EP0627783A1 - Radiating multi-layer structure with variable directivity - Google Patents

Radiating multi-layer structure with variable directivity Download PDF

Info

Publication number
EP0627783A1
EP0627783A1 EP94401183A EP94401183A EP0627783A1 EP 0627783 A1 EP0627783 A1 EP 0627783A1 EP 94401183 A EP94401183 A EP 94401183A EP 94401183 A EP94401183 A EP 94401183A EP 0627783 A1 EP0627783 A1 EP 0627783A1
Authority
EP
European Patent Office
Prior art keywords
radiating
elements
excitation
structure according
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94401183A
Other languages
German (de)
French (fr)
Other versions
EP0627783B1 (en
Inventor
Frederic Croq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Espace Industries SA
Alcatel Alsthom Compagnie Generale dElectricite
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel Alsthom Compagnie Generale dElectricite, Alcatel NV filed Critical Alcatel Espace Industries SA
Publication of EP0627783A1 publication Critical patent/EP0627783A1/en
Application granted granted Critical
Publication of EP0627783B1 publication Critical patent/EP0627783B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements

Definitions

  • the field of the invention is that of network antennas, and more specifically that of multi-layer and multi-element printed network antennas, the radiating elements of which are produced by the microstrip technique.
  • Such antennas are produced by etching or lithography of conductive tracks and blocks on dielectric substrates, which are generally but not exclusively planar. More elaborate configurations exist with several dielectric substrates, ground planes, resonator cavities, et cetera, some examples of which will be described in more detail below. In the case under consideration, several layers of dielectric, each of which comprises a pattern of conductive tracks and / or blocks, are stacked.
  • solutions using printed elements have the advantages of less weight and size, but nevertheless with lower performance on certain operating parameters of the antenna. In particular, it proves difficult to simultaneously obtain an acceptable bandwidth with a determined directivity, and a polarization purity compatible with telecommunications applications.
  • the printed radiating elements have directivities conventionally between 5 and 10 dBi approximately depending on the geometrical characteristics of the antenna (height of substrate, dimensions of the radiating blocks and cavities if they exist) and of the materials used (dielectric constant of substrates).
  • the invention aims to overcome these performance limitations of antennas of the prior art, and in particular aims to simultaneously provide a high gain, a very wide bandwidth, the control of the polarization purity, and the control of the template. of radiation.
  • the invention provides a radiating structure with variable directivity, this structure comprising a plurality of radiating elements and means of electromagnetic excitation of these radiating elements, characterized in that said radiating elements are distributed at the interfaces of a plurality of dielectric spacers stacked on successive levels in a multilayer radiating structure, this structure radiant multilayer being itself disposed on said excitation means.
  • said multilayer radiating structure comprises a plurality of dielectric interfaces, each dielectric interface comprising one or more radiating elements, said structure being composed so that each successive interface comprises a coupled radiating surface larger than the surface of the radiating elements of the previous level, starting from a first level containing said excitation means.
  • the radiating elements of different levels are coupled by electromagnetic coupling so as to obviate the need for a specific structure for distributing electromagnetic energy.
  • the lower level comprises a single radiating block, which will be excited by said excitation means, and which in turn will excite the radiating elements of the next level, and so on.
  • the first radiating block which is located on the first level of the multilayer structure, is supplied so as to radiate the desired polarization.
  • the polarization of this exciting radiating block will then be controlled and improved during coupling to the different radiating structures of higher levels by the use of radiating structures and elements of suitable shape.
  • the radiating elements of a higher level partially cover the radiating elements of an immediately lower level when seen in projection in the direction of stacking of the levels, and the coupling between the elements of the contiguous levels is managed by the percentage of overlap of these elements in the current zones magnetic, as well as the thickness and dielectric qualities of the separators.
  • a particular polarization can be obtained by the use of excitations by sequential rotation in coupled structure.
  • the radiating structure can be equipped with a polarizing grid.
  • FIGS. 1 and 2 we have the simplest example of a radiating element of the "patch" type according to the prior art, shown in plan and in section respectively.
  • the excitation element E is a block of conductive material, printed or etched on one face of a dielectric substrate D1. The other face of this dielectric is covered with a conductive layer M which forms a ground plane.
  • the exciter patch E is supplied via coaxial connectors C, but one can imagine any other supply technology instead, for example: triplate, microstrip, slot coupling, and so on.
  • FIGS. 1 to 12 are shown on flat substrates, however, the invention, as well as the devices of the prior art, can be adapted on shaped surfaces, and the examples given are not not intended to be limiting in this regard.
  • FIGS. 3 and 4 we have a second example of a printed radiating element of the prior art, comprising a first excitation patch element E disposed on a first dielectric substrate D1 conforming to the geometry common to FIGS. 1 and 2 , as well as a second resonator patch element R placed on a second dielectric substrate D2 placed in front of the first excitation element E (in the direction of the radiation).
  • these substrates are contiguous in practical embodiments, and they are most often made of the same dielectric material.
  • the height H2 of the second dielectric substrate D2 is greater than the height H1 of the dielectric substrate D1, to form a resonant cavity between the excitation patch E and the patch resonator R at the operating frequency.
  • This configuration makes it possible to manage the coupling between elements, and by the same, the bandwidth of the device.
  • the diameter of the resonator patch R is less than the diameter of the exciter patch E.
  • a resonator patch R is placed on a second dielectric substrate D2, placed on the first substrate D1.
  • the diameter of the resonator patch R is less than the diameter of the exciter patch E.
  • the simple patch R is completed by a plurality of radiating elements (R1 ... R6, ...) distributed on an insulating surface (D2) stacked on said excitation means (C, E, M, D1) in a multilayer structure.
  • the secondary resonator patches (R1 ... R6) are arranged around the central resonator patch R, to form a multi-element resonator so as to cover the exciter patch E in a current area of the latter, that is to say say on its periphery.
  • the second insulating surface D2 thus comprises a total surface of resonator patch elements (R1, ... R6, R) clearly greater than the surface of the excitation patch E alone, or of the resonator patch R of FIG. 3.
  • the effective opening of the antenna is increased in proportion, allowing a gain in directivity.
  • FIGS. 7 and 8 we see in plan and in section respectively an example of another embodiment of a radiating element, in which a polarization grid is formed by a particular geometry of the patch resonator elements (P1, ... P12) arranged in a star on the surface of a dielectric substrate D2 of height H2.
  • the arrangement of Figure 7 is particularly suitable for radiation in circular polarization.
  • the excitation means (C) of the exciter patch E are supplied so as to excite a circular polarization at the level of this first patch E, which in turn excites the multi-element resonator (P1 ... P12) by electromagnetic coupling.
  • the magnetic currents on the periphery of the exciter element E excite currents in the elements P1 to P12.
  • a pair of collinear elements (P1, P7 for example) will be preferentially excited at a given time, depending on the orientation of the electric field at that time, with an excitation of lower amplitude on the neighboring pairs (P12, P6; P2, P8) and zero excitation of the orthogonal pair (P4, P10 for example).
  • a pair of excited dipoles with a 180 ° phase shift (phase opposition) compensates for the 180 ° spatial phase shift between these elements. This allows a summation of the co-polar component and a difference of the counter-polar component.
  • the desired polarization is controlled and reinforced by the multi-element resonator (P1, ... P12), which gives a very high purity of polarization at the same time as an increased directivity, thanks to a larger radiating opening. , as well as an optimized yield.
  • FIGS. 9 and 10 we see in plan and in section respectively an example of an embodiment of a radiating structure printed according to the invention, in which there are two upper levels each comprising a dielectric substrate (D2; D3) on which a resonator multi-elements (R1, ... R6; R21, ... R26) is deposited by lithography or by engraving.
  • D2 dielectric substrate
  • R1 resonator multi-elements
  • a first excitation patch E on the upper face of a first dielectric substrate D1 having a ground plane M on its opposite face is excited by excitation means which include, in this example, connectors coaxial C.
  • the excitation of the element E generates magnetic currents on its periphery, which, by electromagnetic coupling, in turn excite currents in the resonator elements R1, ... R6 of the neighboring level.
  • the coupling between the elements of a level results from the geometry of the different patches, and the relative geometry of their arrangement, as described in French application n ° 93 03502 in the name of the Applicant.
  • the coupling between the elements of different levels will depend on the overlap of the elements of neighboring levels (as it appears on figure 9), and on the dielectric height (H1, H2) which separates the elements, as well as on the dielectric constant of each substrate (D1, D2, D3, ).
  • FIGS. 11 and 12 we see in section and in plan respectively an example of an embodiment according to the invention, which comprises a plurality of levels (D2, D3) each comprising a multiplicity of radiating elements (R1, .. .R6; P1, ... P1 respectively).
  • the embodiment of Figures 11 and 12 includes the features of Figures 7.8 and 9.10.
  • the elements P1, ... P6 have a particular shape and arrangement, those of a polarization grid, to improve and control the polarization emitted as in FIGS. 7 and 8.
  • the lower level of the radiating structure disposed on a dielectric substrate D1, comprises the excitation means (not shown) of an excitation patch E as well as a ground plane (M); the plurality of substrates stacked on top (D2, D3) comprises multi-element resonators whose area of grip on each substrate increases according to the position of the substrate in the structure, according to the normal direction of radiation of the antenna.
  • the geometry of the patches and their relative arrangement, as well as the relative heights H1 / H2 / H3 of the dielectric substrates are important parameters which make it possible to obtain a variable directivity and a desired frequency response, according to rules within the reach of the skilled in the art.
  • the dielectric constant is a coupling control parameter and therefore affects all the performance of the antenna.
  • the dielectric constants of the different levels can all be identical, or on the contrary, chosen to reduce the thickness of dielectric between two patches located on adjoining levels.
  • the examples of the preceding figures are based on simple geometries in each level of multi-element resonators, and on three levels of planar substrates.
  • the invention can be used on curved or shaped substrates, with geometries of patches and their relative arrangement more or less complicated, depending on the design of the radiating element for a given mission.
  • the invention can also use four or even five or more substrates for the development of a radiating structure with an even wider radiating opening.
  • the total thickness of the structure should preferably remain relatively modest, in order to meet the needs of the targeted fields of application, in particular space.
  • the results of the measurements carried out on the structure of FIGS. 11 and 12 are given by the curves plotted in FIG. 13 and summarized in the following table.
  • the different curves represent the directivity for the different azimuth angles, that is to say the amplitude measured, relative to an isotropic antenna (in dB / ISO), as a function of the angle d elevation which is given on the abscissa.
  • the levels in cross polarization according to the elevation are plotted in dotted lines.
  • the secondary lobes are absent from these curves because they are smaller than the scale of these graphics.
  • the radiating structure according to the invention provides significant advantages in terms of the design and construction of the antennas, in particular by eliminating the need for complex distribution structures between the members of 'a sub-network of radiating elements.
  • the radiating elements are powered only by the electromagnetic coupling, and it is the parameters of this coupling which determines the law of illumination.
  • the directivity can thus take intermediate values between the discrete values obtained by conventional distribution techniques.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The antenna of the invention comprises radiating sources having a multi-layer dielectric/conductor structure and a multiplicity of coupled elements distributed over the interfaces between the successive dielectric layers, fed by a single radiating block situated on the lower level of the antenna. The geometric parameters of the conducting patches and of their distributions on successive layers confer great flexibility in the antenna design, especially as far as the simultaneous optimisation of antenna parameters are concerned, such as: directivity, pass band, efficiency (by minimising distribution loses), the purity of the polarisation, and the symmetry of the radiating diagram. These advantages of the invention stem principally from the possibility for increasing the radiating aperture of a source without increasing the complexity of the passive distributors for distributing the radiated signals. This is achieved by the coupling of the elements between levels, and by the production of a geometry which makes it possible to increase the equivalent radiating surface at each successive level. <IMAGE>

