EP0626697A1 - Procédé et système pour la surveillance et le diagnostic des défaillances d'une installation; installation équipée du système - Google Patents

Procédé et système pour la surveillance et le diagnostic des défaillances d'une installation; installation équipée du système Download PDF

Info

Publication number
EP0626697A1
EP0626697A1 EP94107775A EP94107775A EP0626697A1 EP 0626697 A1 EP0626697 A1 EP 0626697A1 EP 94107775 A EP94107775 A EP 94107775A EP 94107775 A EP94107775 A EP 94107775A EP 0626697 A1 EP0626697 A1 EP 0626697A1
Authority
EP
European Patent Office
Prior art keywords
plant
data
diagnosing
monitoring
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94107775A
Other languages
German (de)
English (en)
Other versions
EP0626697B1 (fr
Inventor
Shunsuke Uchida
Haruo Fujimori
Fuminobu Takahashi
Takaharu Fukuzaki
Izumi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of EP0626697A1 publication Critical patent/EP0626697A1/fr
Application granted granted Critical
Publication of EP0626697B1 publication Critical patent/EP0626697B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a monitoring and diagnosing method and system which monitor and diagnose the condition and operation of plants such as nuclear power plants and thermoelectric power plants.
  • plants for producing energy and reaction products e.g., nuclear power plants such as using boiling water reactors and pressurized water reactors, thermoelectric power plants in which petroleum, coal, natural gas, etc. are burnt, and chemical plants for producing and refining petrochemicals such as ethylene (hereinafter these different types of plants referred to simply together as plants).
  • nuclear power plants such as using boiling water reactors and pressurized water reactors
  • thermoelectric power plants in which petroleum, coal, natural gas, etc. are burnt
  • chemical plants for producing and refining petrochemicals such as ethylene
  • objects to be controlled in the plants are subject to a wide temperature range from low to high temperatures, and phase of the objects is changed from liquid to gas phase and, in some cases, even to solid phase at different locations within each plant.
  • the temperature and phase of the controlled object are variously changed at different locations within the plant.
  • the operation of a plant is controlled by a computer.
  • various variables in the plant such as pressure and temperature are measured every moment, and the plant is operated under control of the computer so that the various variables are optimized.
  • Fig. 16 is a schematic structural view of main apparatus and equipment of a nuclear power plant using a boiling water reactor.
  • reactor internals such as a fuel assembly and a jet pump 22 are disposed in a pressure vessel 17.
  • the pressure vessel 17 is housed in a reactor containment vessel 16 along with other main apparatus and equipment for controlling and cooling the reactor, such as a control rod drive unit and a recirculation pump motor 29.
  • control rods are withdrawn from of a core 23 so that nuclear fission of uranium as fuel reaches critical to produce heat.
  • the jet pump 22 is driven by the recirculation pump motor 29 disposed in a recirculation loop 26, whereby cooling water is circulated to remove the heat generated with the nuclear fission from the core.
  • high-pressure steam at 280 °C and 6.9 MPa is produced and supplied to a turbine through a main steam line 24 for driving the turbine to thereby generate electricity.
  • the steam is condensed by a condenser into water that is returned to the reactor through a feed-water line 25.
  • nitrogen gas is filled in the reactor containment vessel 16 for the purpose of noncombustibility.
  • the reactor is shut down and the reactor system is isolated within the reactor containment vessel 16 by operating main steam isolation valves installed inside and outside of the reactor containment vessel 16. Also, an overpressure in the reactor is relieved through a safety release valve 18, and safety equipment such as an emergency core cooling system is operated.
  • Denoted by reference numeral 21 is a shroud disposed to surround the core 23.
  • 20 is a steamy water separator
  • 37 is a dry well
  • 19 is a stem drier.
  • the steam water separator 20 serves to remove condensed water
  • the dry well 37 serves to release a steam/water mixture in the event of loss-of-coolant accident.
  • 28 is a coolant purifying pump which supplies a coolant to the feed-water line 25 through a filter/demineralizer 27.
  • 15 is a reactor containment vessel spray for scattering cooling water, and 30 is a similar spray.
  • 31 is a turbine pump for cooling in the event of isolation. In case of the reactor isolated from the turbine system, the pump 31 serves to cool the reactor.
  • 32 is a residual heat removal unit and 36 is a residual heat removal pump, these heat exchanger 32 and the pump 36 serving to remove the decay heat after shut-down of the reactor.
  • 33 is a high-pressure core spray pump, 34 is a low-pressure core spray pump, and 35 is a pressure suppression chamber.
  • the operation of the nuclear power plant is periodically shut down and the main equipment and apparatus are dismantled and disassembled to check the presence or absence of an abnormality and a degree of deterioration of them for the purpose of ensuring reliability of the nuclear power plant. Also, the presence or absence of an abnormality is checked in a nondestructive manner and, if any abnormality is found, the relevant apparatus and/or parts are repaired or replaced with new ones, thereby ensuring reliability in the operation of the nuclear power plant.
  • the operating condition represented by parameters primarily related to the reactor such as power, temperature, pressure and flow rate of circulating water, are monitored at all times.
  • Fig. 17A - 17D is a table showing summary of methods for diagnosing the main apparatus and equipment
  • Fig. 18 is a table of main sensors for diagnosis of the main apparatus and equipment (reference: "Equipment Diagnosing System of Nuclear Power Plants", Uchida and other threes, Sensor Technology, October 1992, pp. 84 - 89).
  • a function of exactly analyzing and diagnosing an abnormality taking into account the personality of each plant including its production record, check/repair record and operation record, is indispensable.
  • a function of processing the data to promptly and surely analyze many kinds of and a large number of monitored data and detect an abnormality but also a function of surely transmitting the result of diagnosis and the measures to be dealt with to operators are also necessary.
  • an overall monitoring and diagnosing system in which the analyzing and diagnosing functions and the transmitting function are coupled to each other is desired.
  • an object of the present invention is to realize a plant monitoring and diagnosing method and system which can exactly analyze and diagnose an abnormality with high reliability, taking into account the production record, the check/repair record, the operation record, etc. of a plant, and can simplify the periodic inspection to increase an availability factor of the plant.
  • the present invention is arranged as follows.
  • a plant monitoring and diagnosing method detecting and accumulating plant operating conditions, apparatus operating conditions and environment conditions, inputting and accumulating plant inspection data, and monitoring and diagnosing plant conditions based on plant record information including the accumulated detection data and inspection data.
  • the plant record information is stored in the form of a plant chart in which the detection data and the inspection data are compressed and accumulated such as a personal clinical chart, and the plant conditions are diagnosed based on the data in the plant chart.
  • current plant conditions are predicted in accordance with the data in the plant chart and a plant condition predicting model, and an abnormality in the plant conditions are monitored and diagnosed based on a comparison between the predicted current plant conditions and the current detection data.
  • an abnormality is detected as a result of diagnosing the plant conditions, an abnormal location and an abnormal item are identified and events which will ensure from the abnormality are predicted.
  • the identified abnormal location and item and the event incidental to the abnormality are indicated by display means.
  • a countermeasure for dealing with the detected abnormality is selected, and the identified abnormal location and item, the event incidental to the abnormality, and the countermeasure are indicated by display means.
  • a residual life for each of plant component apparatus and members is evaluated based on the data in the plant chart and material degradation data calculated from the chart data.
  • the system comprises first input means for receiving detection data of plant operating conditions, apparatus operating conditions and environment conditions, second input means for receiving plant inspection data, first input data processing means for preparing data for use in plant monitoring and diagnosis based on the detection data from the first input means, second input data processing means for preparing data for use in plant monitoring and diagnosis based on the inspection data from the second input means, a plant chart for storing the data prepared by the first and second input data processing means, and monitoring and diagnosing means for monitoring and diagnosing the plant conditions based on the data stored in the plant chart.
