EP0598656B1 - Radiating element for an antenna array and sub-set with such elements - Google Patents

Radiating element for an antenna array and sub-set with such elements Download PDF

Info

Publication number
EP0598656B1
EP0598656B1 EP93402777A EP93402777A EP0598656B1 EP 0598656 B1 EP0598656 B1 EP 0598656B1 EP 93402777 A EP93402777 A EP 93402777A EP 93402777 A EP93402777 A EP 93402777A EP 0598656 B1 EP0598656 B1 EP 0598656B1
Authority
EP
European Patent Office
Prior art keywords
antenna
cavity
patch
subarray
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402777A
Other languages
German (de)
French (fr)
Other versions
EP0598656A1 (en
Inventor
Gérard Raguenet
Frédéric Magnin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0598656A1 publication Critical patent/EP0598656A1/en
Application granted granted Critical
Publication of EP0598656B1 publication Critical patent/EP0598656B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the field of the invention is that of antennas networks, and more particularly network antennas broadband (5 to 10%), especially for the space sector.
  • These network antennas include many sources radiant elementals, and the nourishment of these sources, in an appropriate relative provision to give to radiated fields the desired shape for application specific envisaged. So we are looking for a cheap item at manufacture (because it requires a large number, which can reach a few thousand), neither heavy nor bulky (because on board), and easy to integrate into the antenna (geometry implantation and food). In addition, for new antenna designs, we want to be able to arrange these elements on a shaped surface, possibly deformable.
  • a lobe of an antenna network is formed by geometry or relative arrangement radiating elements, as well as by the amplitude and the phase of the excitation signals applied to these elements radiant through a power network and its control electronics.
  • the proposed invention relates to an embodiment of an elementary source for radiating device of the flat antenna type, and radiating sub-assemblies including such sources.
  • the device according to the invention can therefore be integrated in a flat array antenna, but moreover, is particularly suitable for installing such a radiant sub-assembly on a surface consistent.
  • a means known from the prior art to increase the bandwidth of type printed radiating elements patch is to increase the thickness of dielectric between the patch and the ground plane.
  • This method suffers from the drawback that the network of elements thus constructed is more difficult to integrate on the radiating face of the antenna, all the more if this surface is not flat but conformed. Furthermore the characteristics of radiation from a thick planar antenna degrades very quickly, which does not provide only limited operational interest.
  • Another object of the invention is therefore to overcome this disadvantage of the prior art, to obtain a strip wide bandwidth without complicating the integration of the antenna on a shaped surface.
  • the radiating element consists, in part of a metallic cavity, whose fine geometry results from a optimization in relation to the mission of the antenna, other part of a patch-type resonator etched on a substrate thin dielectric.
  • the structure can therefore be considered as a element in technology known as buried microstrip.
  • the bandwidth (BP) of an etched microstrip antenna is inversely proportional to its cavity overvoltage, also known as quality factor Q.
  • Q quality factor
  • This same quality factor Q is (approximately) inversely proportional to the normalized height of the patch t / ⁇ ⁇ , where t is the thickness of dielectric between the patch and the ground plane, and ⁇ ⁇ is the electrical wavelength in the dielectric characterized by the dielectric constant ⁇ , at the operating frequency of the antenna. It follows that in the major part of the curve which describes the bandwidth as a function of the normalized height, and this up to reasonable thicknesses, the bandwidth BP is linear with respect to t / ⁇ ⁇ as shown by it the abacuses from the publication of Carver and Mink (1), and reproduced in FIG. 3.
  • the invention will therefore remedy the drawbacks of the prior art, and allow a wide band to be obtained busy using simple technology derived from that printed "patch" antennas, while retaining the advantages of this technology.
  • the invention proposes a radiating element high bandwidth patch type for an antenna network, as defined in claim 1.
  • said cavity of the embodiment previous is partially closed in the direction of radiation by a second resonator which consists of a conductive patch engraved on a support which is then placed on the front face of said conductive cavity.
  • the microstrip supply line can be carried out either in simple microstrip, or in shielded microstrip or channel, and enters said cavity either by a channel dug in the metal cavity, either through a recess in the wall of said cavity.
  • patch can be used, for example: circle, square, polygon, ...; as well as different forms of cavity: circular cylinder, square, octagonal, pentahexagonal, ...
  • the invention also provides a subset of radiating elements for a network antenna, known as a sub-network, said sub-network comprising in particular a mechanical support, several patches and their supplies in microstrip technology, with their dielectric substrate and their associated ground plane. , characterized in that said mechanical sub-array support is placed on the front face of said dielectric substrate, on the radiation side of the antenna.
  • the radiating elements conform to one of the preceding descriptions, and further comprise a resonant system around each patch, said resonant system possibly being a cavity, for example.
  • said mechanical support comprises said cavities.
  • said sub-assembly is supplied by a single supply point, common to all the elements of said sub-network.
  • said sub-network is not planar, but conformed, that is to say that the patches of a sub-network can have different angular orientations.
  • the invention also relates to the integration of subnets according to the previous descriptions in an antenna network.
  • said antenna can be placed on a flat surface, of revolution, or of a any curvature.
  • the subnets used to make the network antenna will be of geometry identical, allowing the production of series of components of said subnets, as well as subnets themselves.
  • FIG 1 we see an example of a subnet of four radiating elements 2 of the patch type, printed on one dielectric substrate 1.
  • the four radiating elements or “patches” are powered by a power network realized in microstrip technology, which consists of conductive tracks printed or engraved on the same dielectric substrate 1.
  • the feeding of the four patches is from a point common 5, which feeds two branches 3a, 3b which are then still branched into sub-branches 4a, 4b, 4c, 4d.
  • the relative amplitude of excitation can also be controlled by the management of the various impedances of the different paths.
  • FIG 2 we see an example of embodiment of a radiating element according to the prior art.
  • this element includes a patch etched conductor 2 on a dielectric substrate 1 covered on its back side by a ground plane 6.
  • Patch 2 is powered by microstrip 4b, which is an engraved track conductive, usually of the same material as the patch.
  • patch 2 is placed at the bottom of a system closed which consists for example of a cavity 7 defined by conductive walls 8 delimiting the radial extent of the cavity 7 around patch 2.
  • this cavity 7 determines its radio characteristics according to rules known to those skilled in the art; as a result, these dimensions can be chosen by the designer in order to provide the desired bandwidth at the frequency of operation of the radiating element, and this without increase in the thickness of dielectric 1 behind the patch 2. It follows that the dimensioning of the element radiating from the antenna according to the invention and as described as simply as possible in Figure 5 is not governed by the same mechanisms as sizing practical in the prior art.
  • the bandwidth curves ⁇ f / f as a function of the normalized height t / ⁇ ⁇ of dielectric indicates to us that an unacceptable thickness of dielectric is necessary to provide a bandwidth beyond a few percent.
  • Curve 10 represents the frequency response of a rectangular patch of dimensions equal to 0.3 x 0.5 ⁇ 0 , with the same dielectric constant parameters and from ROS. We see that for microwaves of the order of 1 to 10 GHz, indicated respectively on curves 9, 10 by a solid line and a dotted line, the relationship remains approximately linear between the bandwidth and the normalized height for widths of band between 1% and 10%.
  • the main propagation line is therefore of microstrip type and typically involves a conductor track etched on a thickness of dense substrate.
  • the thickness of this one is dimensioned by integrating the radioelectric criteria of use ( ⁇ r , w, h, Ze) as well as more specific constraints which can come from the envisaged mission.
  • the advantage of thin substrate thickness (of the order of 20 mils, 30 mils maximum, or 0.5 to 0.75 mm) is that it makes it entirely manageable in terms of industrial production the use of radiating elements as well as their associated distribution circuits on surfaces of course flat, but above all shaped in three dimensions, as will be seen below.
  • FIGS. 4a, 4b show two examples of microstrip technology which can be used for the production of supply lines for the radiating elements according to the invention.
  • the microstrip line consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate (on the opposite face of the face comprising the etched track).
  • the physical parameters characterizing this system are the dielectric constant ⁇ and the height or thickness of dielectric h 1 .
  • the microstrip line itself consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate 1. Shielding around this line is constituted by conductive walls 18 which surround the track 22 and which are electrically connected to earth 6.
  • the physical parameters which characterize the system are the dielectric constant ⁇ and the height or thickness of dielectric h 1 , as well as the dimensions of the shielding h 2 for the height or the distance between the surface of the dielectric 1 and the conductive wall 18 which is oriented parallel to this surface, and the width d between the conductive walls 18 on each side of the track 22.
  • the space 17 inside the shield formed by the conductive walls 18 is assumed to be filled with air, and therefore will have a dielectric constant close to 1.
  • the radio propagation characteristics on such a line are calculated from the physical parameters cited according to methods well known to those skilled in the art.
  • this simple or "shielded" line using channel technology opens into a cavity and deforms significantly, so as to form a geometry of patch.
  • the simplest form of the cavity is that of a cylinder, but other geometries can be used in function of the application: square, pentagonal, hexagonal etc ... without aspect or limiting character.
  • the directivity of radiation of a element according to the invention is determined by the dimensions relative of the patch and the surrounding cavity.
  • Adaptation performance is also not managed by the same laws and the implementation of the cavity more than significantly improves the performance of ROS.
  • the cavity can be integrated into a structure carrier (such as the example shown in Figure 8) on which we will glue, screw, or assemble by any other means the microstrip circuit on a substrate thin dielectric 1 comprising patch 2 and the power line 4.
  • a structure carrier such as the example shown in Figure 8
  • FIG 5 we have a sectional view of a variant implementation of the invention.
  • This figure is identical to Figure 2 except for the presence of conductive elements 13.
  • This achievement allows thereby a total shielding of the microstrip assembly and patch compared to other neighboring elements.
  • the electrical continuity established by the element (s) conductor (s) 13 can be total or partial:
  • Partial One can imagine a discrete shielding using studs crossing the dielectric substrate 2 screwable on the cavity or even consider the technique of metallized holes in the dielectric substrate which one could weld in vapor phase for example to the continuous part of the cavity.
  • FIG. 6 A first example of an antenna realization using a very wide band element according to the invention is shown in Figure 6. This element is intended for antenna operating at 8 GHz which has been produced and on which of the measurements made it possible to confirm the expected performance.
  • FIG. 6 illustrates the method of this realization, which consists in adding to a basic patch 2 radiator, a second resonator 12 positioned above the first resonator 2.
  • the configuration is therefore that of the Figure 5, except that the resonant cavity 7 is partially closed on its front side by a second resonator 12 which can be for example a patch printed on a dielectric support 11.
  • the second element is implanted flush with cavity 7, but we could place it, with more elaborate constructions, either at a higher height or either at a lower height than the height of the conductive walls 8 of the cavity 7.
  • the second resonator 12 can be etched on a carrier substrate 11 of low thickness and mass and its assembly can be done by simple bonding or screwing.
  • the two resonators can be deformed at using chamfers to generate polarization circular, if required, using a single access.
  • the radiation patterns measured in a band 8.0 to 8.4 GHz application show excellent device behavior.
  • the ellipticity rate (cross polarization) is excellent at frequency optimization (8.2 GHz) and remains well below 3 dB on the entire useful band.
  • FIGS. 2 and 5 to 7 An antenna project in which the radiator fits according to the invention and presented in FIGS. 2 and 5 to 7, concerns the creation of a scanning antenna electronics as shown in Figures 8 and 9.
  • the Figure 8 shows schematically in perspective a structure mechanics of a radiating sub-assembly according to the invention, this sub-assembly being intended to be assembled with numerous similar sub-assemblies to form a network antenna as shown in Figure 9.
  • the operating principle of the antenna is exposed in Figure 9.
  • the example of a complete network therefore consists by installing it on a surface with symmetry of revolution around an axis z of identical subsets, such as shown in Figure 8.
  • the subsets are composed in this exemplary embodiment, four radiators identical patch type according to one of FIGS. 2, 5 to 7, supplied by a common distributor as shown on the Figure 1.
  • the mechanical structure 14 shown schematically in plan in Figure 8 has the conductive walls of four cavities 8 and fixing pads 15 of the circuit microstrip and its dielectric substrate 1 as shown on Figure 1.
  • Recesses 19 are arranged in the conductive walls 8 for the passage of microstrip lines supply of radiant elements.
  • each subnet is arranged with its axis 21 in the same plane with the main axis of the antenna z, and with an angular deviation constant between two successive planes thus defined.
  • the angle ⁇ is 10 ° as in figure 8.
  • the interest of this particular topology is to assist in lobe formation antenna radiation, as described in the application French patent no. 91 05510 of May 6, 1991, on behalf of the plaintiff (which is an integral part of this request as description of prior art concerning lobe antennas with formed lobes).
  • the dielectric etching support can be easily formed hot for example without operating problems radioelectric.
  • Another technology, triplate type for example, would have been either inapplicable or very delicate to implement.
  • antennas proposed networks can they include more of elements, to be established in a plane way, or to be used to sample a reflector antenna and set up in this case according to a surface type geometry of Petzwald which optimizes the efficiency of the device.