Description

Le domaine de l'invention est celui des antennes réseau, et plus spécifiquement celui des antennes réseau imprimées multicouches et multi-éléments, dont les éléments rayonnants sont réalisés par la technique microruban. De telles antennes sont réalisées par gravure ou lithographie de pistes et de pavés conducteurs sur des substrats diélectriques, qui sont généralement mais non-exclusivement plans. Des configurations plus élaborées existent ayant plusieurs substrats diélectriques, plans de masse, cavités résonateurs, et cetera, dont quelques exemples seront décrits plus en détail ci-après. Dans le cas considéré, plusieurs couches de diélectrique, dont chacune comporte un motif de pistes et/ou pavés conducteurs, sont empilées.The field of the invention is that of network antennas, and more specifically that of multi-layer and multi-element printed network antennas, the radiating elements of which are produced by the microstrip technique. Such antennas are produced by etching or lithography of conductive tracks and blocks on dielectric substrates, which are generally but not exclusively planar. More elaborate configurations exist with several dielectric substrates, ground planes, resonator cavities, et cetera, some examples of which will be described in more detail below. In the case under consideration, several layers of dielectric, each of which comprises a pattern of conductive tracks and / or blocks, are stacked.

Ces antennes planes ou de faibles épaisseurs sont largement utilisées sous de nombreuses formes depuis une quinzaine d'années. Elles se sont mêmes largement imposées dans bon nombre de domaines, eu égard à leurs qualités intrinsèques: masse, volume, coût de réalisation faibles.These flat or thin antennas have been widely used in many forms for the past fifteen years. They have even imposed themselves widely in a number of areas, given their intrinsic qualities: mass, volume, low cost of production.

Il est largement connu de l'homme de l'art que les réalisations les plus simples d'éléments rayonnants, à savoir la piste microruban gravée sur un substrat, souffrent de limitations fondamentales radioélectriques, et en particulier au niveau de la bande passante, de la directivité et de la qualité de rayonnement. Ce dernier présente, d'une part, des asymétries importantes pour un élément fonctionnant en polarisation linéaire selon les différents plans de coupes, et d'autre part, des niveaux de polarisation croisée bien souvent incompatibles avec les spécifications de missions spatiales.It is widely known to those skilled in the art that the simplest embodiments of radiating elements, namely the microstrip track etched on a substrate, suffer from fundamental radioelectric limitations, and in particular in terms of bandwidth, the directivity and the quality of radiation. The latter presents, on the one hand, significant asymmetries for an element operating in linear polarization according to the different section planes, and on the other hand, crossed polarization levels very often incompatible with the specifications of space missions.

Il est connu, par la demande de brevet français n° 93 03502 au nom de la Demanderesse, un système multi-éléments qui permet d'accroître la directivité d'une antenne imprimée en utilisant un sous-réseau composé d'une multiplicité d'éléments couplés électromagnétiquement entre eux, et distribués sur une surface plane ou conformée.It is known from French patent application No. 93 03502 in the name of the Applicant, a multi-element system which makes it possible to increase the directivity of a printed antenna by using a sub-network composed of a multiplicity of elements electromagnetically coupled together, and distributed on a flat or shaped surface.

Il est également connu par la demande française n° 89 111829 du 11.09.1989 au nom de la Demanderesse, d'utiliser des cavités métalliques pour accroître la bande passante d'un élément rayonnant imprimé. Cette configuration permet aussi un contrôle du rayonnement et du couplage inter-élément dans un réseau créé de tels éléments.It is also known from French application n ° 89 111829 of 11.09.1989 in the name of the Applicant, to use metal cavities to increase the bandwidth of a printed radiating element. This configuration also allows control of radiation and inter-element coupling in a network created of such elements.

Par rapport à des solutions classiques telles les cornets ou les dipôles, les solutions utilisant les éléments imprimés ont les avantages de poids et d'encombrement moindres, mais cependant avec des performances moindres sur certains paramètres de fonctionnement de l'antenne. Notamment, il s'avère difficile d'obtenir simultanément une bande passante acceptable avec une directivité déterminée, et une pureté de polarisation compatible avec des applications télécommunications.Compared to conventional solutions such as horns or dipoles, solutions using printed elements have the advantages of less weight and size, but nevertheless with lower performance on certain operating parameters of the antenna. In particular, it proves difficult to simultaneously obtain an acceptable bandwidth with a determined directivity, and a polarization purity compatible with telecommunications applications.

En effet, à ce jour les éléments rayonnants imprimés présentent des directivités classiquement comprises entre 5 et 10 dBi environ en fonction des caractéristiques géométriques de l'antenne (hauteur de substrat, dimensions des pavés rayonnants et des cavités si elles existent) et des matériaux utilisés (constante diélectrique des substrats).Indeed, to date the printed radiating elements have directivities conventionally between 5 and 10 dBi approximately depending on the geometrical characteristics of the antenna (height of substrate, dimensions of the radiating blocks and cavities if they exist) and of the materials used (dielectric constant of substrates).

Ces valeurs de directivité sont d'ailleurs intrinsèquement liées aux dimensions résonantes (de l'ordre de la demi-longueur d'onde guidée) de ce type d'éléments rayonnants qui limitent leurs surfaces rayonnantes et par conséquent le maximum de directivité accessible.These directivity values are moreover intrinsically linked to the resonant dimensions (of the order of the guided half-wavelength) of this type of radiating elements which limit their radiating surfaces and therefore the maximum directivity available.

La solution classique pour obtenir plus de directivité d'une antenne imprimée est la mise en réseau d'éléments rayonnants. Ceci conduit généralement à concevoir un réseau d'alimentation destiné à générer la loi d'alimentation nécessaire à la formation du gabarit de rayonnement désiré. Ces systèmes d'alimentation sont en particulier nécessaires pour apodiser la loi d'illumination de l'ouverture rayonnante, permettant ainsi d'éviter l'apparition de lobes secondaires, souvent indésirables dans les systèmes d'antennes de télécommunications ou de radar.The classic solution for obtaining more directivity from a printed antenna is the networking of radiating elements. This generally leads to the design of a supply network intended to generate the supply law necessary for the formation of the desired radiation template. These feeding systems are in particular necessary for apodiser the law of illumination of the radiating opening, thus making it possible to avoid the appearance of lobes secondary, often undesirable in telecommunications or radar antenna systems.

La conception de tels systèmes d'alimentation présente un certain nombre de problèmes, décrits plus en détail dans la demande française n° 93 03502. Parmi ces problèmes on peut citer brièvement :

  • 1) la complexité d'un tel système croît avec le nombre d'éléments à alimenter ; la complexité est encore plus grande dans le cas d'une antenne fonctionnant avec la polarisation circulaire.
  • 2) la discontinuité ou la discrétisation de l'apodisation, due à l'échantillonnage de la surface rayonnante par les éléments rayonnants élémentaires discrets.
  • 3) le couplage entre les éléments est difficilement pris en compte, et il est vu en général comme un phénomène tendant à dégrader les performances de l'antenne.
  • 4) la connectique est complexe, tendant à diminuer la fiabilité de l'antenne.
  • 5) les pertes dans le répartiteur d'énergie peuvent être importantes, ce qui grève l'utilisation d'une telle solution pour les fréquences très élevées ou pour des antennes passives ayant plusieurs dizaines d'éléments, les pertes résistives étant trop pénalisantes dans ces cas.
The design of such supply systems presents a certain number of problems, described in more detail in French application No. 93 03502. Among these problems, we can briefly mention:
  • 1) the complexity of such a system increases with the number of elements to be supplied; the complexity is even greater in the case of an antenna operating with circular polarization.
  • 2) the discontinuity or the discretization of the apodization, due to the sampling of the radiating surface by the discrete elementary radiating elements.
  • 3) the coupling between the elements is hardly taken into account, and it is generally seen as a phenomenon tending to degrade the performance of the antenna.
  • 4) the connection is complex, tending to reduce the reliability of the antenna.
  • 5) the losses in the energy distributor can be significant, which strikes the use of such a solution for very high frequencies or for passive antennas having several tens of elements, the resistive losses being too penalizing in these case.