  • the monitoring and diagnosing means includes abnormality diagnosing means for diagnosing a plant abnormality based on the data from the plant chart and the data from the first input data processing means.
  • the abnormality diagnosing means diagnoses an abnormality in the plant operating conditions and the plant apparatus operating conditions.
  • the abnormality diagnosing means identifies an abnormal plant location and an abnormal item and predicts ensuring events.
  • the above plant monitoring and diagnosing system further comprises display means for displaying the abnormal location, the abnormal item and the ensuring events identified and predicted by the abnormality diagnosing means.
  • the abnormality diagnosing means selects a countermeasure for dealing with the location and details of the abnormality, and the display means displays the selected countermeasure.
  • plant operating conditions, apparatus operating conditions and environment conditions are detected and accumulated, and detection data are inputted and accumulated.
  • the accumulated detection data and inspection data are stored as plant record information.
  • the plant conditions are monitored and diagnosed based on the plant record information. Therefore, when the record information shows detection of abnormal signs or the like in the past, for example, the monitoring and diagnosis are performed in consideration of the past data even if the current condition is sound.
  • the location and details of the abnormality are identified and ensuring events are predicted.
  • plant operating conditions, apparatus operating conditions and environment conditions are input through first input means. Also, inspection data are input through second input means.
  • Data for use in plant monitoring and diagnosis are prepared by first and second data processing means based on the detection data from the first and second input means.
  • the data prepared by the first and second data processing means are stored in a plant chart. Then, the plant conditions are diagnosed by monitoring and diagnosing means based on the data stored in the plant chart.
  • Fig. 1 is a block diagram for explaining the operation of a plant monitoring and diagnosing method according to one embodiment of the present invention.
  • Fig. 2 is a schematic structural view of a nuclear reactor system to which the present invention is applied.
  • Fig. 3 is a table showing a diagnosis flow for a recirculation pump.
  • Fig. 4 is a graph showing one example of preserved data for the recirculation pump as a part of the plant chart.
  • Fig. 5 is a table showing a thermal power diagnosis flow for a large-scaled plant.
  • Fig. 6A is a graph showing one example of preserved data for the thermal power diagnosis as a part of the plant chart.
  • Fig. 6B is a graph showing one example of preserved data for the thermal power diagnosis as a part of the plant chart.
  • Fig. 7 is a block diagram of an entire plant monitoring and diagnosing apparatus according to one embodiment of the present invention.
  • Fig. 8 is a block diagram of the monitoring and diagnosing system in the embodiment of Fig. 7.
  • Fig. 9 is a block diagram of another example of the monitoring and diagnosing system.
  • Fig. 10 is a block diagram of still another example of the monitoring and diagnosing system.
  • Fig. 11 is a block diagram of an entire plant monitoring and diagnosing apparatus according to another embodiment of the present invention.
  • Fig. 12 is a block diagram of an operation planning system in the embodiment of Fig. 11.
  • Fig. 13 is a diagram for explaining details of the embodiment of Fig. 8.
  • Fig. 14 is a block diagram of a plant monitoring and diagnosing apparatus according to still another embodiment of the present invention.
  • Fig. 15 is an illustration showing display examples in the embodiment of Fig. 14.
  • Fig. 16 is a schematic structural view of a boiling-water reactor power plant.
  • Fig. 17A is a table of main apparatus and equipment of a reactor.
  • Fig. 17B is a table of methods for diagnosing main apparatus and equipment of a reactor.
  • Fig. 17C is a table of main apparatus and equipment of a reactor.
  • Fig. 17D is a table of methods for diagnosing main apparatus and equipment of a reactor.
  • Fig. 18 is a table of main sensors for diagnosis of apparatus and equipment of a reactor.
  • Fig. 1 is a block diagram for explaining the operation of a plant monitoring and diagnosing method according to one embodiment of the present invention.
  • Fig. 1 taking a nuclear power plant as an example, information about an operating condition 1 of the nuclear power plant, an operating condition 2 of each of component apparatus, environment 3, etc. is detected by respective detection means and accumulated in appropriate storage means every moment through an on-line monitor 6. These data are combined and brought together into a set of plant status variables 8.
  • Water chemistry information 4 about cooling water represented by radioactivity and chemical parameters such as dissolved oxygen concentration, pH, conductivity, metal ions, various anions and suspended substances, is detected by respective detection means and measured by respective chemical and radiation ( ⁇ , ⁇ , ⁇ -ray ) analysis through the on-line monitor 6 for part of the information, but through an off-line monitor 7 for most thereof.
  • the set of plant status variables 8 is exchanged and updated to new data every moment.
  • Past data of the set of plant status variables 8 are accumulated in the storage means as a set of past plant status variables 9.
  • inspection information 5 resulted from an overhaul during the periodical inspection of the nuclear power plant and water quality / chemical information 4 measured by the off-line monitor 7 are also accumulated in the set of past plant status variables 9.
  • the set of past plant status variables 9 is put together (compressed) into a plant chart 11 and preserved as well as a personal clinical chart.
  • models for predicting various conditions of the plant are employed to predict the current condition of the plant based on the past plant data. While the prediction using the models is usually performed based on the plant design data, a status variable prediction 12 in Fig. 1 is performed based on the plant chart 11, i.e., in consideration of the personality of the plant.
  • Data A represented by the set of plant status variables (current) 8 and data B represented by the set of plant status variables (predicted current values) 10 are compared with each other by comparison means 100. If the equation
  • the abnormal apparatus and factor are identified by detailed collation between the data A and B, analysis of the plant chart, and evaluation based on the prediction models. Also, events which might ensure from the abnormality are predicted using the models to clarify the margin period until the countermeasure such as shut-down of the plant or check, repair or replacement of the apparatus should be taken, thereby making it possible to take systematic actions (as indicated by 14).
  • temperature fluctuations and power fluctuations are analyzed to evaluate and diagnose whether the abnormality is attributable to change in any characteristic of the individual apparatus or change in the plant characteristics. Whether the operating condition of each of the apparatus and locations is proper or not is checked to diagnose a characteristic deterioration or abnormality for each apparatus and detect abnormal signs. Further, the information about the operating conditions of the individual apparatus is promptly collected and combined mutually to diagnose them for earlier discovery of an abnormality, provide a highly reliable data base, and to prepare the chart of the plant condition automatically.
  • Such collection and evaluation of the plant data are not limited to for the objects under control of a computer.
  • Information about the operating conditions of all the plant apparatus and information about the specification and inspection data of each apparatus are collected to a central control room or the like and are combined with the operation record and mode of the plant, thereby synthesizing the information.
  • Fig. 2 shows main measuring elements for use in the nuclear reactor system.
  • the nuclear reactor system comprises a core A2 made up of fuel assembly in a reactor pressure vessel A1, and a control rod A3 and a control rod drive unit A4 for adjusting a reactivity of the core and controlling a power.
  • the nuclear reactor system further comprises a recirculation pump A5, a jet pump A6 and a recirculation system A7 for circulating cooling water through the core to cool the core and take thermal energy as steam out of the core, and a turbine A8 and an electric generator A9 for converting thermal energy of the steam generated in the core into electric energy.
  • the nuclear reactor system comprises a main steam system A10 for introducing the steam to the turbine A8, a condenser A11 for condensing the steam discharged from the turbine A8, and a feed-water system A12 for reinjecting the cooling water, which has been returned to water again in the condenser A11, to the reactor.
  • A14 is a drier and A15 is a separator.
  • the reactor power is usually represented by an electric generating power and a thermal power. While the power directly produced from the reactor is in the form of heat, the reactor power is generally obtained in the form of electric energy for the purpose of generating electricity.