Description

Le domaine de l'invention est celui des antennes réseaux, et plus particulièrement des antennes réseaux à large bande (5 à 10 %), notamment pour le domaine spatial. Ces antennes réseaux comprennent de nombreuses sources rayonnantes élémentaires, et l'alimentation de ces sources, dans une disposition relative appropriée pour donner aux champs rayonnés la forme voulue en vue de l'application spécifique envisagée. Donc on cherche un élément pas cher à fabriquer (parce qu'il en faut un grand nombre, pouvant atteindre quelques milliers), ni lourd ni encombrant (car embarqué), et facile à intégrer à l'antenne (géométrie d'implantation et de l'alimentation). De plus, pour des nouvelles conceptions d'antennes, on souhaite pouvoir disposer ces éléments sur une surface conformée, éventuellement déformable.The field of the invention is that of antennas networks, and more particularly network antennas broadband (5 to 10%), especially for the space sector. These network antennas include many sources radiant elementals, and the nourishment of these sources, in an appropriate relative provision to give to radiated fields the desired shape for application specific envisaged. So we are looking for a cheap item at manufacture (because it requires a large number, which can reach a few thousand), neither heavy nor bulky (because on board), and easy to integrate into the antenna (geometry implantation and food). In addition, for new antenna designs, we want to be able to arrange these elements on a shaped surface, possibly deformable.

Dans le domaine de satellites, il est courant d'utiliser des faisceaux rayonnés fins, que l'on appelle des "pinceaux". Ceci veut dire que les lobes principaux de champs rayonnés des pinceaux sont relativement étroits, et que les pinceaux de ce type ont une empreinte au sol assez limitée. Mais on peut former le lobe principal de plusieurs façons, pour créer des pinceaux allongés par exemple, ou asymétriques. En général, on cherche à adapter l'empreinte au sol à l'aire géographique que l'on voudrait effectivement éclairer, pour ne pas gaspiller de la puissance rayonnée inutilement en dehors de cette aire. Un lobe d'une antenne réseau est formé par la géométrie ou la disposition relative des éléments rayonnants, ainsi que par l'amplitude et la phase des signaux d'excitation appliqués sur ces éléments rayonnants moyennant un réseau d'alimentation et son électronique de commande.In the field of satellites, it is common to use fine radiated beams, which are called "paint brushes". This means that the main lobes of radiated fields of the brushes are relatively narrow, and that brushes of this type have a fairly small footprint limited. But we can form the main lobe of several ways, to create elongated brushes for example, or asymmetrical. In general, we try to adapt the footprint on the ground to the geographic area that we would actually like light, so as not to waste radiated power unnecessarily outside this area. A lobe of an antenna network is formed by geometry or relative arrangement radiating elements, as well as by the amplitude and the phase of the excitation signals applied to these elements radiant through a power network and its control electronics.

Souvent, dans la réalisation pratique d'antennes réseaux, dans la mesure du possible, plusieurs sources élémentaires seront regroupées dans des sous ensembles, de façon à ce que ces sources partagent un point de contrôle commun dans le système de gestion des amplitudes et des phases. Un exemple est montré sur la figure 1 d'un réseau imprimé d'alimentation de quatre sources élémentaires imprimées. Une source élémentaire de ce type est couramment connue de l'homme de l'art sous le nom en anglais "Patch". A défaut d'une réalisation monolithique et globale, un sous-ensemble peut être constitué de façon purement mécanique, formant la brique de base d'une construction modulaire de l'antenne, ce qui facilite l'entretien et les réparations éventuelles.Often in the practical realization of antennas networks, where possible, multiple sources elementary will be grouped into subsets, so that these sources share a control point common in the amplitude and phases. An example is shown in Figure 1 of a network printed feed from four elementary sources printed. An elementary source of this type is commonly known to those skilled in the art under the English name "Patch". In the absence of a monolithic and global realization, a subset can be made up purely mechanically, forming the basic brick of a modular construction of antenna, which facilitates maintenance and repairs possible.

Les antennes réseaux imprimées ou planes ayant des sources élémentaires sont connues depuis une bonne quinzaine d'années et sont utilisées dans des champs d'application de plus en plus variés. De nombreuses publications ainsi que brevets situent le niveau de l'état de l'art en ce domaine. Nous citons ci-après, quelques références parmi les plus connues, qui font partie intégrante de la présente demande en tant que description de l'art antérieur :

  • 1) MICROSTRIP ANTENNA TECHNOLOGY, K. Carver, J.W Mink, IEEE. AP vol AP 29. - n°1 janvier 1981
  • 2) ANNULAR SLOT ANTENNA WITH A STRIPLINE FEED, M.FASSET, 23 juin 1989 - US Patent.
  • 3) A NEW BROADBAND STACKED TWO LAYER MICROSTRIP ANTENNA - A. Sabban - APS 1983 - P63 - 66 IEEE.
  • 4) ANTENNE PLANE - T. Dusseux, M. Gomez-HENRI, G. RAGUENET - French Patent n° 89 11829, 11 sept. 1989. - Publ. FR 2 651 926.
  • Printed or planar array antennas with elementary sources have been known for about fifteen years and are used in increasingly varied fields of application. Many publications as well as patents situate the state of the art in this field. We quote below, some of the best known references, which form an integral part of the present application as a description of the prior art:
  • 1) MICROSTRIP ANTENNA TECHNOLOGY, K. Carver, JW Mink, IEEE. AP vol AP 29. - n ° 1 January 1981
  • 2) ANNULAR SLOT ANTENNA WITH A STRIPLINE FEED, M.FASSET, June 23, 1989 - US Patent.
  • 3) A NEW BROADBAND STACKED TWO LAYER MICROSTRIP ANTENNA - A. Sabban - APS 1983 - P63 - 66 IEEE.
  • 4) ANTENNA PLANE - T. Dusseux, M. Gomez-HENRI, G. RAGUENET - French Patent n ° 89 11829, Sept. 11, 1989. - Publ. FR 2 651 926.
  • Ces systèmes imprimés d'antennes réseaux sont donc bien connus dans leurs versions simples ou multirésonateurs. Leurs avantages principaux, en comparaison à des anciennes antennes réseaux constituées de sources élémentaires de type cornets ou hélices, sont leur faible encombrement et masse. Pour le domaine spatial, on peut citer également leur grande robustesse. En contrepartie, la largeur de bande des sources élémentaires de type patch est relativement limitée, seulement de l'ordre de 1 % à quelques pour cent, dans sa version la plus simple. Un but de l'invention est d'obtenir une large bande de fonctionnement, normalement exclue pour les sources rayonnantes simples de type patch, simultanément avec les avantages connus de ce type d'élément.These printed antenna systems are therefore well known in their single or multi-resonant versions. Their main advantages, compared to old ones network antennas made up of elementary sources of the type cones or propellers, are their small size and mass. For the space sector, we can also cite their large robustness. In return, the bandwidth of patch-type elementary sources is relatively limited, only in the range of 1% to a few percent, in its simplest version. An object of the invention is to obtain a wide operating band, normally excluded for simple patch type radiant sources, simultaneously with the known advantages of this type of element.