Ces problèmes sont connus de l'homme de l'art et ont fait l'objet de nombreuses tentatives d'améliorations et de nombreuses publications, dont une synthèse est donnée dans le "Handbook of Microstrip Antennas", de JAMES, J.R. ; HALL, P.S ; et WOOD, C., publiée dans IEE Electromagnetic Waves séries, N°12, Edité par : P. Périgrinus Ltd, Stevenage, U.K. Cette publication fait partie intégrante de la présente demande pour sa description de l'art antérieur.These problems are known to those skilled in the art and have been the subject of numerous attempts at improvement and of numerous publications, a synthesis of which is given in the "Handbook of Microstrip Antennas", by JAMES, J.R.; HALL, P.S; and WOOD, C., published in IEE Electromagnetic Waves series, N ° 12, Published by: P. Périgrinus Ltd, Stevenage, U.K. This publication is an integral part of this request for its description of the prior art.

Cependant, les solutions proposées dans l'art antérieur impliquent des compromis, car on trouve que d'autres performances d'antenne se trouvent limitées en contrepartie des améliorations de la directivité. Par exemple, l'article de R.Q. LEE, R. ACOSTA, et K.F. LEE : "Radiation characteristics of microstrip arrays with parasitic elements" paru dans Electronics Letters Vol. 23, pp. 835-837, (1987) décrit un dispositif qui donne 11 dBi de directivité, mais avec une bande passante inférieure à 1 % , une hauteur totale de substrat très élevée de l'ordre de 0,4 λ, et tout ceci sans contrôle de la polarisation ni de la symétrie du diagramme de rayonnement.However, the solutions proposed in the prior art involve compromises, since it is found that other antenna performances are limited in return for improvements in directivity. For example, the article by RQ LEE, R. ACOSTA, and KF LEE: "Radiation characteristics of microstrip arrays with parasitic elements" published in Electronics Letters Vol. 23, pp. 835-837, (1987) describes a device which gives 11 dBi of directivity, but with a bandwidth of less than 1%, a very high total height of the substrate of the order of 0.4 λ, and all this without control of neither the polarization nor the symmetry of the radiation diagram.

Deux autres solutions proposent l'agrandissement de la surface rayonnante pour améliorer la directivité, soit en couplant des éléments rayonnants dans le même plan que le pavé excitateur, soit en fragmentant le pavé résonant supérieur dans le cas d'une structure à deux pavés superposés. La première solution est décrite par R.Q. LEE et K.F. LEE dans "Experimental study of the two layer electromagnetically coupled rectangular patch antenna:, IEEE Transactions Antennas and Propagation, (1990), Vol. AP-38 no. 8, pp. 1298 - 1302 ; la deuxième solution est décrite dans la demande de brevet français n° 93 03502.Two other solutions propose enlarging the radiating surface to improve the directivity, either by coupling radiating elements in the same plane as the exciter paver, or by fragmenting the upper resonant paver in the case of a structure with two superimposed pavers. The first solution is described by R.Q. LEE and K.F. LEE in "Experimental study of the two layer electromagnetically coupled rectangular patch antenna :, IEEE Transactions Antennas and Propagation, (1990), Vol. AP-38 no. 8, pp. 1298 - 1302; the second solution is described in the request for French patent n ° 93 03502.

Les améliorations de directivité présentées par ces solutions connues restent toutefois modestes en raison d'un couplage insuffisant dans le premier cas cité, et en raison d'une surface rayonnante encore insuffisante pour la deuxième solution.The improvements in directivity presented by these known solutions however remain modest due to an insufficient coupling in the first case cited, and due to a still insufficient radiating surface for the second solution.

L'invention a pour but de pallier ces limitations de performances des antennes de l'art antérieur, et en particulier vise à procurer simultanément un gain élevé, une bande passante très large, le contrôle de la pureté de polarisation, et le contrôle de gabarit de rayonnement.The invention aims to overcome these performance limitations of antennas of the prior art, and in particular aims to simultaneously provide a high gain, a very wide bandwidth, the control of the polarization purity, and the control of the template. of radiation.

A ces fins, l'invention propose une structure rayonnante à directivité variable, cette structure comprenant une pluralité d'éléments rayonnants et des moyens d'excitation électromagnétique de ces éléments rayonnants, caractérisée en ce que lesdits éléments rayonnants sont distribués aux interfaces d'une pluralité d'espaceurs diélectriques empilées sur des niveaux successifs dans une structure rayonnante multicouches, cette structure rayonnante multicouches étant elle-même disposée sur lesdits moyens d'excitation.For these purposes, the invention provides a radiating structure with variable directivity, this structure comprising a plurality of radiating elements and means of electromagnetic excitation of these radiating elements, characterized in that said radiating elements are distributed at the interfaces of a plurality of dielectric spacers stacked on successive levels in a multilayer radiating structure, this structure radiant multilayer being itself disposed on said excitation means.

Selon une réalisation avantageuse, ladite structure rayonnante multicouches comprend une pluralité d'interfaces diélectriques, chaque interface diélectrique comportant un ou plusieurs éléments rayonnants, ladite structure étant composée de façon à ce que chaque interface successive comporte une surface rayonnante couplée plus grande que la surface des éléments rayonnants du niveau précédent, en partant d'un premier niveau contenant lesdits moyens d'excitation.According to an advantageous embodiment, said multilayer radiating structure comprises a plurality of dielectric interfaces, each dielectric interface comprising one or more radiating elements, said structure being composed so that each successive interface comprises a coupled radiating surface larger than the surface of the radiating elements of the previous level, starting from a first level containing said excitation means.

Selon une variante particulièrement avantageuse, les éléments rayonnants de niveaux différents sont couplés par un couplage électromagnétique de manière à obvier le besoin d'une structure spécifique de répartition de l'énergie électromagnétique.According to a particularly advantageous variant, the radiating elements of different levels are coupled by electromagnetic coupling so as to obviate the need for a specific structure for distributing electromagnetic energy.

Selon une réalisation préférée, le niveau inférieur comporte un seul pavé rayonnant, qui sera excité par lesdits moyens d'excitation, et qui excitera à son tour les éléments rayonnants du prochain niveau, et ainsi de suite.According to a preferred embodiment, the lower level comprises a single radiating block, which will be excited by said excitation means, and which in turn will excite the radiating elements of the next level, and so on.

Selon une autre caractéristique, le premier pavé rayonnant, qui se trouve sur le premier niveau de la structure multicouches, est alimenté de façon à rayonner la polarisation désirée. La polarisation de ce pavé rayonnant excitateur sera ensuite contrôlée et améliorée lors du couplage aux différentes structures rayonnantes de niveaux supérieurs par l'utilisation de structures et d'éléments rayonnants de forme adaptée.According to another characteristic, the first radiating block, which is located on the first level of the multilayer structure, is supplied so as to radiate the desired polarization. The polarization of this exciting radiating block will then be controlled and improved during coupling to the different radiating structures of higher levels by the use of radiating structures and elements of suitable shape.

Selon une autre caractéristique préférentielle, les éléments rayonnants d'un niveau supérieur recouvrent partiellement les éléments rayonnants d'un niveau immédiatement inférieur quand vu en projection selon la direction d'empilement des niveaux, et le couplage entre les éléments des niveaux contigus est géré par le pourcentage de recouvrement de ces éléments dans les zones de courants magnétiques, ainsi que par l'épaisseur et les qualités diélectriques des séparateurs.According to another preferred characteristic, the radiating elements of a higher level partially cover the radiating elements of an immediately lower level when seen in projection in the direction of stacking of the levels, and the coupling between the elements of the contiguous levels is managed by the percentage of overlap of these elements in the current zones magnetic, as well as the thickness and dielectric qualities of the separators.

Selon une réalisation préférentielle, une polarisation particulière peut être obtenue par l'utilisation d'excitations par rotation séquentielle en structure couplée. Selon une variante, la structure rayonnante peut être équipée d'une grille polarisante.According to a preferred embodiment, a particular polarization can be obtained by the use of excitations by sequential rotation in coupled structure. According to a variant, the radiating structure can be equipped with a polarizing grid.