  • the heat efficiency is slightly fluctuated depending upon, e.g., the temperature of sea water introduced to the condenser, but is approximately 33.3 % with the definite correlation existing between the electric generating power and the thermal power. It is generally thought that when the electric generating power is fluctuated, this is resulted from fluctuations in the thermal power.
  • Gross measurement of the reactor thermal power is made based on the temperature, pressure and flow rate of the main steam.
  • the enthalpy is calculated from the temperature and the pressure, and is then multiplied by the flow rate to calculate the total enthalpy.
  • the thermal power can also be calculated from a fission rate.
  • in-reactor fluctuations in distribution of the neutron flux and distribution of the fission rate during the operation of the reactor are calculated every moment through nuclear physical calculations for the reactor.
  • a neutron flux monitor A13 disposed in or around the reactor always monitors the neutron flux, and the measured value is used to calibrate the above fluctuation values, whereby the in-core fission rate and the thermal power are calculated with high accuracy.
  • the thermal power of the reactor is calculated from the neutron measurement.
  • the thermal power obtained from the neutral measurement (hereinafter referred to as nuclear thermal power) must be coincident with the thermal power calculated from the aforementioned enthalpy of the main steam (hereinafter referred to as macroscopic thermal power). If both the powers do not coincide with each other, this means that an error is caused in the nuclear thermal power or the macroscopic thermal power due to an abnormality or the like in the measuring unit. It is therefore required to find the cause of the error and to obviate the cause.
  • the third parameter for checking which of the nuclear thermal power and the macroscopic thermal power is proper is the aforementioned electric generating power. When twos of the three powers (i.e., the nuclear thermal power, the macroscopic thermal power and the electric generating power) coincide with each other, the remaining one is abnormal.
  • the core reactivity is changed with the operation time. With the elapse of the operation time, there proceeds nuclear fission of U-235 in the fuel assembly loaded in the core. As a result, the fuel assembly are consumed and the fission products produced by the nuclear fission absorb neutrons, whereupon the reactivity is lowered.
  • the reactivity is also lowered not only upon withdrawal of the control rod inserted to the core, but also upon an increase in the flow rate circulated.
  • the flow rate is increased, the flow rate per power is reduced and the average coolant temperature in the core is lowered, thereby reducing a void fraction in the core. Since BWR has a negative void factor, the reactor power is increased with a reduction in the void fraction. The reduction in the void fraction is also caused with an increase in the flow rate through the feed-water system.
  • the thermal power of the reactor is changed upon burn-up of the fuel, withdrawal/insertion of the control rod, an increase/decrease in the flow rate circulated, and an increase/decrease in the flow rate of the feed water.
  • the change rate depends on the design and personality of the plant. In practice, plants are different in their personality even with the same design because of errors in manufacture of each plant. With due consideration paid to the personality of the plant, the thermal power of the reactor can be estimated from the position of the control rod inserted if the flow rate circulated remains the same, or from variations in the flow rate circulated if the position of the control rod inserted remains the same.
  • the thermal power of the reactor thus estimated is also compared with the aforementioned nuclear thermal power, macroscopic thermal power and electric generating power to check the normal operating condition of the reactor from the viewpoint of balance of the entire plant.
  • Fig. 3 shows one example of a diagnosis flow and a chart of the recirculation pump.
  • measurement items include measurement of the amount of dissolved metal ions, measurement of the number of valve revolutions, measurement of the pump current and voltage, measurement of the pump rotational speed, measurement of the difference pressure across an orifice, and measurement of the acceleration.
  • Information obtained from the measurement items includes valve sheet wear information from the measurement of the amount of dissolved metal ions, valve opening information from the measurement of the number of valve revolutions, power load information from the measurement of the pump current and voltage, flow rate information from each of the measurement of the pump rotational speed and the measurement of the difference pressure across an orifice, and vibration information from the measurement of the acceleration.
  • correlation evaluating data are created from the valve sheet wear information, the valve opening information, the power load information, the flow rate information, and the vibration information. These correlation evaluating data are accumulated as a pump chart.
  • the flow rate recirculated is variable upon change in the number of revolution of the recirculation pump A5.
  • the correlation between the number of revolution and the flow rate due to fluctuations in the pressure loss in the entire recirculation system is calibrated every moment.
  • These data of the number of revolution and the flow rate are separately measured in an automatic manner and are preserved as plant data primarily in the form of chart paper. To preserve such raw data as the flow rate data is itself important. However, if those data are preserved as separate data, the data volume stored becomes so large that it is difficult to immediately take out the corresponding data when a check is required upon the occurrence of trouble in some day.
  • the data of the number of revolution and the flow rate are put together into time-dependent correlation data of both the number of revolution and the flow rate immediately after the sampling, as shown in Fig. 4, the correlation data being preserved as a chart of the recirculation pump A5.
  • the vertical axis represents the flow rate Y(t) and the horizontal axis represents the number of revolution X(t).
  • the time-dependent correlation data between the number of revolution and the flow rate, as shown, are preserved in a storage. In the correlation analysis therebetween, if a plotted point deviates 10 % or more from the correlation specific to the plant, it is judged that any abnormality exists.
  • Such abnormality diagnosis can be used for future estimation of the pump characteristics so that the time at which the abnormality will exceed the allowable characteristic range may be predicted to schedule repair or replacement of the pump till that time.
  • the power consumption, vibrations, noise and valve related data are also included in the chart of the recirculation pump for enabling even slight variations to be evaluated based on a plurality of parameters.
  • vibrations are generated in various ways, e.g., in transient states of the number of revolution and the flow rate, at the number of revolution and the flow rate above certain values, and after a certain time regardless of the number of revolution and the flow rate.
  • the vibration generated regardless of the number of revolution and the flow rate, it is also required to check reliability of the vibration system itself.
  • the correlation among the number of revolution, the number of vibrations and the magnitude is analyzed and, if a significant correlation is found, the pump is diagnosed as having an abnormality in relation to its rotation.
  • Figs. 5 and 6 show one example of a chart for a large-scaled plant.
  • the reactor thermal power as described above, there are;
  • the correlation among these thermal powers (1) to (4) is determined every moment and is put together into a function of the elapsed time or a function of any one of the four thermal powers (1) to (4).
  • the four thermal powers (1) to (4) should coincide with one another. But even if the respective data have no intrinsic errors, it is usual that the four thermal powers (1) to (4) do not exactly coincide with one another. Whether the individual thermal powers are proper or not is confirmed by checking the data from which the thermal powers are derived and, thereafter, the compressed data are stored as data having been evaluated in the form of a time-dependent function , as shown in Fig. 6(A).
  • the data of the thermal powers (1) to (4) are stored in the form of a graph in which the vertical axis represents thermal power and the horizontal axis represents the time.
  • the above event of (d) fuel contamination can also be evaluated from analysis of the iron crud concentration in the reactor water.
  • a set of multi-item data relating to the above (1) to (4) are referred to as a power data pattern. Analysis on time-dependent variations of this pattern is expected to achieve more prompt diagnosis than analysis and evaluation tracing back to the individual original data.
  • the volume of data to be stored can be reduced. From comprehensive judgment based on the accuracy in measuring the reactor thermal power, the accuracy in calculating the reactor reactivity, the accuracy in measuring the neutron flux and so on, it is appropriate that a decision criterion for determining an abnormality is set to the time at which the measured data deviates or will possibly deviate 10 % or more from the correlation specific to the plant.
  • the number of equipment and systems subject to the periodical inspection can be reduced, and the equipment and systems to be newly subject to the periodical inspection can be automatically picked up based on the detected deterioration signs.
  • the predicted events can be indicated on a display in the form of graphs of related physical variables or moving pictures visually representing the events themselves. This makes it possible for the plant operators to more promptly and exactly grasp the occasion in visual way, and to prevent the occurrence of a trouble, such as escalation of the abnormal condition, due to erroneous judgment of the plant operators.