    Il est connu dans l'art antérieur, pour élargir la bande passante, d'utiliser une cavité résonante placée derrière le patch, telle que décrit dans le document D1 = EP-A- 355 898 de Rammos. Un telle source rayonnante, selon l'assemblage de l'art antérieur, est généralement alimentée en technologie "triplaque", qui consiste en une piste (d'alimentation) conductrice suspendue entre deux plans de masse, telle que décrit dans le document D2 = US-A-5 087 920 au nom de Shinobu Tsurumare et al., de SONY. Cette solution à généralement les inconvénients d'une masse et d'un encombrement plus importants que ceux des réseaux imprimés, ainsi que des coûts de réalisation plus élevés. Dans D2, pour pallier ces problèmes, on propose l'utilisation des plans de masse éventuellement réalisés par la métallisation des panneaux en matière plastique, dans lesquels des trous sont pratiqués pour former des fentes rayonnantes autour des patches gravés sur le substrat diélectrique. Dans D1, cette inconvénient est surmontée en utilisant des lignes d'alimentation coplanaires gravées.It is known in the prior art, to widen the bandwidth, to use a resonant cavity placed behind the patch, as described in document D1 = EP-A- 355 898 to Rammos. Such a radiant source, according to the assembly of the prior art is generally powered by "triplate" technology, which consists in a conductive (supply) track suspended between two ground planes, as described in document D2 = US-A-5,087,920 in the name of Shinobu Tsurumare et al., Of SONY. This solution generally has disadvantages with a larger mass and size than those of networks printed materials, as well as higher production costs. In D2, to overcome these problems, we propose the use of the possible ground plans by the metallization of plastic panels, in which holes are made to form radiant slots around the patches engraved on the dielectric substrate. In D1, this drawback is overcome by using engraved coplanar supply lines.

    L'invention proposée concerne une réalisation d'une source élémentaire pour dispositif rayonnant de type antenne plane, et des sous-ensembles rayonnants comprenant de telles sources. Le dispositif selon l'invention peut être donc intégré dans une antenne réseau plane, mais de plus, se trouve particulièrement adapté à l'implantation d'un tel sous ensemble rayonnant sur une surface conformée.The proposed invention relates to an embodiment of an elementary source for radiating device of the flat antenna type, and radiating sub-assemblies including such sources. The device according to the invention can therefore be integrated in a flat array antenna, but moreover, is particularly suitable for installing such a radiant sub-assembly on a surface consistent.

    Comme il sera expliqué plus en détail ci-après, un moyen connu de l'art antérieur pour accroítre la bande passante des éléments rayonnants imprimés de type patch est d'accroítre l'épaisseur de diélectrique entre le patch et le plan de masse. Cette méthode souffre de l'inconvénient que le réseau d'éléments ainsi construit est plus difficile à intégrer sur la face rayonnante de l'antenne, d'autant plus si cette surface n'est pas plane mais conformée. En outre les caractéristiques de rayonnement d'une antenne plane épaisse se dégradent très vite, ce qui n'offre qu'un intérêt opérationnel limité. Un autre but de l'invention est donc de s'affranchir de cet inconvénient de l'art antérieur, pour obtenir une bande passante large sans pour autant compliquer l'intégration de l'antenne sur une surface conformée. As will be explained in more detail below, a means known from the prior art to increase the bandwidth of type printed radiating elements patch is to increase the thickness of dielectric between the patch and the ground plane. This method suffers from the drawback that the network of elements thus constructed is more difficult to integrate on the radiating face of the antenna, all the more if this surface is not flat but conformed. Furthermore the characteristics of radiation from a thick planar antenna degrades very quickly, which does not provide only limited operational interest. Another object of the invention is therefore to overcome this disadvantage of the prior art, to obtain a strip wide bandwidth without complicating the integration of the antenna on a shaped surface.

    Le principe de base de la source élémentaire rayonnante selon l'invention est décrit sur la figure 2.The basic principle of the elementary source radiant according to the invention is described in FIG. 2.

    L'élément rayonnant est constitué, pour une part d'une cavité métallique, dont la géométrie fine résulte d'une optimisation par rapport à la mission de l'antenne, d'autre part d'un résonateur de type patch gravé sur un substrat diélectrique de faible épaisseur.The radiating element consists, in part of a metallic cavity, whose fine geometry results from a optimization in relation to the mission of the antenna, other part of a patch-type resonator etched on a substrate thin dielectric.

    La structure peut donc être considérée comme un élément en technologie dite de microruban enterré.The structure can therefore be considered as a element in technology known as buried microstrip.

    Les éléments imprimés connus de l'art antérieur, si simple soient-ils, n'offrent que des possibilités limitées en bande passante et qualité de rayonnement. Un défaut principal concerne l'impact de l'emploi d'un substrat diélectrique dont on fait croítre l'épaisseur pour accroítre la bande passante.The printed elements known from the prior art, if simple as they are, offer only limited possibilities in bandwidth and quality of radiation. Failure main concerns the impact of using a substrate dielectric whose thickness is increased to increase bandwidth.

    La bande passante (BP) d'une antenne microruban gravée est associée de façon inversement proportionnelle à sa surtension de cavité, connue également sous le nom de facteur de qualité Q. La cavité de l'élément imprimé de l'art antérieur est fermé par le patch, le diélectrique entre le patch et le plan de masse, et la masse elle-même.The bandwidth (BP) of an etched microstrip antenna is inversely proportional to its cavity overvoltage, also known as quality factor Q. The cavity of the printed element of the prior art is closed by the patch, the dielectric between the patch and the ground plane, and the mass itself.

    La bande passante peut être exprimée en fonction de la surtension Q et le ROS (rapport d'ondes stationnaires). La relation qui lie ces paramètres est la suivante: BP = ROS - 1Q ROS The bandwidth can be expressed as a function of the Q overvoltage and the ROS (standing wave ratio). The relationship between these parameters is as follows: BP = ROS - 1 Q ROS

    Ce même facteur de qualité Q est (approximativement) inversement proportionnel à la hauteur normalisée du patch t/λε , ou t est l'épaisseur de diélectrique entre le patch et le plan de masse, et λε est la longueur d'onde électrique dans le diélectrique caractérisé par la constante diélectrique ε, à la fréquence de fonctionnement de l'antenne. Il en résulte que dans la majeure partie de la courbe qui décrit la largeur de bande passante en fonction de la hauteur normalisée, et ce jusqu'à des épaisseurs raisonnables, la bande passante BP soit linéaire par rapport à t/λε comme en témoignent les abaques issues de la publication de Carver et Mink (1), et reproduites sur la figure 3.This same quality factor Q is (approximately) inversely proportional to the normalized height of the patch t / λ ε , where t is the thickness of dielectric between the patch and the ground plane, and λ ε is the electrical wavelength in the dielectric characterized by the dielectric constant ε, at the operating frequency of the antenna. It follows that in the major part of the curve which describes the bandwidth as a function of the normalized height, and this up to reasonable thicknesses, the bandwidth BP is linear with respect to t / λ ε as shown by it the abacuses from the publication of Carver and Mink (1), and reproduced in FIG. 3.

    Rares sont les missions ou les applications qui n'utilisent que quelques pour cent de bande (radar, par exemple). De façon plus générale, on a besoin de 6 à 10% de bande passante, voire d'avantage, de sorte que l'approche simple résonateur conduit à des épaisseurs supérieures à 15 λε pour des ROS au voisinage de 1,20.Few missions or applications use only a few percent of the band (radar, for example). More generally, we need 6 to 10% of bandwidth, or even more, so that the simple resonator approach leads to thicknesses greater than 15 λ ε for ROS in the vicinity of 1.20.

    L'impact d'une telle hauteur est assez souvent dramatique, et comprend des effets indésirables tels que :

    • pertes de rendement : pertes ohmiques, diélectriques ;
    • médiocre qualité de la polarisation principale ;
    • accroissement à des niveaux inacceptables de la polarisation croisée ;
    • propagation et rayonnement des ondes de surface, d'ou des couplages indésirés entre des éléments voisins.
    The impact of such a height is quite often dramatic, and includes undesirable effects such as:
    • yield losses: ohmic, dielectric losses;
    • poor quality of main polarization;
    • increase to unacceptable levels of cross polarization;
    • propagation and radiation of surface waves, hence unwanted couplings between neighboring elements.

    On admet en général comme limite supérieure d'utilisation de simple résonateur gravé une bande de 4 à 5% à ROS de 1,20. Au delà de cette largeur de bande, la solution devient aussi pénalisante en masse, de sorte qu'il ne lui reste quasiment aucun des avantages recherchés de la technologie d'antennes imprimées.We generally accept as an upper limit using a simple resonator etched a band of 4 to 5% at ROS of 1.20. Beyond this bandwidth, the solution also becomes penalizing en masse, so that it he has almost none of the desired benefits of printed antenna technology.

    L'homme de l'art qui désire accroítre la bande passante intrinsèquement faible d'une antenne imprimée connaít l'utilisation des techniques de multirésonateurs couplés (réf.3 - Albert Sabban). On obtient ainsi des structures multipôles qui offrent des capacités allant de quelques pour cent à quelques dizaines de pour cent de bande, dans le cas où une optimisation a été poussée en ce sens. En revanche, ces avantages sont obtenus au prix d'une plus grande complexité de réalisation, ainsi qu'un poids de l'antenne qui croit en proportion au nombre de résonateurs employés.The man of art who wants to increase the band inherently low bandwidth of a printed antenna knows the use of multiresonator techniques coupled (ref. 3 - Albert Sabban). We thus obtain multi-pole structures that offer capacities ranging from a few percent to a few tens of percent of tape, in the case where an optimization has been pushed in this meaning. However, these advantages are obtained at the cost of one greater complexity of implementation, as well as a weight of the antenna which increases in proportion to the number of resonators employees.

    L'invention va donc remédier aux inconvénients de l'art antérieur, et permettre d'obtenir une large bande passante utilisant une technologie simple dérivée de celle des antennes "patch" imprimées, tout en conservant les avantages de cette technologie.The invention will therefore remedy the drawbacks of the prior art, and allow a wide band to be obtained busy using simple technology derived from that printed "patch" antennas, while retaining the advantages of this technology.

    A ces fins, l'invention propose un élément rayonnant de type patch à large bande passante pour une antenne réseau, tel que défini dans la revendication 1.For these purposes, the invention proposes a radiating element high bandwidth patch type for an antenna network, as defined in claim 1.

    Selon une variante, ladite cavité de la réalisation précédente est partiellement fermée dans le sens du rayonnement par un deuxième résonateur qui consiste en un patch conducteur gravé sur un support qui est ensuite placé sur la face avant de ladite cavité conductrice. Selon différentes variantes, la ligne d'alimentation microruban peut être réalisée soit en microruban simple, soit en microruban blindé ou canal, et pénètre dans ladite cavité soit par un canal creusé dans la cavité métallique, soit par un évidement aménagé dans la paroi de ladite cavité.According to a variant, said cavity of the embodiment previous is partially closed in the direction of radiation by a second resonator which consists of a conductive patch engraved on a support which is then placed on the front face of said conductive cavity. According to different variants, the microstrip supply line can be carried out either in simple microstrip, or in shielded microstrip or channel, and enters said cavity either by a channel dug in the metal cavity, either through a recess in the wall of said cavity.