Les principes de l'invention, ainsi que quelques réalisations et les avantages acquis par l'utilisation de l'invention seront compris plus en détail par la description qui suit, ainsi que ses dessins annexés, dont :

  • la figure 1 montre schématiquement et en plan un élément rayonnant imprimé de l'art antérieur, comprenant un premier élément d'excitation E qui consiste en un pavé conducteur (connu de l'homme de l'art par son nom anglais "patch") disposé sur une face d'un substrat diélectrique D1 plan ou conformé ;
  • la figure 2 montre schématiquement et en coupe l'élément rayonnant imprimé de l'art antérieur selon la figure 1 ;
  • la figure 3 montre schématiquement et en vue de dessus, un élément rayonnant imprimé de l'art antérieur, comprenant un premier élément "patch" d'excitation E conforme à la géométrie commune aux figures 1 et 2, ainsi qu'un second élément patch résonateur R disposé devant le premier élément d'excitation E (dans le sens du rayonnement) sur un deuxième substrat diélectrique D2 ;
  • la figure 4 montre schématiquement et en coupe l'exemple d'un élément rayonnant selon la figure 3 ;
  • la figure 5 montre schématiquement et en vue de dessus un exemple d'une structure rayonnante imprimée selon l'art antérieur, dont le deuxième élément résonateur à une structure multi-éléments ;
  • la figure 6 montre schématiquement et en coupe l'exemple d'une structure rayonnante imprimée selon la figure 5 ;
  • la figure 7 montre schématiquement et en plan un autre exemple d'une structure rayonnante imprimée, qui consiste en un premier patch excitateur E sur un premier niveau inférieur, et une grille de polarisation formée d'une multiplicité de patches disposés sur un deuxième niveau de diélectrique D2 selon une géométrie particulière;
  • la figure 8 montre schématiquement et en coupe l'exemple d'une structure rayonnante imprimée selon la figure 7 ;
  • la figure 9 montre schématiquement et en plan un exemple d'une structure rayonnante imprimée selon l'invention, qui consiste en un premier patch excitateur E sur un premier substrat diélectrique D1, et un deuxième élément résonateur ayant une structure multi-éléments (R1...R6) disposée sur un deuxième substrat diélectrique D2, et un troisième élément résonateur multi-éléments (R21, R22, ... R26) disposé sur un troisième substrat diélectrique D3, qui est superposé à une configuration comme celle de la figure 5 ;
  • la figure 10 montre schématiquement et en coupe l'exemple d'une structure rayonnante imprimée selon la figure 9 ;
  • la figure 11 montre schématiquement et en vue de dessus un autre exemple d'une structure rayonnante imprimée selon l'invention, dont le deuxième élément résonateur à une structure multi-éléments, et dont un troisième élément résonateur multi-éléments, superposé à la configuration de la figure 5, à la forme et la fonction d'une grille de polarisation ;
  • la figure 12 montre schématiquement et en coupe l'exemple d'une structure rayonnante imprimée selon la figure 11 ;
  • la figure 13 montre les résultats de mesures effectuées sur la structure rayonnante montrée dans les figures 11 et 12.
The principles of the invention, as well as some embodiments and the advantages acquired by the use of the invention will be understood in more detail by the description which follows, as well as its attached drawings, including:
  • Figure 1 shows schematically and in plan a radiating element printed from the prior art, comprising a first excitation element E which consists of a conductive pad (known to those skilled in the art by its English name "patch") disposed on one face of a dielectric substrate D1 plane or shaped;
  • Figure 2 shows schematically and in section the radiating element printed from the prior art according to Figure 1;
  • Figure 3 shows schematically and in top view, a printed radiating element of the prior art, comprising a first "patch" excitation element E conforming to the geometry common to FIGS. 1 and 2, as well as a second patch element resonator R placed in front of the first excitation element E (in the direction of the radiation) on a second dielectric substrate D2;
  • Figure 4 shows schematically and in section the example of a radiating element according to Figure 3;
  • FIG. 5 schematically shows a top view of an example of a radiating structure printed according to the prior art, the second resonator element of which has a multi-element structure;
  • Figure 6 shows schematically and in section the example of a radiating structure printed according to Figure 5;
  • Figure 7 shows schematically and in plan another example of a printed radiating structure, which consists of a first excitation patch E on a first lower level, and a polarization grid formed of a multiplicity of patches arranged on a second level of dielectric D2 according to a particular geometry;
  • Figure 8 shows schematically and in section the example of a radiating structure printed according to Figure 7;
  • FIG. 9 shows schematically and in plan an example of a radiating structure printed according to the invention, which consists of a first excitation patch E on a first dielectric substrate D1, and a second resonator element having a multi-element structure (R1. ..R6) disposed on a second dielectric substrate D2, and a third multi-element resonator element (R21, R22, ... R26) disposed on a third dielectric substrate D3, which is superimposed on a configuration like that of FIG. 5 ;
  • Figure 10 shows schematically and in section the example of a radiating structure printed according to Figure 9;
  • Figure 11 shows schematically and in top view another example of a radiating structure printed according to the invention, of which the second resonator element has a multi-element structure, and of which a third multi-element resonator element, superimposed on the configuration of Figure 5, the shape and function of a polarization grid;
  • Figure 12 shows schematically and in section the example of a radiating structure printed according to Figure 11;
  • FIG. 13 shows the results of measurements carried out on the radiating structure shown in FIGS. 11 and 12.

Sur toutes les figures, les mêmes repères se réfèrent aux mêmes éléments, dont la description ne sera pas répétée chaque fois pour chaque figure.In all the figures, the same references refer to the same elements, the description of which will not be repeated each time for each figure.

Sur les figures 1 et 2, nous avons l'exemple le plus simple d'un élément rayonnant du type "patch" selon l'art antérieur, montré en plan et en coupe respectivement. L'élément excitateur E est un pavé de matériau conducteur, imprimé ou gravé sur une face d'un substrat diélectrique D1. L'autre face de ce diélectrique est recouvert d'une couche conductrice M qui fait plan de masse. Dans le présent exemple, le patch excitateur E est alimenté via des connecteurs coaxiaux C, mais on peut imaginer toute autre technologie d'alimentation à la place, par exemple : triplaque, microruban, couplage par fente, et cetera.In FIGS. 1 and 2, we have the simplest example of a radiating element of the "patch" type according to the prior art, shown in plan and in section respectively. The excitation element E is a block of conductive material, printed or etched on one face of a dielectric substrate D1. The other face of this dielectric is covered with a conductive layer M which forms a ground plane. In the present example, the exciter patch E is supplied via coaxial connectors C, but one can imagine any other supply technology instead, for example: triplate, microstrip, slot coupling, and so on.

Il faut mentionner ici que tous les exemples dans les figures 1 à 12 sont montrés sur des substrats plans néanmoins, l'invention, ainsi que les dispositifs de l'art antérieur, peuvent être adaptés sur des surfaces conformées, et les exemples donnés ne sont pas voulus limitatifs à cet égard.It should be mentioned here that all the examples in FIGS. 1 to 12 are shown on flat substrates, however, the invention, as well as the devices of the prior art, can be adapted on shaped surfaces, and the examples given are not not intended to be limiting in this regard.

Sur les figures 3 et 4, nous avons un deuxième exemple d'un élément rayonnant imprimé de l'art antérieur, comprenant un premier élément patch d'excitation E disposé sur un premier substrat diélectrique D1 conforme à la géométrie commune aux figures 1 et 2, ainsi qu'un second élément patch résonateur R disposé sur un deuxième substrat diélectrique D2 placé devant le premier élément d'excitation E (dans le sens du rayonnement). Pour des raisons de facilité de fabrication et de stabilité mécanique, ces substrats sont contigus dans les réalisations pratiques, et ils sont le plus souvent réalisés d'un même matériau diélectrique.In FIGS. 3 and 4, we have a second example of a printed radiating element of the prior art, comprising a first excitation patch element E disposed on a first dielectric substrate D1 conforming to the geometry common to FIGS. 1 and 2 , as well as a second resonator patch element R placed on a second dielectric substrate D2 placed in front of the first excitation element E (in the direction of the radiation). For reasons of ease of manufacture and mechanical stability, these substrates are contiguous in practical embodiments, and they are most often made of the same dielectric material.

Dans l'exemple des figures 3 et 4, la hauteur H2 du deuxième substrat diélectrique D2 est plus grande que la hauteur H1 du substrat diélectrique D1, pour former une cavité résonante entre le patch excitateur E et le patch résonateur R à la fréquence de fonctionnement. Cette configuration permet de gérer le couplage entre éléments, et par la même, la bande passante du dispositif. Le diamètre du patch résonateur R est inférieur au diamètre du patch excitateur E. Ces paramètres peuvent être manipulés pour optimiser le gain et la directivité, ou la bande passante de l'élément simple.In the example of FIGS. 3 and 4, the height H2 of the second dielectric substrate D2 is greater than the height H1 of the dielectric substrate D1, to form a resonant cavity between the excitation patch E and the patch resonator R at the operating frequency. This configuration makes it possible to manage the coupling between elements, and by the same, the bandwidth of the device. The diameter of the resonator patch R is less than the diameter of the exciter patch E. These parameters can be manipulated to optimize the gain and directivity, or the bandwidth of the single element.

Dans l'exemple des figures 5 et 6, nous voyons une autre réalisation simple d'une structure rayonnante selon l'art antérieur. Comme dans l'exemple selon les figures 3 et 4, nous avons un patch excitateur E sur une face d'un premier substrat diélectrique D1, dont l'autre face porte une couche conductrice M qui fait plan de masse.In the example of Figures 5 and 6, we see another simple embodiment of a radiating structure according to the prior art. As in the example according to FIGS. 3 and 4, we have an exciter patch E on one side of a first dielectric substrate D1, the other side of which carries a conductive layer M which forms a ground plane.

Comme dans les figures précédentes, un patch résonateur R est disposé sur un deuxième substrat diélectrique D2, placé sur le premier substrat D1. Le diamètre du patch résonateur R est inférieur au diamètre du patch excitateur E. Selon l'exemple des figures 5 et 6, le patch simple R est complété par une pluralité d'éléments rayonnants (R1...R6,...) distribués sur une surface isolante (D2) empilée sur lesdits moyens d'excitation (C,E,M,D1) dans une structure multicouches. Les patches résonateurs secondaires (R1...R6) sont disposés autour du patch résonateur central R, pour former un résonateur multi-éléments de manière à recouvrir le patch excitateur E dans une zone de courants de ce dernier, c'est-à-dire sur sa périphérie.As in the previous figures, a resonator patch R is placed on a second dielectric substrate D2, placed on the first substrate D1. The diameter of the resonator patch R is less than the diameter of the exciter patch E. According to the example of FIGS. 5 and 6, the simple patch R is completed by a plurality of radiating elements (R1 ... R6, ...) distributed on an insulating surface (D2) stacked on said excitation means (C, E, M, D1) in a multilayer structure. The secondary resonator patches (R1 ... R6) are arranged around the central resonator patch R, to form a multi-element resonator so as to cover the exciter patch E in a current area of the latter, that is to say say on its periphery.