  • selectable measures to deal with the occasion and results of the measures, it is possible to support selection of the appropriate measure and to create a wide margin for the subsequent measure. The selection of the measure can be made while confirming various situations of the plant on the display.
  • the countermeasure can be selected with the aid of judgment by many other concerned people and experts. As a result, even such an abnormal event as not expected can be exactly dealt with after grasping the event more closely.
  • the plant chart contains the data specific to the plant, i.e., corresponding to the personality of the plant, and exact abnormal diagnosis is enabled depending upon each of plants having different records in production, operation and repair by utilizing the plant chart.
  • By additionally storing trouble occasions in other plants as reference data in the plant chart those reference data contributes to assisting estimation of the cause of an abnormality and selection of the countermeasure, and to further improving reliability of the abnormality diagnosing system.
  • Figs. 7 and 8 are block diagrams of a monitoring and diagnosing apparatus according to another embodiment of the present invention.
  • monitored data from a plant 60 are taken in by a monitoring and diagnosing system 61 including the plant chart 11, and the diagnosis result based on the plant chart 11 is transmitted to an operation/control system 62 for operating and controlling the plant 60.
  • the plant 60, the monitoring and diagnosing system 61, and the operation/-control system 62 cooperatively make up a plant in the broad aspect and are all installed in the same site.
  • Fig. 8 is a block diagram of the monitoring and diagnosing system 61.
  • the plant condition monitoring data from the plant 60 are taken in by a monitoring system 64 utilizing various sensors, monitors, etc. and are subject to data processing such as correlation analysis, if necessary.
  • the monitored data thus processed to be suitable for diagnosis are taken in by an abnormality diagnosing system 45, a condition predicting system 65 and the plant chart 11.
  • Supplied to the plant chart 11 are record information such as about the plant operating condition and the apparatus operating condition through the monitoring system 64, and are the inspection results and engineering conditions through an inspection system 66. Then, characteristics specific to the plant, representing the personality of the plant, are accumulated in the plant chart 11 as various kinds of data.
  • Supplied to the abnormality diagnosing system 45 are current operating condition data of the plant or apparatus obtained directly as the monitored data, condition data predicted from the monitored data to be so by the condition predicting system 65 in which prediction models are incorporated, and the plant personality data written in the plant chart 11. Then, the abnormality diagnosing system 45 diagnoses the plant condition based on the operating condition data, the expected condition data, and the personality data.
  • the data of the plant chart 11 and material degradations quantitated by a degradation evaluating system 46 from the chart data are taken in by a residual life evaluating system 47 which calculates the residual life for each of the apparatus and members using models adapted to analyze deterioration of the material strength and behavior of the crack propagation.
  • the diagnosis and evaluation results by the abnormality diagnosing system 45 and the residual life evaluating system 47 are both supplied to the plant chart 11 as update data.
  • the data from the abnormality diagnosing system 45 and the residual life evaluating system 47 also provide operation/control information. Further, the data from the residual life evaluating system 47 provide security program information.
  • the abnormality diagnosing system 45 may be arranged such that the weights are allocated depending upon importance of objects to be monitored, such as various apparatus, to diagnoses them in the order of the weights. In this case, it is possible to change the weights depending upon the result of abnormal diagnosis and to supply the changed data to the plant chart 11 as update data.
  • Figs. 9 and 10 show another example of the monitoring and diagnosing system.
  • an abnormality monitoring and diagnosing system 68 comprises the monitoring system 64, the inspection system 66, the condition predicting system 65, the plant chart 11, and the abnormality diagnosing system 45.
  • a life monitoring and diagnosing system 69 comprises the monitoring system 64, the inspection system 66, the degradation evaluating system 46, the plant chart 11, and the residual life evaluating system 47.
  • the system size can be reduced corresponding to the limited functions.
  • the arrangement of Fig. 8 in which the abnormality monitoring and diagnosing system 68 and the life monitoring and diagnosing system 69 are combined with each other has an advantage of filling up the plant chart 11 to support reliability of the diagnosis result because of the combined systems.
  • an operation planning system 63 can be added to the arrangement shown in Fig. 7.
  • the operation planning system 63 takes in the result of the residual life evaluation from the monitoring and diagnosing system 61, prepares a plant security program and a plant operation program based thereon, and supplies the programs to the operation/control system 62.
  • the operation planning system 63 as shown in Fig. 12, the result of the residual life evaluation from the monitoring and diagnosing system 61 and data from other plants relating to attainment of personals and materials necessary for the security program and the security operation are supplied to a security program system 70 which prepares the security program based on the supplied result and data.
  • an operation program system 71 prepares the operation program using the security program, operation programs of the other plants, and data relating to predicted demand for the plant product, followed by feeding it back to the operation/control system 62.
  • the operation planning system 63 serves to determine countermeasures for a relatively long term.
  • the operation planning system 63 and the residual life evaluating system 47 as part of the monitoring and diagnosing system 61 are not necessarily included in the aforementioned plant of the broad aspect (i.e., installed in the same site as the plant 60), and may be installed in a different place as a facility for handling the operation planning control and the security program.
  • Fig. 8 The arrangement of Fig. 8 will be described in more detail with reference to Fig. 13. Note that the same apparatus, members and so on in the embodiments of Figs. 1 and 8 are denoted by the same reference numerals.
  • Fig. 13 data such as material, performance and specification data 37 and engineering condition data 38 of apparatus/members, which were installed during construction of the plant, during inspection such as the periodical inspection and during repair/replacement, are input through a terminal 41 of a chart data processor 44 for preparing and sustaining the plant chart 11.
  • the data input during inspection are entered as numerical values for, e.g., constituent elements of materials which can be represented by numerical values, and as codes for attributes such as material names which can not be quantitated.
  • the engineering condition data 38 e.g., the welding condition and so on, are also input in accordance with the set code.
  • data may be input from a recording medium such as a card by using an optical or magnetic code reader 40.
  • a recording medium such as a card
  • an optical or magnetic code reader 40 By marking respective codes in parts of surfaces of apparatus/members by such means as engraving or printing and inputting those codes using the code reader directly from the apparatus/members themselves as recording media, it is possible to prevent a trouble caused by an accidental missing or mix-up of the recording medium, and to carry out data entry itself quickly and surely.
  • the above method provides the advantages that the possible problems (of leaving cards or the like in the reactor or increasing contaminants) which may be caused with operators carrying the cards into the reactor can be avoided and radiation exposure can be reduced by a cutdown of the working time. Through the above process, a portion of the plant chart 11 relating to the specification data, etc. of the apparatus/- members is automatically updated.
  • a degradation evaluating system 46 Based on the data of the plant chart 11 updated upon occasion and the past and current plant operating condition data obtained from the monitoring system, main factors (material properties, stress and environment) of material deterioration are quantitated in a degradation evaluating system 46.
  • material properties at the time of installation (or inspection) are evaluated from both the chart data of material properties and compositions of the apparatus/ members before the installation (or inspection) and the chart data of engineering conditions such as welding in accordance with an evaluation model prepared beforehand.
  • the chart data of the plant operating condition such as time-dependent variations in a neutron flux distribution
  • current and future changes in the material properties such as radiation embrittlement and radiation induced segregation are evaluated in accordance with an evaluation model also prepared beforehand. From the future changes in the material properties, the time of the next periodic inspection, the time of the periodic inspection after the next, etc. are evaluated.