    Différentes formes de patch peuvent être utilisées, par exemple : cercle, carré, polygone,...; ainsi que différentes formes de cavité : cylindre circulaire, carré, octogonale, pentahexagonale,...Different forms of patch can be used, for example: circle, square, polygon, ...; as well as different forms of cavity: circular cylinder, square, octagonal, pentahexagonal, ...

    L'invention propose également un sous ensemble d'éléments rayonnants pour antenne réseau, dit sous-réseau, ledit sous-réseau comprenant notamment un support mécanique, plusieurs patchs et leurs alimentations en technologie microruban, avec leur substrat diélectrique et leur plan de masse associés, caractérisé en ce que ledit support mécanique de sous-réseau est placé sur la face avant dudit substrat diélectrique, du côté rayonnement de l'antenne. Selon une variante de sous-réseau, les éléments rayonnants sont conformes à l'une des descriptions précédentes, et comprennent en outre un système résonnant autour de chaque patch, ledit système résonnant pouvant être une cavité, par exemple. Selon une réalisation préférentielle, ledit support mécanique comprend lesdites cavités. Selon une réalisation particulièrement avantageuse, ledit sous-ensemble est alimenté par un seul point d'alimentation, commun à tous les éléments dudit sous-réseau. Selon une variante géométrique importante, ledit sous-réseau n'est pas plan, mais conformé, c'est-à-dire que les patchs d'un sous-réseau peuvent avoir des orientations angulaires différentes.The invention also provides a subset of radiating elements for a network antenna, known as a sub-network, said sub-network comprising in particular a mechanical support, several patches and their supplies in microstrip technology, with their dielectric substrate and their associated ground plane. , characterized in that said mechanical sub-array support is placed on the front face of said dielectric substrate, on the radiation side of the antenna. According to a variant of the sub-network, the radiating elements conform to one of the preceding descriptions, and further comprise a resonant system around each patch, said resonant system possibly being a cavity, for example. According to a preferred embodiment, said mechanical support comprises said cavities. According to a particularly advantageous embodiment, said sub-assembly is supplied by a single supply point, common to all the elements of said sub-network. According to an important geometric variant, said sub-network is not planar, but conformed, that is to say that the patches of a sub-network can have different angular orientations.

    L'invention concerne également l'intégration de sous-réseaux selon les descriptions précédentes dans une antenne réseau. Selon différentes variantes, ladite antenne peut être disposée sur une surface plane, de révolution, ou d'une courbure quelconque. Avantageusement, les sous réseaux utilisés pour réaliser l'antenne réseau seront de géométries identiques, permettant la fabrication de séries des composants desdits sous-réseaux, ainsi que des sous-réseaux eux-mêmes. The invention also relates to the integration of subnets according to the previous descriptions in an antenna network. According to different variants, said antenna can be placed on a flat surface, of revolution, or of a any curvature. Advantageously, the subnets used to make the network antenna will be of geometry identical, allowing the production of series of components of said subnets, as well as subnets themselves.

    D'autres caractéristiques, variantes, et avantages ressortiront de la description détaillée qui va suivre avec ses dessins annexes dont :

  • La figure 1, déjà décrite, montre schématiquement en plan un sous-réseau de quatre patches rayonnants selon l'invention, avec leur alimentation en technologie microruban ;
  • La figure 2, déjà évoquée, montre schématiquement en plan et en coupe un exemple d'un élément rayonnant selon l'art antérieur;
  • La figure 3, déjà évoquée, montre des courbes de Bande Passante (BP) en fonction de la hauteur normalisée de diélectrique pour des patches carrés et rectangulaires, pour ROS=2 et aux fréquences de 1 GHz et 10 GHz (référence 1) ;
  • Les figures 4a et 4b montrent schématiquement en coupe une ligne d'alimentation microruban simple (4a) et une ligne d'alimentation en microruban blindé (4b) ;
  • La figure 5 montre schématiquement en coupe une variante d'un élément rayonnant selon l'invention ;
  • La figure 6 montre schématiquement en coupe une autre variante d'un élément rayonnant selon l'invention, avec un deuxième résonateur ;
  • La figure 7 montre schématiquement en perspective éclatée un mode de réalisation de la variante de la figure 6 ;
  • La figure 8 montre schématiquement et en perspective un exemple d'une structure mécanique pour la réalisation d'un sous-ensemble rayonnant selon l'invention ;
  • La figure 9 montre schématiquement en plan la réalisation d'une antenne réseau sur une surface conformée utilisant des sous-réseaux d'éléments rayonnants selon l'invention ;
  • Other characteristics, variants and advantages will emerge from the detailed description which follows with its annexed drawings, including:
  • FIG. 1, already described, schematically shows in plan a sub-network of four radiating patches according to the invention, with their supply in microstrip technology;
  • Figure 2, already mentioned, shows schematically in plan and in section an example of a radiating element according to the prior art;
  • Figure 3, already mentioned, shows Bandwidth curves (BP) as a function of the normalized dielectric height for square and rectangular patches, for ROS = 2 and at frequencies of 1 GHz and 10 GHz (reference 1);
  • Figures 4a and 4b schematically show in section a single microstrip supply line (4a) and a shielded microstrip supply line (4b);
  • FIG. 5 schematically shows in section a variant of a radiating element according to the invention;
  • FIG. 6 schematically shows in section another variant of a radiating element according to the invention, with a second resonator;
  • Figure 7 shows schematically in exploded perspective an embodiment of the variant of Figure 6;
  • Figure 8 shows schematically and in perspective an example of a mechanical structure for the production of a radiating sub-assembly according to the invention;
  • FIG. 9 schematically shows in plan the production of an array antenna on a shaped surface using sub-arrays of radiating elements according to the invention;
  • Sur les différentes figures, les mêmes repères désignent les mêmes éléments, et les réalisations qui y sont décrites et dessinées sont données à titre d'exemples non-limitatifs. In the different figures, the same references designate the same elements, and the realizations therein described and drawn are given by way of nonlimiting examples.

    Sur la figure 1, on voit un exemple de sous-réseau de quatre éléments rayonnants 2 de type patch, imprimés sur un substrat diélectrique 1. Les quatre éléments rayonnants ou "patches" sont alimentés par un réseau d'alimentation réalisé en technologie microruban, qui consiste en des pistes conductrices imprimées ou gravées sur le même substrat diélectrique 1. Dans l'exemple présent, l'alimentation des quatres patches est à partir d'un point commun 5, qui alimente deux branches 3a, 3b qui sont ensuite encore bifurquées en sous-branches 4a, 4b, 4c, 4d. Selon la longueur relative des chemins électriques parcourus par les signaux appliqués sur l'entrée 5 du réseau d'alimentation, jusqu'à chaque patch, la phase relative d'excitation des quatres patches pourra trouver un paramètre de réglage. L'amplitude relative d'excitation peut être également contrôlée par la gestion des diverses impédances des différents chemins. Ces considérations appartiennent au domaine de conception d'antenne bien connu de l'homme de l'art, et ne seront pas explicitées d'avantage dans le cadre de la présente demande.In Figure 1, we see an example of a subnet of four radiating elements 2 of the patch type, printed on one dielectric substrate 1. The four radiating elements or "patches" are powered by a power network realized in microstrip technology, which consists of conductive tracks printed or engraved on the same dielectric substrate 1. In the present example, the feeding of the four patches is from a point common 5, which feeds two branches 3a, 3b which are then still branched into sub-branches 4a, 4b, 4c, 4d. According to relative length of the electrical paths traveled by signals applied to input 5 of the supply network, until each patch, the relative phase of excitation of four patches can find an adjustment parameter. The relative amplitude of excitation can also be controlled by the management of the various impedances of the different paths. These considerations belong to the field of antenna design well known to humans art, and will not be explained further in the context of this application.

    Sur la figure 2, l'on voit un exemple de réalisation d'un élément rayonnant selon l'art antérieur. A titre d'exemple, on suppose que cet élément comprend un patch gravé conducteur 2 sur un substrat diélectrique 1 recouvert sur sa face arrière par un plan de masse 6. Le patch 2 est alimenté par le microruban 4b, qui est une piste gravée conductrice, généralement du même matériau que le patch. Selon l'invention, le patch 2 est placé au fond d'un système fermé qui consiste par exemple en une cavité 7 définie par des parois conductrices 8 délimitant l'étendue radiale de la cavité 7 autour du patch 2. Les dimensions de cette cavité 7 déterminent ses caractéristiques radioélectriques selon des règles connues de l'homme de l'art ; en conséquence, ces dimensions peuvent être choisies par le concepteur afin de procurer la bande passante voulue à la fréquence de fonctionnement de l'élément rayonnant, et ceci sans augmentation de l'épaisseur de diélectrique 1 derrière le patch 2. Il en résulte que le dimensionnement de l'élément rayonnant de l'antenne selon l'invention et tel que décrit de façon la plus simple possible sur la figure 5 n'est pas régie par les mêmes mécanismes que le dimensionnement pratique dans l'art antérieur.In Figure 2, we see an example of embodiment of a radiating element according to the prior art. As example, we assume that this element includes a patch etched conductor 2 on a dielectric substrate 1 covered on its back side by a ground plane 6. Patch 2 is powered by microstrip 4b, which is an engraved track conductive, usually of the same material as the patch. According to the invention, patch 2 is placed at the bottom of a system closed which consists for example of a cavity 7 defined by conductive walls 8 delimiting the radial extent of the cavity 7 around patch 2. The dimensions of this cavity 7 determine its radio characteristics according to rules known to those skilled in the art; as a result, these dimensions can be chosen by the designer in order to provide the desired bandwidth at the frequency of operation of the radiating element, and this without increase in the thickness of dielectric 1 behind the patch 2. It follows that the dimensioning of the element radiating from the antenna according to the invention and as described as simply as possible in Figure 5 is not governed by the same mechanisms as sizing practical in the prior art.