La deuxième surface isolante D2 comporte ainsi une surface totale d'éléments patch résonateurs (R1,...R6, R) nettement supérieure à la surface du patch excitateur E seul, ou du patch résonateur R de la figure 3. L'ouverture effective de l'antenne est augmentée en proportion, permettant un gain en directivité. Un exemple de dispositif selon ce principe est décrit plus en détail dans la demande française n° 93 03502.The second insulating surface D2 thus comprises a total surface of resonator patch elements (R1, ... R6, R) clearly greater than the surface of the excitation patch E alone, or of the resonator patch R of FIG. 3. The effective opening of the antenna is increased in proportion, allowing a gain in directivity. An example of a device according to this principle is described in more detail in French application No. 93 03502.

Sur les figures 7 et 8, nous voyons en plan et en coupe respectivement un exemple d'une autre réalisation d'un élément rayonnant, dans lequel une grille de polarisation est formée par une géométrie particulière des éléments patch résonateurs (P1,...P12) disposés en étoile sur la surface d'un substrat diélectrique D2 de hauteur H2.In FIGS. 7 and 8, we see in plan and in section respectively an example of another embodiment of a radiating element, in which a polarization grid is formed by a particular geometry of the patch resonator elements (P1, ... P12) arranged in a star on the surface of a dielectric substrate D2 of height H2.

La disposition de la figure 7 est particulièrement adaptée pour le rayonnement en polarisation circulaire. Les moyens d'excitation (C) du patch excitateur E sont alimentés de manière à exciter une polarisation circulaire au niveau de ce premier patch E, qui excite à son tour le résonateur multi-éléments (P1...P12) par couplage électromagnétique. Les courants magnétiques sur la périphérie de l'élément excitateur E excite des courants dans les éléments P1 à P12. Parce que la polarisation circulaire génère un vecteur de champ électrique tournant, une paire d'éléments colinéaires (P1, P7 par exemple) sera excité préférentiellement à un moment donné, selon l'orientation du champ électrique à ce moment là, avec une excitation de moindre amplitude sur les paires avoisinantes (P12,P6; P2,P8) et une excitation nulle de la paire orthogonale (P4,P10 par exemple). Une paire de dipôles excités avec un déphasage de 180° (opposition de phase) permet de compenser le déphasage spatial de 180° entre ces éléments. Ceci permet une sommation de la composante copolaire et une différence de la composante contre-polaire.The arrangement of Figure 7 is particularly suitable for radiation in circular polarization. The excitation means (C) of the exciter patch E are supplied so as to excite a circular polarization at the level of this first patch E, which in turn excites the multi-element resonator (P1 ... P12) by electromagnetic coupling. The magnetic currents on the periphery of the exciter element E excite currents in the elements P1 to P12. Because circular polarization generates a rotating electric field vector, a pair of collinear elements (P1, P7 for example) will be preferentially excited at a given time, depending on the orientation of the electric field at that time, with an excitation of lower amplitude on the neighboring pairs (P12, P6; P2, P8) and zero excitation of the orthogonal pair (P4, P10 for example). A pair of excited dipoles with a 180 ° phase shift (phase opposition) compensates for the 180 ° spatial phase shift between these elements. This allows a summation of the co-polar component and a difference of the counter-polar component.

De cette manière, la polarisation voulue est contrôlée et renforcée par le résonateur multi-éléments (P1,...P12), qui donne une très grande pureté de polarisation en même temps qu'une directivité accrue, grâce à une plus grande ouverture rayonnante, ainsi qu'un rendement optimisé.In this way, the desired polarization is controlled and reinforced by the multi-element resonator (P1, ... P12), which gives a very high purity of polarization at the same time as an increased directivity, thanks to a larger radiating opening. , as well as an optimized yield.

Sur les figures 9 et 10, nous voyons en plan et en coupe respectivement un exemple d'une réalisation d'une structure rayonnante imprimée selon l'invention, dans laquelle il y a deux niveaux supérieurs chacun comprenant un substrat diélectrique (D2; D3) sur lesquels un résonateur multi-éléments (R1,...R6; R21,...R26) est déposé par lithographie ou par gravure.In FIGS. 9 and 10, we see in plan and in section respectively an example of an embodiment of a radiating structure printed according to the invention, in which there are two upper levels each comprising a dielectric substrate (D2; D3) on which a resonator multi-elements (R1, ... R6; R21, ... R26) is deposited by lithography or by engraving.

Comme dans les figures précédentes, un premier patch excitateur E sur la face supérieure d'un premier substrat diélectrique D1 comportant un plan de masse M sur sa face opposée, est excité par des moyens d'excitation qui comprennent, dans cet exemple, des connecteurs coaxiaux C. L'excitation de l'élément E génère des courants magnétiques sur sa périphérie, qui, par couplage électromagnétique, excitent à leur tour des courants dans les éléments résonateurs R1,...R6 du niveau voisin.As in the previous figures, a first excitation patch E on the upper face of a first dielectric substrate D1 having a ground plane M on its opposite face, is excited by excitation means which include, in this example, connectors coaxial C. The excitation of the element E generates magnetic currents on its periphery, which, by electromagnetic coupling, in turn excite currents in the resonator elements R1, ... R6 of the neighboring level.

L'excitation de ces éléments résonateurs du niveau D2 par le patch E génère des courants magnétiques sur la périphérie de chaque pavé R1,...R6, qui, par couplage électromagnétique, excitent à leur tour les éléments résonateurs (R21,...R26) du prochain niveau de la structure rayonnante, qui sont disposés sur le substrat diélectrique D3.The excitation of these level D2 resonator elements by patch E generates magnetic currents on the periphery of each block R1, ... R6, which, by electromagnetic coupling, in turn excite the resonator elements (R21, ... R26) of the next level of the radiating structure, which are arranged on the dielectric substrate D3.

Le couplage entre les éléments d'un niveau résulte de la géométrie des différents patches, et la géométrie relative de leur disposition, tel que décrit dans la demande française n° 93 03502 au nom de la Demanderesse. Le couplage entre les éléments de niveaux différents sera fonction du recouvrement des éléments de niveaux avoisinants (tel qu'il apparaît sur la figure 9), et de la hauteur diélectrique (H1,H2) qui sépare les éléments, ainsi que de la constante diélectrique de chaque substrat (D1,D2,D3,...).The coupling between the elements of a level results from the geometry of the different patches, and the relative geometry of their arrangement, as described in French application n ° 93 03502 in the name of the Applicant. The coupling between the elements of different levels will depend on the overlap of the elements of neighboring levels (as it appears on figure 9), and on the dielectric height (H1, H2) which separates the elements, as well as on the dielectric constant of each substrate (D1, D2, D3, ...).

Sur les figures 11 et 12, nous voyons en coupe et en plan respectivement un exemple d'une réalisation selon l'invention, qui comporte une pluralité de niveaux (D2, D3) comportant chacun une multiplicité d'éléments rayonnants (R1,...R6 ; P1,...P1 respectivement). La réalisation des figures 11 et 12 comprend les caractéristiques des figures 7,8 et 9,10. Dans l'exemple présenté ici, les éléments P1, ...P6 ont une forme et une disposition particulières, celles d'une grille de polarisation, pour améliorer et contrôler la polarisation émise comme dans les figures 7 et 8.In FIGS. 11 and 12, we see in section and in plan respectively an example of an embodiment according to the invention, which comprises a plurality of levels (D2, D3) each comprising a multiplicity of radiating elements (R1, .. .R6; P1, ... P1 respectively). The embodiment of Figures 11 and 12 includes the features of Figures 7.8 and 9.10. In the example presented here, the elements P1, ... P6 have a particular shape and arrangement, those of a polarization grid, to improve and control the polarization emitted as in FIGS. 7 and 8.

Le niveau inférieur de la structure rayonnante, disposé sur un substrat diélectrique D1, comporte les moyens d'excitation (non-montrés) d'un patch E d'excitation ainsi qu'un plan de masse (M) ; la pluralité de substrats empilés par dessus (D2, D3) comporte des résonateurs multi-éléments dont la surface d'emprise sur chaque substrat s'agrandit selon la position du substrat dans la structure, selon le sens normal de radiation de l'antenne.The lower level of the radiating structure, disposed on a dielectric substrate D1, comprises the excitation means (not shown) of an excitation patch E as well as a ground plane (M); the plurality of substrates stacked on top (D2, D3) comprises multi-element resonators whose area of grip on each substrate increases according to the position of the substrate in the structure, according to the normal direction of radiation of the antenna.

La géométrie des patches et leur disposition relative, ainsi que les hauteurs relatives H1/H2/H3 des substrats diélectriques sont des paramètres importants qui permettent d'obtenir une directivité variable et une réponse en fréquence voulue, selon des règles à la portée de l'homme de l'art. La constante diélectrique est un paramètre de contrôle du couplage et donc affecte toutes les performances de l'antenne. Les constantes diélectriques des différents niveaux peuvent être toutes identiques, ou au contraire, choisies pour réduire l'épaisseur de diélectrique entre deux patches se trouvant sur des niveaux contigus.The geometry of the patches and their relative arrangement, as well as the relative heights H1 / H2 / H3 of the dielectric substrates are important parameters which make it possible to obtain a variable directivity and a desired frequency response, according to rules within the reach of the skilled in the art. The dielectric constant is a coupling control parameter and therefore affects all the performance of the antenna. The dielectric constants of the different levels can all be identical, or on the contrary, chosen to reduce the thickness of dielectric between two patches located on adjoining levels.