  • the residual stress at the time of installation is evaluated from both the chart data of material machining and the chart data of the engineering conditions. Then, using the chart data of the plant operating condition, relaxation and generation of the stress, fluid induced vibration, the thermal stress through the plant operation, etc. are evaluated. As to environment, the radical concentration, the corrosion potential, etc. are evaluated primarily from the current monitored data of the plant operating condition using an evaluation model also prepared beforehand. In the residual life evaluating system 47 which receives the thus-quantitated material degradations as input parameters, crack generation, joining and progress behavior 471 and strength deterioration behavior 472 are analyzed by a residual life evaluating section 473 to predict the remaining lives of the apparatus/members.
  • a countermeasure selecting section 474 prepares a preventive maintenance program.
  • the security program is not required to be corrected.
  • the residual life evaluating system 47 selects an optimum preventive maintenance process among from various maintenance processes, such as material properties improvement and stress relaxation by repair/replacement and environmental mitigation, in view of safety and economy. In this case, it is not always required to prolong the predicted residual life up to the design life by only one kind of security engineering process. For example, if hydrogen is first injected to mitigate the corrosive environment in the plant and the repair/replacement is performed in the next periodic inspection, it is possible to avoid shut-down of the plant other than scheduled and to achieve stable supply of electric power.
  • the apparatus/members for use in the repair/replacement by recording chart information in the form of codes on recording media such as cards beforehand and storing them to provide for preventive maintenance, the recorded information can be utilized as one kind of data base for prompt and proper selection of the optimum engineering process in case of accidental trouble. It is sufficient to perform the residual life evaluation at the frequency of approximately once a month. If the residual life evaluation data of the apparatus/members are also supplied to the plant chart 11 and stored as plant chart data, this is effective in abnormality monitoring from the plant status variables described in the above embodiment.
  • the residual life evaluation data can be utilized as supplementary information to confirm abnormal signs estimated from other monitored information, and changes in trend of those data can also be utilized as plant abnormality monitoring information to improve reliability of the diagnosis result of the abnormality condition predicting/abnormality diagnosing system 67.
  • the condition predicting/abnormality diagnosing system 67 comprises an abnormality detecting section 671, a cause identifying section 672, an incidental event predicting section 673, and a countermeasure guidance section 674.
  • a corresponding maintenance program can be prepared to be executed in the periodical inspection while avoiding shut-down of the plant other than scheduled, making it possible to assign workers and prepare parts, materials and equipment necessary for repair/replacement with a wide margin, and hence to lighten the inspection work. Further, because of the remaining lives being predicted with high accuracy, when the predicted lives of apparatus/members are sufficiently longer than design lives thereof, the initial repair/replacement program can also be changed so as to prolong the period of use continuously.
  • the result of the residual life evaluation by the residual life evaluating system can be displayed in various ways.
  • indicating the result on the screen of a display such as CRT by way of example, it is possible not only to inform plant operators and so on, who are looking at the screen, of the occurrence of future possible trouble in the plant, but also to make them visually understand the urgency of taking any measure and the effect of the measure.
  • the whole or part of the plant is indicated on a display screen 48 and, by selecting a location of which residual life is to be evaluated, the result of the residual life evaluation on the selected location is displayed.
  • the result can be displayed, e.g., in the form of a graph showing crack progress behavior, or with pseudo-color indication of a residual life distribution in the selected location or surroundings thereof so that the residual life and the location to be dealt with can be visually recognized in a moment. Further, by displaying the kind and time of an applicable security measure, and simultaneously providing the result of the residual life evaluation after implementing the security measure upon selection of the operator, the effect of the countermeasure can also be confirmed.
  • a degradation is quantitated by a group of support programs 49 using the data in the plant chart 11, comprised of plant data 51 and material data 52, to thereby prepare degradation data 50.
  • the plant data 51 include plant parameters (power, flow speed, radiation dose, etc.), operation, repair and periodical inspection records, material specifications, structures and so on.
  • the material data 52 include characteristics of repaired and welded portions, characteristics of improved materials and so an.
  • the group of support programs 49 evaluates such factors as residual stress, flow induced vibration, grain boundary segregation, radiation embrittlement, H and He behavior in irradiated material, and water chemistry in the reactor.
  • the degradation data 50 and the data in the plant chart 11 are combined to make up a data base 53.
  • the residual life evaluating system 47 comprises an input/output routine 54, a residual life evaluating routine 55, and a countermeasure evaluating routine 56.
  • the input/output routine 54 serves to select the location to be evaluated and to display the evaluation result.
  • the residual life evaluating routine 55 includes, as an inner hierarchy, a crack incubation time evaluating routine 57, a crack propagation length evaluating routine 58, and critical crack length evaluating routine 59.
  • the crack incubation time evaluating routine 57 evaluates the time until microscopic cracks coalesce together through repeated breakdown and repair of the surface oxide film to become a macroscopic crack which steadily propagates.
  • the crack length evaluating routine 58 evaluates a crack propagation length from the crack propagation rate, based on active dissolution, hydrogen embrittlement, fatigue, etc.
  • the critical crack length evaluating routine 59 evaluates, from fracture toughness etc., a critical crack length leading to fracture based on the evaluation result of material deterioration during the period of use. Further, based on the above evaluation results, the countermeasure evaluating routine 56 evaluates the necessity of any security action, a proper candidate for a preventive maintenance 60 (hydrogen injection, surface improvement, or repair/welding) and the implementation time thereof, as well as the resultant effect.
  • the evaluation result is indicated on the display screen 48. As shown at one exemplified screen 48a, the period till a time t1 represents a crack incubation time, and a time t2 at which the crack propagation length 58 intersects the critical crack length 59 corresponds to the life. Then, a time t3 corresponds to the extended life after the preventive maintenance 60.
  • the residual life evaluation is performed in two stages concerned with the crack generation behavior (crack incubation time evaluation) and the crack propagation behavior (crack propagation length evaluation).
  • the crack incubation time is generally longer than a period in which the crack propagation leads to fracture, and is most important in the material residual life evaluation.
  • SCC stress corrosion crack
  • a crack incubation time ⁇ can be expressed as Equation 1 below.
  • the material deterioration acceleration factor is defined on an assumption that a material stays under constant conditions, so that changes in the plant operating conditions are taken in as follows in the actual plant.
  • SCC stress corrosion cracking
  • several models adapted for, e.g., an active dissolution at the crack tip are proposed, and the data required for evaluation, such as a strain rate at the crack tip, are taken out of the plant chart.
  • the record until the present time is estimated as with the future estimation, and the crack propagation rate is evaluated based on the estimated record. While the above description is made in connection with the SCC in a nuclear power plant, SCC's in other plants and other deterioration mechanisms such as fatigue cracking can also be handled in a like manner.
  • the crack propagation behavior in the reactor internals of the nuclear power plant is evaluated by separating the behavior into two stages of generation and propagation.
  • the evaluation may be performed by further dividing each of the generation and the propagation into, e.g., generation and coalescence of microscopic cracks, or by correlating them depending upon the evaluation accuracy of a residual life and the material deteriorating mechanism. This is similarly applied to the material degradations described above in connection with Fig. 14. In other words, the material degradations are omitted, selected and added at need.
  • the evaluation can be performed while visually confirming all of the procedures.
  • the location to be evaluated is selected in a plant structure image on the display screen using a pen, a mouse or the like
  • the items to be confirmed such as the apparatus/member name and the material name
  • an enlarged image of the selected location and its vicinity is displayed in an increasing enlarged scale, e.g., in order of 48A to 48B to 48C.
  • the place where the residual life evaluating system is installed is not limited to a central control room of the plant.
  • the residual life evaluating system may be installed in an other plant facility, e.g., a preventive maintenance center, so that a maintenance program including, e.g., how to ensure apparatus and materials used in repair/replacement of the apparatus/members to be dealt with by the maintenance program, equipment required for engineering, and persons can be determined in coordination with maintenance programs for other plants. This enables the long-term plant security to be achieved while making best use of resources including manpower.