    En particulier, sur la figure 3, on voit dans le cas d'une construction selon l'art antérieur, les courbes de bande passante Δf/f en fonction de la hauteur normalisée t/λε de diélectrique, c'est-à-dire que l'épaisseur de diélectrique est "normalisée" ou divisée par la longueur d'onde dans le diélectrique λε, nous indiquent qu'une épaisseur inacceptable de diélectrique est nécessaire pour fournir une bande passante au delà de quelques pour cent. A titre d'exemple, la courbe 9 représente la réponse en fréquence d'un patch carré de dimensions égales à 0.3 λ0 ou λ0 est la longueur d'onde dans le vide, sur un substrat diélectrique ayant un constant diélectrique de εr = 2.76 et pour un ROS (rapport d'ondes stationnaires) de 2. La courbe 10 représente quant à elle la réponse en fréquence d'un patch rectangulaire de dimensions égales à 0.3 x 0.5 λ0, avec les mêmes paramètres de constante diélectrique et de ROS. On voit que pour les hyperfréquences de l'ordre de 1 à 10 GHz, indiquées respectivement sur les courbes 9, 10 par un trait continu et un trait pointillé, la relation reste approximativement linéaire entre la bande passante et la hauteur normalisée pour des largeurs de bande entre 1 % et 10 % .In particular, in FIG. 3, we see in the case of a construction according to the prior art, the bandwidth curves Δf / f as a function of the normalized height t / λ ε of dielectric, that is to say to say that the thickness of dielectric is "normalized" or divided by the wavelength in the dielectric λ ε , indicates to us that an unacceptable thickness of dielectric is necessary to provide a bandwidth beyond a few percent. By way of example, curve 9 represents the frequency response of a square patch of dimensions equal to 0.3 λ 0 or λ 0 is the wavelength in vacuum, on a dielectric substrate having a dielectric constant of ε r = 2.76 and for an ROS (standing wave ratio) of 2. Curve 10 represents the frequency response of a rectangular patch of dimensions equal to 0.3 x 0.5 λ 0 , with the same dielectric constant parameters and from ROS. We see that for microwaves of the order of 1 to 10 GHz, indicated respectively on curves 9, 10 by a solid line and a dotted line, the relationship remains approximately linear between the bandwidth and the normalized height for widths of band between 1% and 10%.

    Dans le cas de l'invention, et telle que décrite sur la figure 5 en revanche, on se trouve davantage dans une situation analogue à une transition ligne de propagation microruban vers un mini-guide, les éléments fondamentaux de comportement suivent donc des régles spécifiques dont la description suit.In the case of the invention, and as described in Figure 5 on the other hand, we are more in a situation analogous to a propagation line transition microstrip towards a mini-guide, the fundamental elements of behavior therefore follow specific rules whose description follows.

    La ligne principale de propagation est donc de type microruban et met en jeu typiquement une piste de conducteur gravé sur une épaisseur de substrat dense. L'épaisseur de celui-ci est dimensionné en intégrant les critères radioélectriques d'usage (εr, w, h, Ze) ainsi que des contraintes plus spécifiques pouvant provenir de la mission envisagée. L'intérêt de faible épaisseur de substrat (de l'ordre de 20 mils, 30 mils maxi, soit 0,5 a 0,75 mm) est de rendre tout à fait gérable au niveau réalisation industrielle la mise en oeuvre d'éléments rayonnants ainsi que leurs circuits de distribution associés sur des surfaces bien entendu planes, mais surtout conformées en trois dimensions, comme on le verra plus loin.The main propagation line is therefore of microstrip type and typically involves a conductor track etched on a thickness of dense substrate. The thickness of this one is dimensioned by integrating the radioelectric criteria of use (ε r , w, h, Ze) as well as more specific constraints which can come from the envisaged mission. The advantage of thin substrate thickness (of the order of 20 mils, 30 mils maximum, or 0.5 to 0.75 mm) is that it makes it entirely manageable in terms of industrial production the use of radiating elements as well as their associated distribution circuits on surfaces of course flat, but above all shaped in three dimensions, as will be seen below.

    Nous décrirons plus en profondeur un exemple d'antenne réseau sur une surface conformée dont la mise en oeuvre à l'aide d'éléments rayonnants conçus selon l'invention est excessivement attractive.We will describe in more detail an example of antenna network on a conformed surface, the implementation of which using radiating elements designed according to the invention is excessively attractive.

    Les figures 4a, 4b montrent deux exemples de technologie microruban qui peuvent être exploitées pour la réalisation des lignes d'alimentation pour les éléments rayonnants selon l'invention. Dans le cas de la figure 4a, la ligne microruban est constituée d'une piste conductrice 22 gravée sur un substrat diélectrique 1 ayant un plan de masse 6 derrière le substrat (sur la face opposée de la face comportant la piste gravée). Les paramètres physiques caractérisant ce système sont la constante diélectrique ε et la hauteur ou l'épaisseur de diélectrique h1 .FIGS. 4a, 4b show two examples of microstrip technology which can be used for the production of supply lines for the radiating elements according to the invention. In the case of FIG. 4a, the microstrip line consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate (on the opposite face of the face comprising the etched track). The physical parameters characterizing this system are the dielectric constant ε and the height or thickness of dielectric h 1 .

    Dans le cas de la figure 4b, il s'agit d'une ligne microruban blindée qui est représentée schématiquement. Comme dans le cas précédent, la ligne microruban elle-même est constituée d'une piste conductrice 22 gravée sur un substrat diélectrique 1 ayant un plan de masse 6 derrière le substrat 1 . Un blindage autour de cette ligne est constitué par des parois conductrices 18 qui entourent la piste 22 et qui sont reliées électriquement à la masse 6.In the case of Figure 4b, it is a line shielded microstrip which is shown diagrammatically. As in the previous case, the microstrip line itself consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate 1. Shielding around this line is constituted by conductive walls 18 which surround the track 22 and which are electrically connected to earth 6.

    Les paramètres physiques qui caractérisent le système sont la constante diélectrique ε et la hauteur ou l'épaisseur de diélectrique h1 , ainsi que les dimensions du blindage h2 pour la hauteur ou la distance entre la surface du diélectrique 1 et la paroi conductrice 18 qui est orientée parallèlement à cette surface , et la largeur d entre les parois conductrices 18 de chaque côté de la piste 22. L'espace 17 à l'intérieur du blindage constitué par les parois conductrices 18 est supposé être rempli d'air, et donc aura une constante diélectrique voisine de 1. Les caractéristiques radioélectriques de propagation sur une telle ligne sont calculées à partir des paramètres physiques cités selon des méthodes bien connues de l'homme de l'art.The physical parameters which characterize the system are the dielectric constant ε and the height or thickness of dielectric h 1 , as well as the dimensions of the shielding h 2 for the height or the distance between the surface of the dielectric 1 and the conductive wall 18 which is oriented parallel to this surface, and the width d between the conductive walls 18 on each side of the track 22. The space 17 inside the shield formed by the conductive walls 18 is assumed to be filled with air, and therefore will have a dielectric constant close to 1. The radio propagation characteristics on such a line are calculated from the physical parameters cited according to methods well known to those skilled in the art.

    Dans une réalisation pratique d'élément rayonnant selon l'invention, cette ligne simple ou "blindée" utilisant une technologie canal débouche dans une cavité et se déforme de façon importante, de façon à former une géométrie de patch.In a practical embodiment of a radiating element according to the invention, this simple or "shielded" line using channel technology opens into a cavity and deforms significantly, so as to form a geometry of patch.

    La forme la plus simple de la cavité est celle d'un cylindre, mais d'autres géométries peuvent être utilisées en fonction de l'application : carré, pentagonale, hexagonale etc... sans aspect ou caractère limitatif.The simplest form of the cavity is that of a cylinder, but other geometries can be used in function of the application: square, pentagonal, hexagonal etc ... without aspect or limiting character.

    Il en est de même de la géométrie du patch qui peut se limiter à un cercle ou un carré dans sa version la plus simple, et subir des déformations qui conduisent à des géométries aussi variées que l'imagination du concepteur. C'est le cas par exemple, de déformations sciemment dimensionnées afin de rayonner une onde en polarisation circulaire, par exemple des encoches ou des chanfreins, voire des géométries plus exotiques encore.It is the same for the geometry of the patch which can be limit to a circle or a square in its most simple, and undergo deformations which lead to geometries as varied as the designer's imagination. This is the case, for example, of knowingly deformations sized to radiate a polarized wave circular, for example notches or chamfers, even more exotic geometries.

    Les caractéristiques de ce patch ainsi que celles de la cavité métallique environnante, ou plutôt celles réalisant une condition de type métallique sur les champs E et H ; permettent dès lors de réaliser, grâce à un assemblage soigneusement dimensionné des deux, taille respective, encombrement, traitement, etc..., une transition de type orthogonale de la ligne microruban vers le mini-guide ayant les caractéristiques recherchées :

    • compacité
    • large bande passante.
    The characteristics of this patch as well as those of the surrounding metallic cavity, or rather those fulfilling a metallic type condition on fields E and H; allow therefore to achieve, thanks to a carefully dimensioned assembly of the two, respective size, size, processing, etc., an orthogonal type transition from the microstrip line to the mini-guide having the desired characteristics:
    • compactness
    • wide bandwidth.

    De nombreux paramètres, qui n'étaient pas disponibles en situation patch sans cavité peuvent être mis en oeuvre pour optimiser telle ou telle performance que ce soit en impédance ou en rayonnement. Il s'agit notamment de :

    • la taille moyenne de la cavité
    • la hauteur moyenne de la cavité.
    Many parameters, which were not available in a patch without cavity situation, can be implemented to optimize this or that performance, whether in impedance or in radiation. These include:
    • the average size of the cavity
    • the average height of the cavity.

    Par exemple, la directivité de rayonnement d'un élément selon l'invention est déterminée par les dimensions relative du patch et de la cavité environnante.For example, the directivity of radiation of a element according to the invention is determined by the dimensions relative of the patch and the surrounding cavity.

    Une telle flexibilité et souplesse de dimensionnement est inconcevable en situation simple résonateur selon l'art antérieur, mais devient possible en combinant patch et cavités selon l'invention. Il est clair dès lors que les lois qui en gèrent le comportement s'en trouvent modifiées et que de nouvelles abaques multi-variables peuvent être établies empiriquement, similaires à celles présentées sur la figure 3.Such flexibility and sizing flexibility is inconceivable in a simple resonator situation according to art anterior, but becomes possible by combining patch and cavities according to the invention. It is therefore clear that the laws which govern its behavior are modified and that new multivariable charts can be empirically established, similar to those presented on Figure 3.