Les exemples des figures précédentes sont basés sur des géométries simples dans chaque niveau de résonateurs multi-éléments, et sur trois niveaux de substrats plans. L'invention peut être utilisée sur des substrats courbés ou conformés, avec des géométries de patches et de leur disposition relative plus ou moins compliquées, selon la conception de l'élément rayonnant en vue d'une mission donnée. L'invention peut aussi faire appel à quatre, voir cinq substrats ou plus pour l'élaboration d'une structure rayonnante avec une ouverture rayonnante encore plus large. Cependant, l'épaisseur totale de la structure devra rester de préférence relativement modeste, pour répondre aux besoins des champs d'applications visés, notamment spatiaux.The examples of the preceding figures are based on simple geometries in each level of multi-element resonators, and on three levels of planar substrates. The invention can be used on curved or shaped substrates, with geometries of patches and their relative arrangement more or less complicated, depending on the design of the radiating element for a given mission. The invention can also use four or even five or more substrates for the development of a radiating structure with an even wider radiating opening. However, the total thickness of the structure should preferably remain relatively modest, in order to meet the needs of the targeted fields of application, in particular space.

Des mesures comparatives ont été effectuées pour quelques unes des structures rayonnantes présentées sur les figures précédentes, et les résultats sont donnés dans le tableau ci-après.

Figure imgb0001
Comparative measurements have been made for some of the radiating structures presented in the previous figures, and the results are given in the table below.
Figure imgb0001

Les résultats des mesures effectuées sur la structure des figures 11 et 12 sont donnés par les courbes tracées sur la figure 13 et résumées sur le tableau suivant. Sur cette figure, les différentes courbes représentent la directivité pour les différents angles d'azimut, c'est-à-dire l'amplitude mesure, par rapport à une antenne isotrope (en dB/ISO), en fonction de l'angle d'élévation qui est donnée sur l'abcisse. Les niveaux en polarisation croisée selon l'élévation sont tracés en pointillés. Les lobes secondaires sont absents de ces courbes, car plus petits que l'échelle de ces graphiques. VALEURS TRACEES SUR LA FIGURE 13 AMPLITUDE MAXIMUM (dB/ISO) MERIDIEN (Azimut) POLARISATION CIRCULAIRE 13.7 0.00 GAUCHE 1.5 0.00 DROITE 13.8 90.00 GAUCHE - 1.4 90.00 DROITE 13.8 45.00 GAUCHE 1.2 45.00 DROITE 13.7 135.00 GAUCHE 0.3 135.00 DROITE The results of the measurements carried out on the structure of FIGS. 11 and 12 are given by the curves plotted in FIG. 13 and summarized in the following table. In this figure, the different curves represent the directivity for the different azimuth angles, that is to say the amplitude measured, relative to an isotropic antenna (in dB / ISO), as a function of the angle d elevation which is given on the abscissa. The levels in cross polarization according to the elevation are plotted in dotted lines. The secondary lobes are absent from these curves because they are smaller than the scale of these graphics. VALUES TRACKED IN FIGURE 13 MAXIMUM AMPLITUDE (dB / ISO) MERIDIEN (Azimuth) CIRCULAR POLARIZATION 13.7 0.00 LEFT 1.5 0.00 RIGHT 13.8 90.00 LEFT - 1.4 90.00 RIGHT 13.8 45.00 LEFT 1.2 45.00 RIGHT 13.7 135.00 LEFT 0.3 135.00 RIGHT

Il ressort de ces courbes et de ces tableaux qu'en plus d'une augmentation importante de la directivité de l'antenne selon l'invention, l'apodisation est efficace, car les lobes secondaires sont quasi-inexistants. La pureté de polarisation obtenue par l'adjonction de la grille de polarisation excitée en rotation séquentielle par la structure couplée est excellente, comme le témoignent les courbes de la figure 13.It emerges from these curves and these tables that in addition to a significant increase in the directivity of the antenna according to the invention, the apodization is effective, because the secondary lobes are almost nonexistent. The polarization purity obtained by the addition of the polarization grid excited in sequential rotation by the coupled structure is excellent, as shown by the curves of FIG. 13.

Même la bande passante a été améliorée dans ce dispositif selon l'invention par l'adjonction d'un niveau de résonateurs multi-éléments. Et le taux d'ellipticité, paramètre pertinent pour la polarisation circulaire, a été également amélioré.Even the bandwidth has been improved in this device according to the invention by the addition of a level of multi-element resonators. And the ellipticity rate, a relevant parameter for circular polarization, has also been improved.

En plus des avantages en termes de performances, la structure rayonnante selon l'invention procure d'importants avantages en termes de la conception et de la réalisation des antennes, notamment par l'élimination de la nécessité de structures complexes de répartition entre les membres d'un sous-réseau d'éléments rayonnants. Dans la présente invention, les éléments rayonnants sont alimentés uniquement par le couplage électromagnétique, et ce sont les paramètres de ce couplage qui détermine la loi d'illumination. La directivité peut ainsi prendre des valeurs intermédiaires entre les valeurs discrètes obtenues par les techniques classiques de répartition.In addition to the performance advantages, the radiating structure according to the invention provides significant advantages in terms of the design and construction of the antennas, in particular by eliminating the need for complex distribution structures between the members of 'a sub-network of radiating elements. In the present invention, the radiating elements are powered only by the electromagnetic coupling, and it is the parameters of this coupling which determines the law of illumination. The directivity can thus take intermediate values between the discrete values obtained by conventional distribution techniques.

Les exemples de réalisations et les mesures effectuées sont donnés à titre d'exemples non-limitatifs pour illustrer les principes de l'invention. D'autres exemples de réalisations seront facilement imaginés par l'homme de l'art, sans sortir pour autant du cadre de l'invention.The examples of embodiments and the measurements carried out are given by way of non-limiting examples to illustrate the principles of the invention. Other examples of embodiments will be easily imagined by those skilled in the art, without departing from the scope of the invention.

Claims (12)

Structure rayonnante multicouches à technologie microruban pour antenne réseau, cette structure comprenant : - une pluralité de niveaux dont un niveau inférieur et au moins un niveau supérieur compris dans une partie supérieure, - une pluralité d'éléments rayonnants (R1, R2, R3, R4, R5, R6 ; R21, R22, R23, R24, R25, R26) disposés dans la partie supérieure, - et des moyens d'excitation électromagnétique de ces éléments rayonnants (E,D1,C,M), disposés dans ledit niveau inférieur ;
Ces éléments rayonnants étant excités par une répartition de l'énergie électromagnétique d'excitation entre lesdits éléments, ladite répartition étant effectuée par un couplage électromagnétique entre lesdits éléments, ladite partie supérieure comprenant au moins deux niveaux supérieurs, lesdits éléments rayonnants étant distribués sur une pluralité de substrats diélectriques (D2,D3,...) empilés par des niveaux successifs dans une structure rayonnante multicouches, cette structure rayonnante multicouches étant elle-même disposée sur lesdits moyens d'excitation disposés dans ledit niveau inférieur, caractérisée en ce que
   chaque substrat diélectrique de ladite partie supérieure (D2, D3,...) comporte plusieurs éléments rayonnants (R1,...R6; R21,...R26), et en ce que ladite structure est composée de façon à ce que chaque substrat diélectrique successif comporte des éléments rayonnants sur une surface plus grande que la surface occupée par les éléments rayonnants du niveau précédent, en partant d'un premier niveau inférieur contenant lesdits moyens d'excitation (E,D1,C,M).
Multilayer radiating structure with microstrip technology for network antenna, this structure comprising: - a plurality of levels including a lower level and at least one upper level included in an upper part, a plurality of radiating elements (R1, R2, R3, R4, R5, R6; R21, R22, R23, R24, R25, R26) arranged in the upper part, - And means of electromagnetic excitation of these radiating elements (E, D1, C, M), arranged in said lower level;
These radiating elements being excited by a distribution of the electromagnetic excitation energy between said elements, said distribution being effected by an electromagnetic coupling between said elements, said upper part comprising at least two upper levels, said radiating elements being distributed over a plurality dielectric substrates (D2, D3, ...) stacked by successive levels in a multilayer radiating structure, this multilayer radiating structure being itself disposed on said excitation means disposed in said lower level, characterized in that
each dielectric substrate of said upper part (D2, D3, ...) comprises several radiating elements (R1, ... R6; R21, ... R26), and in that said structure is composed so that each successive dielectric substrate comprises radiating elements on a surface larger than the surface occupied by the radiating elements of the previous level, starting from a first lower level containing said excitation means (E, D1, C, M).
Structure rayonnante selon la revendication 1, caractérisée en ce qu'elle ne comprend pas de moyens spécifiques de répartition de l'énergie électromagnétique d'excitation entre lesdits éléments, cette répartition étant effectuée uniquement par un couplage des courants magnétiques engendrés par chaque élément.Radiant structure according to claim 1, characterized in that it does not include means specific distribution of the excitation electromagnetic energy between said elements, this distribution being effected only by coupling the magnetic currents generated by each element. Structure rayonnante selon la revendication 2, caractérisée en ce qu'elle ne comprend pas de moyens spécifiques de couplage de l'énergie électromagnétique d'excitation entre lesdits niveaux, cette excitation étant effectuée uniquement par un couplage des courants magnétiques engendrés par les éléments du niveau immédiatement inférieur qui excitent les éléments du niveau immédiatement supérieur.Radiant structure according to claim 2, characterized in that it does not comprise specific means for coupling the electromagnetic excitation energy between said levels, this excitation being carried out only by coupling the magnetic currents generated by the elements of the level immediately below which excite the elements of the immediately higher level. Structure rayonnante selon l'une quelconque des revendications 1 à 3, caractérisée en ce que ledit niveau inférieur comporte un seul pavé rayonnant (E), qui sera excité par lesdits moyens d'excitation (C), et qui excitera à son tour les éléments rayonnants (R1,...R6) du prochain niveau, et ainsi de suite.Radiant structure according to any one of claims 1 to 3, characterized in that said lower level comprises a single radiating block (E), which will be excited by said excitation means (C), and which in turn will excite the elements radiant (R1, ... R6) of the next level, and so on. Structure rayonnante selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit premier pavé rayonnant (E), qui se trouve sur ledit niveau inférieur de la structure multicouches, est alimenté de façon à rayonner la polarisation désirée.Radiant structure according to any one of Claims 1 to 4, characterized in that said first radiating block (E), which is located on said lower level of the multilayer structure, is supplied so as to radiate the desired polarization. Structure rayonnante selon la revendication 5, caractérisée en ce que lesdits éléments rayonnants d'au moins l'un desdits niveaux supérieurs sont disposés de manière à former une structure rayonnante apte à renforcer et à raffiner la polarisation du rayonnement émis.Radiating structure according to claim 5, characterized in that said radiating elements of at least one of said upper levels are arranged so as to form a radiating structure capable of reinforcing and refining the polarization of the radiation emitted. Structure rayonnante selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les éléments rayonnants (R21,...R26) d'un niveau supérieur recouvrent partiellement les éléments rayonnants (R1,...R6) d'un niveau immédiatement inférieur quand vu en projection selon la direction d'empilement des niveaux, et en ce que le couplage entre les éléments des niveaux contigus est géré par le pourcentage de recouvrement de ces éléments dans les zones de courants magnétiques, ainsi que par l'épaisseur et les qualités diélectriques des séparateurs.Radiating structure according to any one of Claims 1 to 6, characterized in that the radiating elements (R21, ... R26) of a higher level partially cover the radiating elements (R1, ... R6) of a level immediately lower when viewed in projection according to the stacking direction of the levels, and in that the coupling between the elements of the contiguous levels is managed by the percentage of overlap of these elements in the magnetic current zones, as well as by the thickness and the dielectric qualities of the separators. Structure rayonnante selon l'une quelconque des revendications 5 à 6, caractérisée en ce que ladite polarisation est circulaire, et en ce qu'elle est obtenue par l'utilisation d'excitation par rotation séquentielle en structure couplée.Radiant structure according to any one of Claims 5 to 6, characterized in that the said polarization is circular, and in that it is obtained by the use of excitation by sequential rotation in coupled structure. Structure rayonnante selon l'une quelconque des revendications 5 à 6 ou 8, caractérisée en ce qu'elle est équipée d'une grille polarisante.Radiant structure according to any one of claims 5 to 6 or 8, characterized in that it is equipped with a polarizing grid. Structure rayonnante selon l'une quelconque des revendications 1 à 9, caractérisée en ce que lesdits substrats diélectriques (D1, D2, D3,...) sont sensiblement plans.Radiant structure according to any one of Claims 1 to 9, characterized in that the said dielectric substrates (D1, D2, D3, ...) are substantially planar. Structure rayonnante selon l'une quelconque des revendications 1 à 9, caractérisée en ce que lesdits substrats diélectriques (D1, D2, D3,...) sont conformés en 3 dimensions.Radiant structure according to any one of Claims 1 to 9, characterized in that the said dielectric substrates (D1, D2, D3, ...) are shaped in 3 dimensions. Antenne électromagnétique à directivité variable comprenant au moins une pluralité d'éléments rayonnants organisés dans une structure rayonnante selon l'une quelconque des revendications 1 à 11.Electromagnetic antenna with variable directivity comprising at least a plurality of radiating elements organized in a radiating structure according to any one of claims 1 to 11.
EP94401183A 1993-06-03 1994-05-30 Radiating multi-layer structure with variable directivity Expired - Lifetime EP0627783B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306660A FR2706085B1 (en) 1993-06-03 1993-06-03 Multilayer radiating structure with variable directivity.
FR9306660 1993-06-03