  • the present invention arranged as described hereinabove has the following advantages.
  • a plant operating condition, an apparatus operating condition and an environment condition are detected, detection data are accumulated, plant inspection data are accumulated, and the plant condition is diagnosed based on plant record information consisted of the accumulated detection data and inspection data. Therefore, it is possible to realize the plant monitoring and diagnosing method which can exactly analyze and diagnose an abnormality with high reliability, taking into account the production record, the check/repair record and the operation record of a plant, and can simplify the periodical inspection, resulting in a higher availability factor of the plant.
  • the system comprises a first input section for receiving detection data of a plant operating condition, an apparatus operating condition and an environment condition, a second input section for receiving plant inspection data, a first input data processing section for preparing data for use in plant monitoring and diagnosis based on the detection data from the first input section, a second input data processing section for preparing data for use in plant monitoring and diagnosis based on the inspection data from the second input section, a plant chart for storing the data prepared by the first and second input data processing sections, and a monitoring and diagnosing section for monitoring and diagnosing the plant condition based on the data stored in the plant chart.
  • the plant monitoring and diagnosing system which can exactly analyze and diagnose an abnormality with high reliability, taking into account the production record, the check/repair record and the operation record of a plant, and can simplify the periodical inspection, resulting in a higher availability factor of the plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
EP94107775A 1993-05-21 1994-05-19 Procédé de surveillance et de diagnostic des défaillances d'une installation Expired - Lifetime EP0626697B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11988793A JP3147586B2 (ja) 1993-05-21 1993-05-21 プラントの監視診断方法
JP119887/93 1993-05-21

Publications (2)

Publication Number Publication Date
EP0626697A1 true EP0626697A1 (fr) 1994-11-30
EP0626697B1 EP0626697B1 (fr) 1997-07-30

Family

ID=14772698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107775A Expired - Lifetime EP0626697B1 (fr) 1993-05-21 1994-05-19 Procédé de surveillance et de diagnostic des défaillances d'une installation

Country Status (4)

Country Link
US (1) US5623109A (fr)
EP (1) EP0626697B1 (fr)
JP (1) JP3147586B2 (fr)
DE (1) DE69404557T2 (fr)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770944A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique des structures des procédés industriels
EP0770943A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique de circuits de réglage
EP0770945A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique des schémas de procédés industriels
EP0866468A1 (fr) * 1997-03-20 1998-09-23 Siemens Aktiengesellschaft Procédure et système pour enregistrer chronologiquement des signaux de procédé d'une installation technique
EP0906593A4 (fr) * 1996-06-19 1999-09-15 Arch Dev Corp Systeme de surveillance de procede industriel
EP0892231A3 (fr) * 1997-07-14 2000-05-10 Smc Corporation Système à prédire l'entretien d'un appareil à circulation de liquide isotherme
WO2001001212A1 (fr) * 1999-06-23 2001-01-04 Saab Ab Procede de supervision et de commande d'un dispositif au moyen d'un modele informatique
EP1162527A1 (fr) * 2000-06-05 2001-12-12 Metso Automation Networks Oy Méthode et système de commande d'un processus
EP1178381A2 (fr) * 2000-08-02 2002-02-06 General Electric Company Procédé automatisé interactif de collection, de transmission et d' évaluation des données
WO2002071173A2 (fr) * 2001-03-01 2002-09-12 Fisher-Rosemount Systems, Inc. Partage de donnees dans une installation de traitement
WO2002071171A2 (fr) * 2001-03-01 2002-09-12 Fisher-Rosemount Systems, Inc. Generation et localisation automatiques de commande de travail/commande de pieces
WO2002097545A1 (fr) * 2001-05-29 2002-12-05 Westinghouse Electric Company Llc Systeme d'affichage de surveillance de la sante destine a une usine complexe
FR2828945A1 (fr) * 2001-08-21 2003-02-28 Sascha Nick Systeme et procede multi-niveaux de maintenance predictive et de diagnostic a distance extensible a un tres grand nombre de machines
WO2003040843A1 (fr) * 2001-11-08 2003-05-15 Siemens Aktiengesellschaft Procede permettant d'eviter ou de reduire a un minimum la defaillance de fonctions d'une installation technique
WO2003019377A3 (fr) * 2001-08-21 2003-09-25 Idtect Systeme et procede de diagnostic multiniveau echelonnable a distance et maintenance conditionnelle
WO2003054503A3 (fr) * 2001-12-07 2003-11-27 Battelle Memorial Institute Procedes et systemes d'analyse de la degradation et de la defaillance de systemes mecaniques
EP1457855A1 (fr) 2003-02-28 2004-09-15 General Electric Company Procédé et dispositif pour évaluer l'endommagement de turbines à gaz
WO2004088443A1 (fr) * 2003-03-31 2004-10-14 British Telecommunications Public Limited Company Systeme et procede d'analyse de donnees
WO2006031750A2 (fr) 2004-09-10 2006-03-23 Exxonmobil Research And Engineeering Company Application d'une technologie de detection d'evenements anormaux dans des unites d'hydrocraquage
US7457785B1 (en) 2000-08-25 2008-11-25 Battelle Memorial Institute Method and apparatus to predict the remaining service life of an operating system
US7567887B2 (en) 2004-09-10 2009-07-28 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to fluidized catalytic cracking unit
EP2147387A1 (fr) * 2007-05-16 2010-01-27 EDSA Micro Corporation Systèmes prédictifs en temps réel pour la surveillance d'énergie et la gestion intelligentes de réseaux d'alimentation électrique
EP2147411A1 (fr) * 2007-05-09 2010-01-27 Edsa Micro Corporation Systemes et procedes de creation d'une interface utilisateur schematique servant a controler et predire l'etat, la fiabilite et les performances en temps reel d'un systeme d'alimentation electrique
US7657399B2 (en) 2006-07-25 2010-02-02 Fisher-Rosemount Systems, Inc. Methods and systems for detecting deviation of a process variable from expected values
US7660701B2 (en) 2004-06-12 2010-02-09 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a process gain of a control loop
US7676287B2 (en) 2004-03-03 2010-03-09 Fisher-Rosemount Systems, Inc. Configuration system and method for abnormal situation prevention in a process plant
US7720641B2 (en) 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
US7761172B2 (en) 2006-03-21 2010-07-20 Exxonmobil Research And Engineering Company Application of abnormal event detection (AED) technology to polymers
US7827006B2 (en) 2007-01-31 2010-11-02 Fisher-Rosemount Systems, Inc. Heat exchanger fouling detection