    Les performances d'adaptation ne sont elles non plus gérées par les mêmes lois et la mise en oeuvre de la cavité améliore de façon plus que significative la performance de ROS. Dans un exemple de réalisation pratique effectuée par l'inventeur, une performance typique de 6 à 8% de bande à été obtenue avec un ROS = 1,20 en bande L (1.5 GHz) et ce à l'aide d'une structure dont l'épaisseur totale n'excède pas 10 mm, typiquement 6 mm ce qui catégorise la réalisation comme appartenant aux antennes de faibles épaisseurs.Adaptation performance is also not managed by the same laws and the implementation of the cavity more than significantly improves the performance of ROS. In an example of practical realization carried out by the inventor, a typical performance of 6 to 8% of tape to was obtained with a ROS = 1.20 in L-band (1.5 GHz) and this at using a structure whose total thickness does not exceed 10 mm, typically 6 mm which categorizes the achievement as belonging to thin antennas.

    Un tel environnement patch cavité assure un blindage qui à deux conséquences principales:

    • sécurisation de la qualité du rayonnement ainsi que de la mise en réseau, la situation à cavités minimise les couplages mutuels interéléments.
    • absence du mécanisme perturbateur lié à la génération d'ondes de surface dans le diélectrique. Classiquement ces ondes de surface se propagent dans la structure et peuvent perturber le comportement des éléments adjacents. De fait, dans une réalisation selon l'invention, les ondes de surface sont "piégées" dans le volume de la cavité et participent au mécanisme d'adaptation général de l'antenne.
    Such a cavity patch environment provides shielding which has two main consequences:
    • securing the quality of radiation as well as networking, the cavity situation minimizes mutual interelement coupling.
    • absence of the disturbing mechanism linked to the generation of surface waves in the dielectric. Conventionally, these surface waves propagate in the structure and can disturb the behavior of adjacent elements. In fact, in an embodiment according to the invention, the surface waves are "trapped" in the volume of the cavity and participate in the general adaptation mechanism of the antenna.

    On peut envisager deux réalisations technologiques du concept de l'invention, qui consiste à assembler une cavité et l'élément rayonnant réalisé en technologie microruban enterré.We can consider two technological achievements of concept of the invention, which consists in assembling a cavity and the radiating element produced in microstrip technology buried.

    La première approche est fidèle à la figure 2. Dans ce cas, la cavité peut être intégrée dans une structure porteuse (telle que l'exemple représenté sur la figure 8) sur laquelle on viendra coller, visser, ou assembler par tout autre moyen le circuit microruban sur un substrat diélectrique 1 de faible épaisseur comportant le patch 2 et la ligne d'alimentation 4.The first approach is faithful to Figure 2. In this case, the cavity can be integrated into a structure carrier (such as the example shown in Figure 8) on which we will glue, screw, or assemble by any other means the microstrip circuit on a substrate thin dielectric 1 comprising patch 2 and the power line 4.

    Sur la figure 5, nous avons une vue en coupe d'une variante de mise en oeuvre de l'invention. Cette figure est identique à la figure 2 à l'exception de la présence des éléments conducteurs 13. Selon cette variante, on réalise une condition de court-circuit entre la paroi verticale 8 de la cavité 7 et le plan de masse 6 de la ligne microruban, moyennant un ou plusieurs élément(s) conducteur(s) 13 qui relie(nt) électriquement les deux. Cette réalisation permet de ce fait un blindage total de l'ensemble microruban et patch par rapport à d'autres éléments voisins. La continuité électrique établie par le(s) élément(s) conducteur(s) 13 peut être totale ou partielle :In Figure 5, we have a sectional view of a variant implementation of the invention. This figure is identical to Figure 2 except for the presence of conductive elements 13. According to this variant, one realizes a short circuit condition between the vertical wall 8 of the cavity 7 and the ground plane 6 of the microstrip line, by means of one or more conductive element (s) 13 which electrically connects the two. This achievement allows thereby a total shielding of the microstrip assembly and patch compared to other neighboring elements. The electrical continuity established by the element (s) conductor (s) 13 can be total or partial:

    Totale : On peut fort bien souder ou braser la structure métallique 8 définissant la cavité 7 sur le fond plan de masse 6 conformément à la géométrie de la cavité. Total : We can very well weld or braze the metal structure 8 defining the cavity 7 on the ground plane bottom 6 in accordance with the geometry of the cavity.

    Partielle : On peut imaginer un blindage discret à l'aide de plots traversant le substrat diélectrique 2 vissables sur la cavité ou même envisager la technique de trous métallisés dans le substrat diélectrique que l'on pourrait souder en phase vapeur par exemple à la pièce continue de la cavité. Partial : One can imagine a discrete shielding using studs crossing the dielectric substrate 2 screwable on the cavity or even consider the technique of metallized holes in the dielectric substrate which one could weld in vapor phase for example to the continuous part of the cavity.

    Une autre technique pourrait consister aussi à réaliser une condition électrique équivalente. Ainsi on pourrait donner une géométrie à la cavité face au plan de masse telle qu'elle constitue un court-circuit réactif pour les signaux hyperfréquences. Une telle technique a déjà été décrite dans le document référencé n° 4 - French patent n°89 11-829.Another technique could also consist of achieve an equivalent electrical condition. So we could give geometry to the cavity facing the plane of mass such that it constitutes a reactive short circuit for microwave signals. Such a technique has already been described in the document referenced n ° 4 - French patent n ° 89 11-829.

    A partir du concept de base, l'association d'un ensemble patch/ligne d'alimentation microruban avec une cavité, il est possible de construire moult variantes qui ne sont que des applications ou des optimisations particulières du concept originel. Nous allons décrire deux exemples, afin d'illustrer ce propos.

  • a) un élément très large bande, développe en bande X.
  • b) un réseau conforme utilisant l'élément du type montré sur la figure 2.
  • From the basic concept, the association of a patch / microstrip power supply line with a cavity, it is possible to build many variants which are only specific applications or optimizations of the original concept. We will describe two examples to illustrate this point.
  • a) a very wide band element, develops in X band.
  • b) a conforming network using the element of the type shown in FIG. 2.
  • Un premier exemple d'une réalisation d'antenne utilisant un élément très large bande selon l'invention est montré sur la figure 6. Cet élément est destiné à une antenne fonctionnant à 8 GHz qui a été réalisée et sur laquelle des mesures ont permis d'en confirmer les performances attendues.A first example of an antenna realization using a very wide band element according to the invention is shown in Figure 6. This element is intended for antenna operating at 8 GHz which has been produced and on which of the measurements made it possible to confirm the expected performance.

    La figure 6 illustre la méthode de cette réalisation, qui consiste à adjoindre à un radiateur patch 2 de base, un deuxième résonateur 12 positionné au dessus du premier résonateur 2. La configuration est donc celle de la figure 5, à ceci près que la cavité résonante 7 est partiellement fermée sur sa face avant par un deuxième résonateur 12 qui peut être par exemple un patch imprimé sur un support diélectrique 11. Dans ce cas précis le deuxième élément est implanté au ras de la cavité 7, mais on pourrait le placer, moyennant des constructions plus élaborées, soit à une hauteur plus grande ou soit à une hauteur plus petite que la hauteur des parois conductrices 8 de la cavité 7. FIG. 6 illustrates the method of this realization, which consists in adding to a basic patch 2 radiator, a second resonator 12 positioned above the first resonator 2. The configuration is therefore that of the Figure 5, except that the resonant cavity 7 is partially closed on its front side by a second resonator 12 which can be for example a patch printed on a dielectric support 11. In this specific case the second element is implanted flush with cavity 7, but we could place it, with more elaborate constructions, either at a higher height or either at a lower height than the height of the conductive walls 8 of the cavity 7.

    L'approche, toutefois, qui consiste à rendre identique la distance interpatch et la hauteur de la cavité en rend la réalisation technologique fort simple. Le deuxième résonateur 12 peut être gravé sur un substrat porteur 11 de faible épaisseur et masse et son montage peut se faire par simple collage ou vissage.The approach, however, which is to make identical the interpatch distance and the height of the cavity makes it very simple technological achievement. The second resonator 12 can be etched on a carrier substrate 11 of low thickness and mass and its assembly can be done by simple bonding or screwing.

    Dans notre exemple de réalisation de la figure 6, les principales caractéristiques du radiateur sont les suivantes:

    • Diamètre cavité 7 : 23 mm
    • Hauteur cavité 7 : 2 mm
    • Taille 1er résonateur 2 : ~14 mm
    • Permittivité substrat 1 ~2.50
      (1er résonateur)
    • Epaisseur 1Er substrat 1 : 20 mils = 0,508 mm
    • Taille 2ème résonateur 12 : ~14 mm
    • Permittivité substrat 11 : ~ 3.90
    • Epaisseur 2ème substrat 11 : ~125 µm
    In our embodiment of Figure 6, the main characteristics of the radiator are as follows:
    • Cavity 7 diameter: 23 mm
    • Cavity height 7: 2 mm
    • 1st resonator size 2: ~ 14 mm
    • Permittivity substrate 1 ~ 2.50
      (1st resonator)
    • Thickness 1 Er substrate 1: 20 mils = 0.508 mm
    • 2nd resonator size 12: ~ 14 mm
    • Permittivity substrate 11: ~ 3.90
    • Thickness of 2nd substrate 11: ~ 125 µm

    Comme montré sur la figure 7, qui représente l'éclaté de la figure 6, les deux résonateurs peuvent être déformés à l'aide de chanfreins afin de générer la polarisation circulaire, si requise, à l'aide d'un seul accès. Les diagrammes de rayonnement mesurés dans une bande d'application 8.0 à 8.4 GHz montrent un excellent comportement du dispositif. Le taux d'ellipticité (polarisation croisée) est excellent à la fréquence d'optimisation (8.2 GHz) et reste très en deçà des 3 dB sur l'ensemble de la bande utile.As shown in Figure 7, which shows the exploded view in Figure 6, the two resonators can be deformed at using chamfers to generate polarization circular, if required, using a single access. The radiation patterns measured in a band 8.0 to 8.4 GHz application show excellent device behavior. The ellipticity rate (cross polarization) is excellent at frequency optimization (8.2 GHz) and remains well below 3 dB on the entire useful band.

    Sur cette figure 7, on voit également l'évidement 19 aménagé sur un côté de la paroi conductrice 8 de la cavité résonante, afin de permettre la pénétration de la ligne microruban d'alimentation dans la cavité.In this figure 7, we also see the recess 19 fitted on one side of the conductive wall 8 of the cavity resonant, to allow penetration of the line feeding microstrip in the cavity.

