07-26 Ugitech Sulphur-containing ferritic stainless steel that can be used for ferromagnetic parts
US20180274081A1 (en) * 2015-07-08 2018-09-27 Safran Aircraft Engines Part coated with a coating for protection against cmas
US10941083B2 (en) * 2015-07-08 2021-03-09 Safran Aircraft Engines Part coated with a coating for protection against CMAS

Also Published As

Publication number Publication date
DE69423930D1 (de) 2000-05-18
SG48134A1 (en) 1998-04-17
SI0629714T1 (en) 2000-08-31
DK0629714T3 (da) 2000-07-17
CA2125732C (fr) 2000-08-01
CZ141994A3 (en) 1995-08-16
CA2125732A1 (fr) 1994-12-15
IL109919A (en) 1998-02-22
NO942168D0 (no) 1994-06-10
RO115276B1 (ro) 1999-12-30
DE69423930T2 (de) 2000-08-17
RU2080410C1 (ru) 1997-05-27
UA26151C2 (uk) 1999-06-07
PL303831A1 (en) 1995-01-09
CZ292392B6 (cs) 2003-09-17
KR100338886B1 (ko) 2002-11-29
NO942168L (no) 1994-12-15
KR950000912A (ko) 1995-01-03
FI942801A0 (fi) 1994-06-13
FR2706489A1 (fr) 1994-12-23
PT629714E (pt) 2000-09-29
FR2706489B1 (fr) 1995-09-01
US5427635A (en) 1995-06-27
JPH07150308A (ja) 1995-06-13
FI106267B (fi) 2000-12-29
IL109919A0 (en) 1994-10-07
EG20378A (en) 1999-02-28
PL179128B1 (pl) 2000-07-31
FI942801A (fi) 1994-12-15
GR3033773T3 (en) 2000-10-31
TR28472A (tr) 1996-07-24
RU94020719A (ru) 1996-06-27
EP0629714B1 (fr) 2000-04-12
ES2145109T3 (es) 2000-07-01
ATE191753T1 (de) 2000-04-15
JP3398772B2 (ja) 2003-04-21
TW304985B (fr) 1997-05-11
NO303180B1 (no) 1998-06-08

Similar Documents

Publication Publication Date Title
EP0629714B1 (fr) Acier inoxydable martensitique à usinabilité améliorée
CA2612718C (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
EP1751321B1 (fr) Acier a haute resistance mecanique et a l&#39;usure
EP0787812B1 (fr) Procédé de fabrication d&#39;une pièce forgée en acier
CA2506347C (fr) Procede pour fabriquer une tole en acier resistant a l&#39;abrasion et tole obtenue
CA2161740C (fr) Acier faiblement allie pour la fabrication de moules pour matieres plastiques ou pour caoutchouc
CA2607446C (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
EP0779375B1 (fr) Acier pour la fabrication de pièces de mécanique sécables et pièce obtenue
WO2003083153A1 (fr) Bloc en acier pour la fabrication de moules d&#39;injection de matiere plastique ou pour la fabrication de pieces pour le travail des metaux
EP0685567B1 (fr) Acier inoxydable ferritique à usinabilité améliorée
FR2765890A1 (fr) Procede de fabrication d&#39;une piece mecanique en acier cementee ou carbonitruree et acier pour la fabrication de cette piece
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
EP1051531B1 (fr) Acier et procede pour la fabrication de pieces de mecanique secables
FR2516942A1 (fr)
EP0567365B1 (fr) Acier inoxydable austénitique à haute usinabilité et à déformation à froid améliorée
FR2583778A1 (fr) Acier inoxydable a haute resistance
WO2003083154A1 (fr) Bloc en acier pour la fabrication de moules pour le moulage par injection de matieres plastiques ou pour la fabrication d&#39;outils pour le travail des metaux
FR2665461A1 (fr) Aciers non affines a tenacite elevee et procede pour leur fabrication.
WO2022253912A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
BE468057A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 940609

17Q First examination report despatched

Effective date: 19970725

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UGINE-SAVOIE IMPHY

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 19940609

REF Corresponds to:

Ref document number: 191753

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69423930

Country of ref document: DE

Date of ref document: 20000518

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145109

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: UGITECH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: UGITECH

Free format text: UGINE-SAVOIE IMPHY#AVENUE PAUL GIROD#73400 UGINE (FR) -TRANSFER TO- UGITECH#AVENUE PAUL GIROD#73400 UGINE (FR)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: UGITECH; FR

Effective date: 20070308

Ref country code: PT

Ref legal event code: PD4A

Owner name: UGITECH, FR

Effective date: 20070409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100512

Year of fee payment: 17

Ref country code: AT

Payment date: 20100518

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20110527

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 191753

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120625

Year of fee payment: 19

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20130111

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20000401470

Country of ref document: GR

Effective date: 20130104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130611

Year of fee payment: 20

Ref country code: IE

Payment date: 20130527

Year of fee payment: 20

Ref country code: GB

Payment date: 20130620

Year of fee payment: 20

Ref country code: SE

Payment date: 20130617

Year of fee payment: 20

Ref country code: DK

Payment date: 20130524

Year of fee payment: 20

Ref country code: LU

Payment date: 20130523

Year of fee payment: 20

Ref country code: CH

Payment date: 20130613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130618

Year of fee payment: 20

Ref country code: FR

Payment date: 20130702

Year of fee payment: 20

Ref country code: PT

Payment date: 20130521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130626

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69423930

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20140606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20140606

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140605

BE20 Be: patent expired

Owner name: *UGITECH

Effective date: 20140606

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140607

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140617

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140607