US7853339B2 (en) 2006-09-29 2010-12-14 Fisher-Rosemount Systems, Inc. Statistical signatures used with multivariate analysis for steady-state detection in a process
US7912676B2 (en) 2006-07-25 2011-03-22 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation in a process plant
US7957936B2 (en) 2001-03-01 2011-06-07 Fisher-Rosemount Systems, Inc. Presentation system for abnormal situation prevention in a process plant
US8032340B2 (en) 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Method and system for modeling a process variable in a process plant
US8032341B2 (en) 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Modeling a process using a composite model comprising a plurality of regression models
US8145358B2 (en) 2006-07-25 2012-03-27 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation of a level regulatory control loop
US8606544B2 (en) 2006-07-25 2013-12-10 Fisher-Rosemount Systems, Inc. Methods and systems for detecting deviation of a process variable from expected values
US8762106B2 (en) 2006-09-28 2014-06-24 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a heat exchanger
US8862250B2 (en) 2010-05-07 2014-10-14 Exxonmobil Research And Engineering Company Integrated expert system for identifying abnormal events in an industrial plant
US9760651B2 (en) 2002-04-15 2017-09-12 Fisher-Rosemount Systems, Inc. Web services-based communications for use with process control systems
US9927788B2 (en) 2011-05-19 2018-03-27 Fisher-Rosemount Systems, Inc. Software lockout coordination between a process control system and an asset management system
EP3279758A4 (fr) * 2015-03-31 2018-05-30 Mitsubishi Heavy Industries, Ltd. Système de détermination de condition, procédé de détermination de condition, système de support de prise de décision, programme informatique et support d'informations
EP3301528A4 (fr) * 2015-09-25 2018-08-08 Mitsubishi Heavy Industries, Ltd. Système d'exploitation de centrale et procédé d'exploitation de centrale
EP3312844A4 (fr) * 2015-09-25 2018-09-12 Mitsubishi Heavy Industries, Ltd. Système de surveillance d'indication d'anomalie
EP3355312A4 (fr) * 2015-09-25 2019-05-15 Mitsubishi Heavy Industries, Ltd. Système d'aide à la maintenance d'installation
EP3712735A1 (fr) * 2019-03-22 2020-09-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Méthode de détection d'anomalies dans une installation de traitement des eaux
US11983001B2 (en) 2019-03-22 2024-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for detecting anomalies in a water treatment plant using an apparatus for injecting oxygen into a waste pool

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438859C2 (de) * 1994-11-02 1996-12-12 Siemens Ag Verfahren zur Analyse von Prozeßdaten einer technischen Anlage
DE19751312A1 (de) * 1997-11-19 1999-05-27 Siemens Ag Verfahren zur Bestimmung der Verfügbarkeit einer technischen Anlage
US8044793B2 (en) 2001-03-01 2011-10-25 Fisher-Rosemount Systems, Inc. Integrated device alerts in a process control system
US6801885B1 (en) * 1999-10-05 2004-10-05 Westinghouse Electric Company Llc Process for synthesizing a database for nuclear power plant containment evaluation
DE50103755D1 (de) * 2000-02-25 2004-10-28 Siemens Ag Verfahren zum betrieb und vorrichtung zur überwachung einer technischen anlage
US6421571B1 (en) 2000-02-29 2002-07-16 Bently Nevada Corporation Industrial plant asset management system: apparatus and method
US6957172B2 (en) * 2000-03-09 2005-10-18 Smartsignal Corporation Complex signal decomposition and modeling
US7739096B2 (en) * 2000-03-09 2010-06-15 Smartsignal Corporation System for extraction of representative data for training of adaptive process monitoring equipment
US7031779B2 (en) * 2000-06-14 2006-04-18 General Electric Company Method and apparatus for automated crack behavior prediction determination
US6556939B1 (en) * 2000-11-22 2003-04-29 Smartsignal Corporation Inferential signal generator for instrumented equipment and processes
JP2002163020A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd プログラマブルコントローラにおける異常検出方法およびその装置
JP4184613B2 (ja) 2001-01-10 2008-11-19 株式会社東芝 劣化診断方法
US7233886B2 (en) * 2001-01-19 2007-06-19 Smartsignal Corporation Adaptive modeling of changed states in predictive condition monitoring
US7720727B2 (en) 2001-03-01 2010-05-18 Fisher-Rosemount Systems, Inc. Economic calculations in process control system
DE10110218A1 (de) * 2001-03-04 2002-09-12 Knut Schwedler Dokumentations- und Durchführungsverfahren zu einem integrierten Steuerungs- und Wartungssystem
US20020183971A1 (en) * 2001-04-10 2002-12-05 Wegerich Stephan W. Diagnostic systems and methods for predictive condition monitoring
US7539597B2 (en) 2001-04-10 2009-05-26 Smartsignal Corporation Diagnostic systems and methods for predictive condition monitoring
US6975962B2 (en) * 2001-06-11 2005-12-13 Smartsignal Corporation Residual signal alert generation for condition monitoring using approximated SPRT distribution
JP2003114294A (ja) * 2001-10-04 2003-04-18 Toshiba Corp 発電プラントの監視・診断・検査・保全システム
JP2003256034A (ja) * 2002-03-01 2003-09-10 Hitachi Ltd 発電プラントのデータ管理方法
US7020580B2 (en) * 2002-07-12 2006-03-28 Ford Motor Company Method and system to facilitate reporting results of a defect inspection
US7013224B2 (en) * 2002-07-15 2006-03-14 General Electric Company Method and apparatus to perform crack estimations for nuclear reactor
KR100704246B1 (ko) * 2003-01-09 2007-04-06 다이닛뽕스크린 세이조오 가부시키가이샤 기판 처리시스템, 기판 처리장치, 프로그램 및 기록매체
DE10315107A1 (de) * 2003-04-02 2004-10-14 Endress + Hauser Wetzer Gmbh + Co Kg Überwachung der Messwerte eines Prozesses
JP4551687B2 (ja) * 2004-04-12 2010-09-29 ヤマトプロテック株式会社 消火設備の点検装置及び点検方法
US8005647B2 (en) 2005-04-08 2011-08-23 Rosemount, Inc. Method and apparatus for monitoring and performing corrective measures in a process plant using monitoring data with corrective measures data
US9201420B2 (en) 2005-04-08 2015-12-01 Rosemount, Inc. Method and apparatus for performing a function in a process plant using monitoring data with criticality evaluation data
JP4801949B2 (ja) * 2005-08-05 2011-10-26 株式会社東芝 情報収集システム
WO2007028158A2 (fr) * 2005-09-02 2007-03-08 Lightridge Resources Llc Systeme de gestion de services, d'especes chimiques et d'energie
US7272531B2 (en) * 2005-09-20 2007-09-18 Fisher-Rosemount Systems, Inc. Aggregation of asset use indices within a process plant
US8275577B2 (en) 2006-09-19 2012-09-25 Smartsignal Corporation Kernel-based method for detecting boiler tube leaks
US8311774B2 (en) * 2006-12-15 2012-11-13 Smartsignal Corporation Robust distance measures for on-line monitoring
US8301676B2 (en) 2007-08-23 2012-10-30 Fisher-Rosemount Systems, Inc. Field device with capability of calculating digital filter coefficients
US7702401B2 (en) 2007-09-05 2010-04-20 Fisher-Rosemount Systems, Inc. System for preserving and displaying process control data associated with an abnormal situation