    Un projet d'antenne dans lequel s'inscrit le radiateur selon l'invention et présenté sur les figures 2 et 5 à 7, concerne la réalisation d'une antenne à balayage électronique telle que présentée sur les figures 8 et 9. La figure 8 montre schématiquement en perspective une structure mécanique d'un sous-ensemble rayonnant selon l'invention, ce sous-ensemble étant destiné a être assemblé avec de nombreux sous-ensembles semblables pour former une antenne réseau telle que montrée sur la figure 9.An antenna project in which the radiator fits according to the invention and presented in FIGS. 2 and 5 to 7, concerns the creation of a scanning antenna electronics as shown in Figures 8 and 9. The Figure 8 shows schematically in perspective a structure mechanics of a radiating sub-assembly according to the invention, this sub-assembly being intended to be assembled with numerous similar sub-assemblies to form a network antenna as shown in Figure 9.

    Le principe de fonctionnement de l'antenne est exposé sur la figure 9. L'exemple d'un réseau complet consiste donc en l'implantation sur une surface à symétrie de révolution autour d'une axe z de sous-ensembles identiques, tels que montrés sur la figure 8. Les sous-ensembles sont composés dans cet exemple de réalisation, de quatre radiateurs identiques de type patch selon l'une des figures 2, 5 à 7, alimentés par un répartiteur commun tel que montré sur la figure 1. La structure mécanique 14 montrée schématiquement en plan sur la figure 8 comporte les parois conductrices des quatres cavités 8 et des plots de fixation 15 du circuit microruban et son substrat diélectrique 1 tel que montré sur la figure 1. Des évidements 19 sont aménagés dans les parois conductrices 8 pour le passage de lignes microruban d'alimentation des éléments rayonnants.The operating principle of the antenna is exposed in Figure 9. The example of a complete network therefore consists by installing it on a surface with symmetry of revolution around an axis z of identical subsets, such as shown in Figure 8. The subsets are composed in this exemplary embodiment, four radiators identical patch type according to one of FIGS. 2, 5 to 7, supplied by a common distributor as shown on the Figure 1. The mechanical structure 14 shown schematically in plan in Figure 8 has the conductive walls of four cavities 8 and fixing pads 15 of the circuit microstrip and its dielectric substrate 1 as shown on Figure 1. Recesses 19 are arranged in the conductive walls 8 for the passage of microstrip lines supply of radiant elements.

    La topologie de ces radiateurs est particulière dans l'exemple montré sur ces figures 8 et 9 dans la mesure où l'un d'eux subit une inclinaison de  = 10° par rapport aux trois autres. Sur la figure 8, on voit que les trois axes 20 des trois premières cavités sont parallèles, tandis que l'axe 30 de la quatrième cavité est incliné à 10° par rapport aux autres. Le sous-réseau n'est donc pas plan mais conformé. Grâce à la faible épaisseur du diélectrique 1 qui résulte de l'utilisation de l'invention, le circuit microruban peut être facilement déformé pour se coller à la structure mécanique 14, une fois fixé à ce dernier moyennant les plots de fixation 15.The topology of these radiators is particular in the example shown in these figures 8 and 9 insofar as one of them undergoes an inclination of  = 10 ° relative to the three others. In Figure 8, we see that the three axes 20 of the first three cavities are parallel, while that the axis 30 of the fourth cavity is inclined at 10 ° by compared to others. The subnet is therefore not planar but consistent. Thanks to the small thickness of the dielectric 1 which results from the use of the invention, the circuit microstrip can be easily deformed to stick to the mechanical structure 14, once fixed to the latter by means of the fixing studs 15.

    Sur la figure 9, on voit un exemple d'une antenne réseau réalisée à partir de sous-réseaux tels que montrés sur la figure 8. Les sous-réseaux sont eux mêmes composés d'un certain nombre d'éléments rayonnants 28 selon l'invention (quatre dans cet exemple), alignés sur l'axe 21 du sous-réseau ; pour construire l'antenne, chaque sous-réseau est disposé avec son axe 21 dans un même plan avec l'axe principal de l'antenne z, et avec un écart angulaire constant entre deux plans successifs ainsi définis. L'angle  est de 10° comme dans la figure 8. L'intérêt de cette topologie particulière est pour aider à la formation de lobe de rayonnement de l'antenne, tel que décrit dans la demande de brevet français no. 91 05510 du 6 mai 1991, au nom de la demanderesse (qui fait partie intégrante de la présente demande en tant que description de l'art antérieur concernant des antennes réseaux à lobe formé).In Figure 9, we see an example of an antenna network made from subnets as shown in Figure 8. The subnets are themselves composed of a number of radiating elements 28 according to the invention (four in this example), aligned on axis 21 the subnet; to build the antenna, each subnet is arranged with its axis 21 in the same plane with the main axis of the antenna z, and with an angular deviation constant between two successive planes thus defined. The angle  is 10 ° as in figure 8. The interest of this particular topology is to assist in lobe formation antenna radiation, as described in the application French patent no. 91 05510 of May 6, 1991, on behalf of the plaintiff (which is an integral part of this request as description of prior art concerning lobe antennas with formed lobes).

    On voit donc tout l'intérêt du nouveau concept d'élément rayonnement pour réaliser ce genre d'antenne. Parmi les avantages obtenus, on peut citer notamment :

  • 1) La cavité assure un blindage qui élimine tout problème de couplage mutuel et permet la mise en réseau à efficacité maximale, à pas interélément optimum.
  • 2) La technologie microruban permet en outre deux avantages majeurs :
  • a) réaliser la transition rayonnante de manière très compacte ;
  • b) rendre possible la réalisation du répartiteur d'alimentation sur la surface conformée.
  • So we can see all the interest of the new concept of radiation element to realize this kind of antenna. Among the advantages obtained, there may be mentioned in particular:
  • 1) The cavity provides shielding which eliminates any problem of mutual coupling and allows networking at maximum efficiency , with optimum inter-element pitch.
  • 2) The microstrip technology also allows two major advantages:
  • a) achieve the radiant transition in a very compact manner;
  • b) make it possible to produce the feed distributor on the shaped surface.
  • En effet, en raison de sa faible épaisseur (20 mils), le support diélectrique de gravure peut être aisément formé à chaud par exemple sans problème de fonctionnement radioélectrique. Une autre technologie, de type triplaque par exemple, aurait été soit inapplicable soit très délicate à mettre en oeuvre.Indeed, because of its thinness (20 mils), the dielectric etching support can be easily formed hot for example without operating problems radioelectric. Another technology, triplate type for example, would have been either inapplicable or very delicate to implement.

    On perçoit donc tout l'intérêt de la démarche proposée qui permet de résoudre simultanément l'ensemble des problèmes techniques posés :

  • a) réalisation sans difficulté d'éléments rayonnants bande large très compacts sur des surfaces pouvant être conformées : cône, sphère ou autres dépendant de l'application. Par principe ces radiateurs sont blindés par des murs électriques : cavités qui sécurisent leur fonctionnement propre, ainsi que leur mise en réseau.
  • b) facilité de la réalisation d'un répartiteur sur une surface non plane. Par essence, une technologie de type microruban est très adaptée à être conformée et de ce fait se trouve très utile dans les exemples d'application que nous venons d'évoquer. A titre d'exemple, la figure 1 montre le masque de réalisation d'un circuit microruban inférieur, pouvant servir à la réalisation d'un sous-ensemble rayonnant selon l'invention. On y voit les quatre radiateurs circulaires (en bande X dans cet exemple) ainsi que les divers éléments du circuit de distribution comportant une succession de transformateurs et d'éléments de diviseur de puissance. La propagation de type microruban s'appuie sur une disymétrie de répartition de champs et concentre ceux-ci entre la piste et le diélectrique. De ce fait, elle s'accommode tout à fait d'une topologie non planaire, et la distribution de l'alimentation se fait sans perturbation notable et sans problème technologiques majeurs.
  • We therefore perceive all the interest of the proposed approach which allows to simultaneously solve all the technical problems posed:
  • a) production without difficulty of very compact wide band radiating elements on surfaces which can be shaped: cone, sphere or others depending on the application. In principle, these radiators are shielded by electrical walls: cavities which secure their proper functioning, as well as their networking.
  • b) ease of making a distributor on a non-planar surface. In essence, a microstrip type technology is very suitable for conforming and therefore is very useful in the application examples that we have just mentioned. By way of example, FIG. 1 shows the mask for producing a lower microstrip circuit, which can be used for producing a radiating sub-assembly according to the invention. We can see the four circular radiators (in X band in this example) as well as the various elements of the distribution circuit comprising a succession of transformers and power divider elements. Microstrip type propagation is based on a field distribution asymmetry and concentrates these between the track and the dielectric. Therefore, it accommodates quite a non-planar topology, and the distribution of food is done without significant disturbance and without major technological problems.
  • Il est bien clair que les configurations qui ont été décrites ne sont pas limitatives et que l'emploi du concept pourra se faire en imaginant autant de variations que d'applications potentielles.It is quite clear that the configurations which have been described are not limiting and that the use of the concept can be done by imagining as many variations as of potential applications.

    Ainsi en ce qui concerne les exemples d'antennes réseaux proposés, peuvent-ils comporter davantage d'éléments, s'implanter de façon plane, ou encore être utilisés pour échantillonner une antenne à réflecteur et s'implanter dans ce cas selon une géométrie du type surface de Petzwald qui optimise l'efficacité du dispositif.So with regard to the examples of antennas proposed networks, can they include more of elements, to be established in a plane way, or to be used to sample a reflector antenna and set up in this case according to a surface type geometry of Petzwald which optimizes the efficiency of the device.