Publications (2)

Publication Number Publication Date
EP0627783A1 true EP0627783A1 (en) 1994-12-07
EP0627783B1 EP0627783B1 (en) 1998-10-14

Family

ID=9447726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401183A Expired - Lifetime EP0627783B1 (en) 1993-06-03 1994-05-30 Radiating multi-layer structure with variable directivity

Country Status (5)

Country Link
US (1) US5497164A (en)
EP (1) EP0627783B1 (en)
DE (1) DE69413882T2 (en)
ES (1) ES2125420T3 (en)
FR (1) FR2706085B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899814A1 (en) * 1997-09-01 1999-03-03 Alcatel Radiating structure
EP0957535A1 (en) * 1998-05-15 1999-11-17 Société Européenne des Satellites Electromagnetically coupled microstrip antenna
FR2803694A1 (en) * 2000-01-12 2001-07-13 Univ Rennes RESONANT CAVITY ANTENNA HAVING A CONFORMING BEAM ACCORDING TO A PREDETERMINED RADIATION DIAGRAM
EP2194602B1 (en) 2008-12-05 2015-09-02 Thales Antenna with shared sources and design process for a multi-beam antenna with shared sources
CN111149255A (en) * 2017-10-04 2020-05-12 华为技术有限公司 Multi-band antenna system
CN118399069A (en) * 2024-06-24 2024-07-26 中兴通讯股份有限公司 Omnidirectional antenna and communication equipment