    Claims (13)

    1. Broadband patch type antenna element for an array antenna comprising a ground plane (6), a dielectric substrate (1), a conductive patch (2) and a probe (4a, 4b, 4c, 4d) for feeding signals to said element, said patch (2) and said probe (4a, 4b, 4c, 4d) being produced by etching conductive microstrips on said dielectric (1), said patch (2) and said feed probe (4a, 4b, 4c, 4d) being disposed on a surface referred to as the front surface of said substrate (1) relative to the radiation direction, said ground plane (6) being disposed on the rear face of said substrate (1), said antenna element further including a radially closed cavity-type system (7) defined by conductive walls (8), said cavity being disposed on said front face of said dielectric substrate (1), with said patch (2) disposed on the bottom of said cavity (7), said cavity (7) being at least partly open in the radiation direction of said element, characterized in that said conductive walls (8) of said cavity (7) extend through said substrate (1) to the ground plane (6) on the rear surface of said substrate (1).
    2. Antenna element according to claim 1, characterized in that said cavity (7) is partially closed in the radiation direction by a second resonator which comprises an etched conductive patch (12) on a second thin dielectric substrate (11) disposed on the front surface of said cavity (7).
    3. Antenna element according to claim 1 or claim 2, characterized in that said microstrip feed array is a simple microstrip.
    4. Antenna element according to claim 1 or claim 2, characterized in that said microstrip feed array is a screened microstrip.
    5. Subarray of antenna elements for an array antenna according to any one of the above claims, said subarray in particular including a mechanical support (14), a plurality of patches (2) and their microstrip technology feed arrangements with their associated dielectric substrate (1) and their associated ground plane (6), characterized in that said mechanical support (14) of the subarray is disposed on the front surface of said dielectric substrate on the radiating side of the antenna.
    6. Antenna subarray according to claim 5, characterized in that said mechanical support (14) comprises the conductive walls (8) of said cavities (7).
    7. Antenna subarray according to claim 5 or claim 6, characterized in that said subarray is fed from a single feed point (5) common to all the antenna elements of said subarray.
    8. Antenna subarray according to any one of claims 5 to 7, characterized in that said subarray is conformed rather than planar.
    9. Array antenna characterized in that it comprises antenna subarrays according to any one of claims 5 to 8.
    10. Array antenna according to claim 9, characterized in that said antenna is disposed on a plane surface.
    11. Array antenna according to claim 9, characterized in that said antenna is disposed on a surface in the shape of a body of revolution.
    12. Array antenna according to claim 9, characterized in that said antenna is disposed on a conformed surface having any curvature.
    13. Array antenna according to any one of claims 9 to 12, characterized in that said antenna is made up of subarrays having exactly the same geometry.
    EP93402777A 1992-11-16 1993-11-16 Radiating element for an antenna array and sub-set with such elements Expired - Lifetime EP0598656B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9213744 1992-11-16
    FR9213744A FR2698212B1 (en) 1992-11-16 1992-11-16 Radiant elementary source for array antenna and radiating sub-assembly comprising such sources.

    Publications (2)

    Publication Number Publication Date
    EP0598656A1 EP0598656A1 (en) 1994-05-25
    EP0598656B1 true EP0598656B1 (en) 2001-03-14

    Family

    ID=9435568

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93402777A Expired - Lifetime EP0598656B1 (en) 1992-11-16 1993-11-16 Radiating element for an antenna array and sub-set with such elements

    Country Status (4)

    Country Link
    US (1) US5434581A (en)
    EP (1) EP0598656B1 (en)
    DE (1) DE69330020T2 (en)
    FR (1) FR2698212B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system

    Families Citing this family (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2957473B2 (en) * 1996-05-15 1999-10-04 静岡日本電気株式会社 Microstrip antenna device
    US5745079A (en) * 1996-06-28 1998-04-28 Raytheon Company Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
    SE508513C2 (en) * 1997-02-14 1998-10-12 Ericsson Telefon Ab L M Microstrip antenna as well as group antenna
    US6297774B1 (en) * 1997-03-12 2001-10-02 Hsin- Hsien Chung Low cost high performance portable phased array antenna system for satellite communication
    US6081235A (en) * 1998-04-30 2000-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High resolution scanning reflectarray antenna
    FR2778802B1 (en) 1998-05-15 2000-09-08 Alsthom Cge Alcatel CIRCULARLY POLARIZED MICROWAVE TRANSMISSION AND RECEPTION DEVICE
    US6031504A (en) * 1998-06-10 2000-02-29 Mcewan; Thomas E. Broadband antenna pair with low mutual coupling
    US6078223A (en) * 1998-08-14 2000-06-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Discriminator stabilized superconductor/ferroelectric thin film local oscillator
    GB9819504D0 (en) * 1998-09-07 1998-10-28 Ardavan Houshang Apparatus for generating focused electromagnetic radiation
    US6049305A (en) * 1998-09-30 2000-04-11 Qualcomm Incorporated Compact antenna for low and medium earth orbit satellite communication systems
    FR2788171A1 (en) * 1998-12-31 2000-07-07 Thomson Multimedia Sa ELECTRONIC SCAN NETWORK SIGNAL RECEPTION DEVICE IN A SCROLLING SATELLITE COMMUNICATION SYSTEM
    US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
    DE10039772A1 (en) * 2000-08-16 2002-03-07 Bosch Gmbh Robert combination antenna
    US6611237B2 (en) * 2000-11-30 2003-08-26 The Regents Of The University Of California Fluidic self-assembly of active antenna
    US6801167B2 (en) 2002-03-26 2004-10-05 Ngk Spark Plug Co., Ltd. Dielectric antenna
    GB2399949B (en) * 2002-03-26 2004-11-24 Ngk Spark Plug Co Dielectric antenna
    US6989791B2 (en) * 2002-07-19 2006-01-24 The Boeing Company Antenna-integrated printed wiring board assembly for a phased array antenna system
    TW584978B (en) * 2003-07-10 2004-04-21 Quanta Comp Inc Grounding module of antenna in portable electronic device
    KR100626666B1 (en) * 2003-11-22 2006-09-22 한국전자통신연구원 Conformal Horn Antenna for Circular Polarization using Planer-Type Radiator
    US7443354B2 (en) * 2005-08-09 2008-10-28 The Boeing Company Compliant, internally cooled antenna apparatus and method
    FR2901062B1 (en) * 2006-05-12 2008-07-04 Alcatel Sa AIR-RESISTANT CAVITY RADIANT DEVICE (S) WITH HIGH SURFACE EFFECT FOR A NETWORK ANTENNA
    US8503941B2 (en) 2008-02-21 2013-08-06 The Boeing Company System and method for optimized unmanned vehicle communication using telemetry
    US8836608B2 (en) 2008-12-01 2014-09-16 Drexel University MIMO antenna arrays built on metamaterial substrates
    US8766854B2 (en) * 2010-01-07 2014-07-01 National Taiwan University Bottom feed cavity aperture antenna
    FR2975537B1 (en) * 2011-05-17 2013-07-05 Thales Sa RADIANT ELEMENT FOR AN ACTIVE NETWORK ANTENNA CONSISTING OF BASIC TILES
    US9183424B2 (en) 2013-11-05 2015-11-10 Symbol Technologies, Llc Antenna array with asymmetric elements
    US20180294567A1 (en) * 2017-04-06 2018-10-11 The Charles Stark Draper Laboratory, Inc. Patch antenna system with parasitic edge-aligned elements
    DE102019204680A1 (en) * 2019-04-02 2020-10-08 Vega Grieshaber Kg Radar module with microwave chip

    Family Cites Families (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4131894A (en) * 1977-04-15 1978-12-26 Ball Corporation High efficiency microstrip antenna structure
    US4197544A (en) * 1977-09-28 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Windowed dual ground plane microstrip antennas
    US4605932A (en) * 1984-06-06 1986-08-12 The United States Of America As Represented By The Secretary Of The Navy Nested microstrip arrays
    US4709240A (en) * 1985-05-06 1987-11-24 Lockheed Missiles & Space Company, Inc. Rugged multimode antenna
    FR2583226B1 (en) * 1985-06-10 1988-03-25 France Etat OMNIDIRECTIONAL CYLINDRICAL ANTENNA
    US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method
    GB2193379B (en) * 1986-07-24 1990-04-18 Gen Electric Plc An antenna
    US5087920A (en) * 1987-07-30 1992-02-11 Sony Corporation Microwave antenna
    JP2785825B2 (en) * 1987-07-30 1998-08-13 ソニー株式会社 Planar antenna
    US4990926A (en) * 1987-10-19 1991-02-05 Sony Corporation Microwave antenna structure
    US5061943A (en) * 1988-08-03 1991-10-29 Agence Spatiale Europenne Planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane
    US5124713A (en) * 1990-09-18 1992-06-23 Mayes Paul E Planar microwave antenna for producing circular polarization from a patch radiator
    FR2676310B1 (en) * 1991-05-06 1993-11-05 Alcatel Espace LOBE SHAPED AND LARGE GAIN ANTENNA.
    US5210542A (en) * 1991-07-03 1993-05-11 Ball Corporation Microstrip patch antenna structure

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system

    Also Published As

    Publication number Publication date
    EP0598656A1 (en) 1994-05-25
    DE69330020D1 (en) 2001-04-19
    DE69330020T2 (en) 2001-10-11
    FR2698212A1 (en) 1994-05-20
    US5434581A (en) 1995-07-18
    FR2698212B1 (en) 1994-12-30

    Similar Documents

    Publication Publication Date Title
    EP0598656B1 (en) Radiating element for an antenna array and sub-set with such elements
    EP2564466B1 (en) Compact radiating element having resonant cavities
    CA2004870C (en) Multifrequency radiating device
    EP0627783B1 (en) Radiating multi-layer structure with variable directivity
    EP0575211B1 (en) Radiating element of an antenna with wide bandwidth and antenna array comprising such elements
    EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
    EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
    EP0886889B1 (en) Wide band printed network antenna
    EP0315141B1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
    EP0667984B1 (en) Monopolar wire-plate antenna
    FR2975537A1 (en) RADIANT ELEMENT FOR AN ACTIVE NETWORK ANTENNA CONSISTING OF BASIC TILES
    EP0661773A1 (en) Conically shaped microstrip patch antenna prepared on a planar substrate and method of its manufacturing
    FR2738954A1 (en) IMPROVED ELECTRONIC SCANNING ANTENNA
    EP3664214B1 (en) Multiple access radiant elements
    CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
    FR2552273A1 (en) Omnidirectional microwave antenna
    EP3900113B1 (en) Elementary microstrip antenna and array antenna
    EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
    EP0617480A1 (en) Radiating structure with variable directivity
    EP0831550B1 (en) Versatile array antenna
    FR2803694A1 (en) RESONANT CAVITY ANTENNA HAVING A CONFORMING BEAM ACCORDING TO A PREDETERMINED RADIATION DIAGRAM
    EP4092831A1 (en) Antenna with lacunary distribution network
    FR2751138A1 (en) Microstrip array antenna

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT SE

    17P Request for examination filed

    Effective date: 19940914

    17Q First examination report despatched

    Effective date: 19960612

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL SPACE INDUSTRIES

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    ITF It: translation for a ep patent filed

    Owner name: JACOBACCI & PERANI S.P.A.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20010314

    REF Corresponds to:

    Ref document number: 69330020

    Country of ref document: DE

    Date of ref document: 20010419

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20101111

    Year of fee payment: 18

    Ref country code: IT

    Payment date: 20101120

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111117

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20121114

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20121130

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20121114

    Year of fee payment: 20

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121116

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69330020

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69330020

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20131115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20131119

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20131115