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683952A1 (en) * 1991-11-14 1993-05-21 Dassault Electronique IMPROVED MICRO-TAPE ANTENNA DEVICE, PARTICULARLY FOR TELEPHONE TRANSMISSIONS BY SATELLITE.
NL9301677A (en) * 1993-09-29 1995-04-18 Hollandse Signaalapparaten Bv Multipatch antenna.
JP2957473B2 (en) * 1996-05-15 1999-10-04 静岡日本電気株式会社 Microstrip antenna device
US5745079A (en) * 1996-06-28 1998-04-28 Raytheon Company Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
US6271792B1 (en) * 1996-07-26 2001-08-07 The Whitaker Corp. Low cost reduced-loss printed patch planar array antenna
US5835062A (en) * 1996-11-01 1998-11-10 Harris Corporation Flat panel-configured electronically steerable phased array antenna having spatially distributed array of fanned dipole sub-arrays controlled by triode-configured field emission control devices
SE508356C2 (en) * 1997-02-24 1998-09-28 Ericsson Telefon Ab L M Antenna Installations
US5867130A (en) * 1997-03-06 1999-02-02 Motorola, Inc. Directional center-fed wave dipole antenna
US6002368A (en) * 1997-06-24 1999-12-14 Motorola, Inc. Multi-mode pass-band planar antenna
US5880694A (en) * 1997-06-18 1999-03-09 Hughes Electronics Corporation Planar low profile, wideband, wide-scan phased array antenna using a stacked-disc radiator
US6046707A (en) * 1997-07-02 2000-04-04 Kyocera America, Inc. Ceramic multilayer helical antenna for portable radio or microwave communication apparatus
CA2225677A1 (en) * 1997-12-22 1999-06-22 Philippe Lafleur Multiple parasitic coupling to an outer antenna patch element from inner path elements
US6011522A (en) * 1998-03-17 2000-01-04 Northrop Grumman Corporation Conformal log-periodic antenna assembly
US6018323A (en) * 1998-04-08 2000-01-25 Northrop Grumman Corporation Bidirectional broadband log-periodic antenna assembly
US6140965A (en) * 1998-05-06 2000-10-31 Northrop Grumman Corporation Broad band patch antenna
US6181279B1 (en) 1998-05-08 2001-01-30 Northrop Grumman Corporation Patch antenna with an electrically small ground plate using peripheral parasitic stubs
FR2778802B1 (en) * 1998-05-15 2000-09-08 Alsthom Cge Alcatel CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE
DK1227545T3 (en) * 1999-10-26 2003-10-27 Fractus Sa Interlaced multi-band antenna arrangements
US6842148B2 (en) 2001-04-16 2005-01-11 Skycross, Inc. Fabrication method and apparatus for antenna structures in wireless communications devices
US6741212B2 (en) 2001-09-14 2004-05-25 Skycross, Inc. Low profile dielectrically loaded meanderline antenna
FR2830131B1 (en) * 2001-09-24 2005-06-24 Centre Nat Rech Scient BROADBAND OR MULTI-BAND ANTENNA
WO2003034545A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Multifrequency microstrip patch antenna with parasitic coupled elements
AU2002350102A1 (en) * 2001-11-02 2003-05-19 Skycross, Inc. Dual band spiral-shaped antenna
US6597321B2 (en) 2001-11-08 2003-07-22 Skycross, Inc. Adaptive variable impedance transmission line loaded antenna
GB0204748D0 (en) * 2002-02-28 2002-04-17 Nokia Corp Improved antenna
US7436360B2 (en) * 2002-04-19 2008-10-14 Skycross, Inc. Ultra-wide band monopole antenna
US6917334B2 (en) * 2002-04-19 2005-07-12 Skycross, Inc. Ultra-wide band meanderline fed monopole antenna
AU2003273548A1 (en) * 2002-06-04 2003-12-19 Skycross, Inc. Wideband printed monopole antenna
US6812891B2 (en) * 2002-11-07 2004-11-02 Skycross, Inc. Tri-band multi-mode antenna
WO2004066437A1 (en) * 2003-01-24 2004-08-05 Fractus, S.A. Broadside high-directivity microstrip patch antennas
EP1593178A1 (en) * 2003-02-01 2005-11-09 Qinetiq Limited Phased array antenna and inter-element mutual coupling control method
JP2004320115A (en) * 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd Composite antenna
DE10353686A1 (en) * 2003-11-17 2005-06-16 Robert Bosch Gmbh Symmetrical antenna in layered construction
JP4169709B2 (en) * 2004-02-16 2008-10-22 株式会社国際電気通信基礎技術研究所 Array antenna device
WO2005117202A1 (en) 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels
WO2005116686A2 (en) * 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for determining the spatial frequency of a signal
US7113135B2 (en) * 2004-06-08 2006-09-26 Skycross, Inc. Tri-band antenna for digital multimedia broadcast (DMB) applications
US7038624B2 (en) * 2004-06-16 2006-05-02 Delphi Technologies, Inc. Patch antenna with parasitically enhanced perimeter
US7061431B1 (en) 2004-07-30 2006-06-13 The United States Of America As Represented By The Secretary Of The Navy Segmented microstrip patch antenna with exponential capacitive loading
EP1784894A1 (en) 2004-08-31 2007-05-16 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7446710B2 (en) * 2005-03-17 2008-11-04 The Chinese University Of Hong Kong Integrated LTCC mm-wave planar array antenna with low loss feeding network
US7388556B2 (en) * 2005-06-01 2008-06-17 Andrew Corporation Antenna providing downtilt and preserving half power beam width
US20060284770A1 (en) * 2005-06-15 2006-12-21 Young-Min Jo Compact dual band antenna having common elements and common feed
ATE544194T1 (en) * 2005-10-14 2012-02-15 Fractus Sa SLIM TRIPLE BAND ANTENNA ARRAY FOR CELLULAR BASE STATIONS
FR2894080B1 (en) * 2005-11-28 2009-10-30 Alcatel Sa NETWORK ANTENNA WITH IRREGULAR MESHING AND POSSIBLE COLD REDUNDANCY
JP4620018B2 (en) * 2006-08-31 2011-01-26 日本電信電話株式会社 Antenna device
US20080129635A1 (en) * 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Method of operating a patch antenna in a higher order mode
US8009107B2 (en) * 2006-12-04 2011-08-30 Agc Automotive Americas R&D, Inc. Wideband dielectric antenna
US7834815B2 (en) * 2006-12-04 2010-11-16 AGC Automotive America R & D, Inc. Circularly polarized dielectric antenna
US7505002B2 (en) * 2006-12-04 2009-03-17 Agc Automotive Americas R&D, Inc. Beam tilting patch antenna using higher order resonance mode
US7872606B1 (en) * 2007-02-09 2011-01-18 Marvell International Ltd. Compact ultra wideband microstrip resonating antenna
GB2487019B (en) * 2007-05-08 2012-08-15 Scanimetrics Inc Ultra high speed signal transmission/reception
US20110159824A1 (en) * 2009-12-31 2011-06-30 Peter Kenington Active antenna array for a mobile communications network employing a first conductive layer and a second conductive layer
KR101124131B1 (en) * 2010-08-12 2012-03-21 주식회사 에이스테크놀로지 Patch antenna
ITRM20100511A1 (en) * 2010-10-01 2012-04-02 Clu Tech Srl HYBRID PRINTED ANTENNA WITH MULTIPLE RADIANT ELEMENTS
EP3033804B1 (en) * 2013-08-16 2020-12-02 Intel Corporation Millimeter wave antenna structures with air-gap layer or cavity
US9853359B2 (en) * 2013-09-26 2017-12-26 Intel Corporation Antenna integrated in a package substrate
JP2015092658A (en) * 2013-09-30 2015-05-14 京セラサーキットソリューションズ株式会社 Antenna substrate
US20160104934A1 (en) * 2014-10-10 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Antenna, antenna package, and communications module
TWI563736B (en) * 2015-07-20 2016-12-21 Quanta Comp Inc Mobile device
US10164338B2 (en) * 2015-08-25 2018-12-25 Qualcomm Incorporated Multiple antennas configured with respect to an aperture
JP6723470B2 (en) * 2017-09-29 2020-07-15 三菱電機株式会社 Antenna device
US10461428B2 (en) * 2018-02-23 2019-10-29 Qualcomm Incorporated Multi-layer antenna
US11411316B2 (en) 2018-03-30 2022-08-09 Tallysman Wireless Inc. Anti-jamming and reduced interference global positioning system receiver methods and devices
US10854978B2 (en) * 2018-04-23 2020-12-01 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus and antenna module
US11038283B2 (en) * 2018-09-20 2021-06-15 The Boeing Company Reconfigurable aperture-coupled patch antenna
KR102577295B1 (en) * 2018-10-23 2023-09-12 삼성전자주식회사 Electronic device including antenna formed by overlapping antenna elements transceiving multiple bands of signal
JPWO2021054175A1 (en) * 2019-09-18 2021-03-25
CN112531356B (en) * 2019-09-18 2022-05-03 北京小米移动软件有限公司 Antenna structure and mobile terminal
US11374327B2 (en) * 2020-03-30 2022-06-28 The Boeing Company Microstrip to microstrip vialess transition
WO2022105999A1 (en) * 2020-11-19 2022-05-27 Huawei Technologies Co., Ltd. A low profile device comprising layers of coupled resonance structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279050A1 (en) * 1987-01-15 1988-08-24 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
EP0403910A1 (en) * 1989-06-20 1990-12-27 Alcatel Espace Radiating, diplexing element
WO1991001577A1 (en) * 1989-07-24 1991-02-07 Motorola, Inc. Multi-resonant laminar antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046530B (en) * 1979-03-12 1983-04-20 Secr Defence Microstrip antenna structure
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0279050A1 (en) * 1987-01-15 1988-08-24 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
EP0403910A1 (en) * 1989-06-20 1990-12-27 Alcatel Espace Radiating, diplexing element
WO1991001577A1 (en) * 1989-07-24 1991-02-07 Motorola, Inc. Multi-resonant laminar antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE ET AL.: "MICROSTRIP SUBARRAY WITH COPLANAR AND STACKED PARASITIC ELEMENTS", ELECTRONICS LETTERS., vol. 26, no. 10, 10 May 1990 (1990-05-10), STEVENAGE GB, pages 668 - 669, XP000124204 *
REVANKAR ET KUMAR: "BROADBAND STACKED THREE-LAYER CIRCULAR MICROSTRIP ANTENNA ARRAYS", ELECTRONICS LETTERS., vol. 28, no. 21, 8 October 1992 (1992-10-08), STEVENAGE GB, pages 1995 - 1997, XP000319648 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899814A1 (en) * 1997-09-01 1999-03-03 Alcatel Radiating structure
FR2767970A1 (en) * 1997-09-01 1999-03-05 Alsthom Cge Alcatel RADIANT STRUCTURE
US6061027A (en) * 1997-09-01 2000-05-09 Alcatel Radiating structure
EP0957535A1 (en) * 1998-05-15 1999-11-17 Société Européenne des Satellites Electromagnetically coupled microstrip antenna
FR2803694A1 (en) * 2000-01-12 2001-07-13 Univ Rennes RESONANT CAVITY ANTENNA HAVING A CONFORMING BEAM ACCORDING TO A PREDETERMINED RADIATION DIAGRAM
WO2001052356A1 (en) * 2000-01-12 2001-07-19 Universite De Rennes 1 Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram
EP2194602B1 (en) 2008-12-05 2015-09-02 Thales Antenna with shared sources and design process for a multi-beam antenna with shared sources
CN111149255A (en) * 2017-10-04 2020-05-12 华为技术有限公司 Multi-band antenna system
CN111149255B (en) * 2017-10-04 2021-06-29 华为技术有限公司 Multi-band antenna system
US11469516B2 (en) 2017-10-04 2022-10-11 Huawei Technologies Co., Ltd. Multiband antenna system
CN118399069A (en) * 2024-06-24 2024-07-26 中兴通讯股份有限公司 Omnidirectional antenna and communication equipment

Also Published As

Publication number Publication date
DE69413882D1 (en) 1998-11-19
FR2706085A1 (en) 1994-12-09
ES2125420T3 (en) 1999-03-01
EP0627783B1 (en) 1998-10-14
DE69413882T2 (en) 1999-06-02
FR2706085B1 (en) 1995-07-07
US5497164A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP0627783B1 (en) Radiating multi-layer structure with variable directivity
EP0598656B1 (en) Radiating element for an antenna array and sub-set with such elements
EP0315141B1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
EP2564466B1 (en) Compact radiating element having resonant cavities
EP0372451B1 (en) Multifrequency radiating device
EP0886889B1 (en) Wide band printed network antenna
EP2497153A1 (en) Dual-polarized dielectric resonator antenna
EP1690317B1 (en) Multiband dual-polarised array antenna
EP0542595A1 (en) Microstrip antenna device especially for satellite telephone transmissions
FR2863111A1 (en) Multi-band aerial with double polarization includes three sets of radiating elements including crossed dipoles for maximum polarization decoupling
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
EP4012839A1 (en) Antenna array with directive radiation
EP0605338B1 (en) Patch antenna with dual polarisation and corresponding device for transmission/reception
EP4117117B1 (en) Antenna cell with transmitter network
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
WO1991018428A1 (en) Planar orientable antenna operating in the microwave band
FR2992103A1 (en) INTEGRATED THREE-DIMENSIONAL STRUCTURE COMPRISING AN ANTENNA
WO1996008055A1 (en) Very large band, double polarisation, miniature planar antenna
EP0617480A1 (en) Radiating structure with variable directivity
EP0831550B1 (en) Versatile array antenna
EP0354076A1 (en) Antenna with microwave energy distribution across triplate lines
WO2001028039A1 (en) Printed antenna with an enlarged bandwidth and a low level of cross polarisation, and corresponding antenna network
EP4391232A1 (en) Wide-angle impedance matching device for an array antenna with radiating elements and method for designing such a device
EP1475860A1 (en) Device forming antenna, sensor or electromagnetic probe
WO2012013644A1 (en) Directional printed antenna that is preferably optically transparent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19950512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971014

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ESPACE

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981015

REF Corresponds to:

Ref document number: 69413882

Country of ref document: DE

Date of ref document: 19981119

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125420

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090521

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110512

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120607

Year of fee payment: 19

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 20

Ref country code: GB

Payment date: 20130529

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130531

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69413882

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69413882

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140531