US8055479B2 (en) 2007-10-10 2011-11-08 Fisher-Rosemount Systems, Inc. Simplified algorithm for abnormal situation prevention in load following applications including plugged line diagnostics in a dynamic process
JP4974860B2 (ja) * 2007-11-27 2012-07-11 三井化学株式会社 検査周期管理装置、管理周期管理装置、及びプログラム
US8712000B2 (en) * 2007-12-13 2014-04-29 Global Nuclear Fuel—Americas, LLC Tranverse in-core probe monitoring and calibration device for nuclear power plants, and method thereof
JP5138396B2 (ja) * 2008-01-24 2013-02-06 シャープ株式会社 生産プロセス異常検知方法および生産プロセス異常検知システム、上記生産プロセス異常検知方法をコンピュータに実行させるためのプログラム、並びに上記プログラムを記録したコンピュータ読み取り可能な記録媒体
US8335582B2 (en) * 2008-05-19 2012-12-18 Applied Materials, Inc. Software application to analyze event log and chart tool fail rate as function of chamber and recipe
US8527080B2 (en) 2008-10-02 2013-09-03 Applied Materials, Inc. Method and system for managing process jobs in a semiconductor fabrication facility
US20100114502A1 (en) * 2008-10-31 2010-05-06 General Electric Company System and method for article monitoring
US8989887B2 (en) 2009-02-11 2015-03-24 Applied Materials, Inc. Use of prediction data in monitoring actual production targets
DK2226630T3 (da) * 2009-03-06 2012-04-02 Hach Lange Gmbh Fremgangsmåde til bestemmelse af en tilstandsindikator af et vandanalyseapparat
US9799417B2 (en) 2009-04-13 2017-10-24 Terrapower, Llc Method and system for the thermoelectric conversion of nuclear reactor generated heat
US20100260308A1 (en) * 2009-04-13 2010-10-14 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, system, and apparatus for selectively transferring thermoelectrically generated electric power to nuclear reactor operation systems
US9892807B2 (en) * 2009-04-13 2018-02-13 Terrapower, Llc Method, system, and apparatus for selectively transferring thermoelectrically generated electric power to nuclear reactor operation systems
US9691507B2 (en) 2009-04-13 2017-06-27 Terrapower, Llc Method and system for the thermoelectric conversion of nuclear reactor generated heat
US20100260307A1 (en) * 2009-04-13 2010-10-14 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method and system for the thermoelectric conversion of nuclear reactor generated heat
US20100260304A1 (en) * 2009-04-13 2010-10-14 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method, system, and apparatus for the thermoelectric conversion of gas cooled nuclear reactor generated heat
US9767934B2 (en) * 2009-04-13 2017-09-19 Terrapower, Llc Method, system, and apparatus for the thermoelectric conversion of gas cooled nuclear reactor generated heat
WO2011087927A1 (fr) * 2010-01-14 2011-07-21 Venture Gain LLC Indicateur sanitaire basé sur des résiduels à variables multiples pour la surveillance de la santé d'un être humain
JP2011174766A (ja) * 2010-02-23 2011-09-08 Chugoku Electric Power Co Inc:The 機器劣化評価支援方法及び機器劣化評価支援装置
TWI515522B (zh) 2010-12-28 2016-01-01 萬國商業機器公司 測定系統情況的方法、電腦程式及電腦
US8468461B2 (en) 2011-03-05 2013-06-18 Flowatch Llc Form-based user-configurable processing plant management system and method
US9524285B2 (en) 2011-03-05 2016-12-20 Kapaleeswar Madireddi Stream flow chemical process information system and method
JP2013140080A (ja) * 2012-01-05 2013-07-18 Hitachi-Ge Nuclear Energy Ltd 計器健全性判定装置及び方法
EP2665030A1 (fr) * 2012-05-14 2013-11-20 Siemens Aktiengesellschaft Procédé et système de récupération automatique à partir d'une situation de panne dans une usine de production
JP6129500B2 (ja) * 2012-09-20 2017-05-17 株式会社東芝 原子炉の炉内構造物の寿命予測装置、方法及びプログラム
US9323766B2 (en) 2013-03-15 2016-04-26 Metrix Instrument Co., Lp Data collection device and method
EP2894529B1 (fr) * 2014-01-08 2019-10-23 Manitowoc Crane Companies, LLC Système de diagnostic à distance
JP6341729B2 (ja) * 2014-04-04 2018-06-13 三菱日立パワーシステムズ株式会社 運用計画作成評価装置及び運用計画作成評価方法
JP6366520B2 (ja) * 2015-02-02 2018-08-01 日立Geニュークリア・エナジー株式会社 出力変動監視装置および方法
JP6614991B2 (ja) 2016-02-09 2019-12-04 三菱重工業株式会社 フローダンパおよび蓄圧注水装置ならびに原子力設備
WO2017061028A1 (fr) * 2015-10-09 2017-04-13 株式会社日立製作所 Dispositif de détection d'anomalies
JP6650776B2 (ja) 2016-02-09 2020-02-19 三菱重工業株式会社 フローダンパおよび蓄圧注水装置ならびに原子力設備
US20180058251A1 (en) * 2016-08-31 2018-03-01 General Electric Technology Gmbh Flexible Service Interval Counter Module For A Valve And Actuator Monitoring System
EP3591484A4 (fr) * 2017-03-03 2020-03-18 Panasonic Intellectual Property Management Co., Ltd. Procédé d'apprentissage supplémentaire destiné à un système de diagnostic de détérioration
JP6899766B2 (ja) * 2017-06-15 2021-07-07 日立造船株式会社 情報処理装置、および情報処理方法
JP6952511B2 (ja) * 2017-06-26 2021-10-20 三菱重工業株式会社 Eq機器管理装置
JP7042056B2 (ja) * 2017-10-25 2022-03-25 株式会社日立製作所 プラントの運転支援装置及び運転支援方法
JP7064085B2 (ja) * 2017-11-10 2022-05-10 三菱重工業株式会社 プラント異常監視システム、および、プラント異常監視方法
JP7218091B2 (ja) * 2018-02-26 2023-02-06 三菱重工業株式会社 プラントの保守管理方法
JP7305307B2 (ja) * 2018-04-11 2023-07-10 三菱電機株式会社 環境測定方法
JP6705880B2 (ja) 2018-11-12 2020-06-03 日本製紙株式会社 異常検出装置及び異常検出方法
JP6679079B1 (ja) 2019-08-01 2020-04-15 株式会社松浦機械製作所 工作機械の作動監視システム
JP6755371B2 (ja) * 2019-08-05 2020-09-16 三菱重工業株式会社 原子力プラントの運転監視システム
JP2022131653A (ja) * 2021-02-26 2022-09-07 三菱重工業株式会社 発電プラントの異常要因推定方法
DE102021115589A1 (de) 2021-06-16 2022-12-22 Gemü Gebr. Müller Apparatebau Gmbh & Co. Kommanditgesellschaft Verfahren und Vorrichtungen für Prozessventil-Einheiten
JP2023125610A (ja) * 2022-02-28 2023-09-07 日立Geニュークリア・エナジー株式会社 プラントの信頼性評価システム、プラントの信頼性評価方法、および、プラントの信頼性評価プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803039A (en) * 1986-02-03 1989-02-07 Westinghouse Electric Corp. On line interactive monitoring of the execution of process operating procedures
JPH01291115A (ja) * 1988-05-19 1989-11-22 Nippon Atom Ind Group Co Ltd 保全対象設備選定装置
EP0358994A1 (fr) * 1988-08-29 1990-03-21 Westinghouse Electric Corporation Système de surveillance et de diagnose de la tendance de corrosion et/ou d'érosion
JPH02126789A (ja) * 1988-11-07 1990-05-15 Hitachi Ltd 緊急対策支援装置
JPH0344708A (ja) * 1989-07-13 1991-02-26 Toshiba Corp プラント監視操作装置
US5311562A (en) * 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134312A (ja) * 1982-02-04 1983-08-10 Mitsubishi Electric Corp プラント制御系の異常診断装置
JPS58215593A (ja) * 1982-06-10 1983-12-15 日本原子力事業株式会社 原子力発電プラント異常診断方法とその装置
JPS63241876A (ja) * 1987-03-30 1988-10-07 Toshiba Corp 燃料電池プラントの監視制御装置
JPS63313208A (ja) * 1987-06-17 1988-12-21 Nippon Atom Ind Group Co Ltd プラント診断方法
JPH0215306A (ja) * 1988-07-04 1990-01-19 Mitsubishi Heavy Ind Ltd プラント運転支援装置
US5159563A (en) * 1989-03-14 1992-10-27 Rem Technologies, Inc. Crack detection method for operating shaft
JPH03220498A (ja) * 1990-01-25 1991-09-27 Toshiba Corp プラント機器動作監視装置
JP2859407B2 (ja) * 1990-09-27 1999-02-17 株式会社東芝 保全管理システム
JPH04195300A (ja) * 1990-11-22 1992-07-15 Toshiba Corp プラント診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803039A (en) * 1986-02-03 1989-02-07 Westinghouse Electric Corp. On line interactive monitoring of the execution of process operating procedures
JPH01291115A (ja) * 1988-05-19 1989-11-22 Nippon Atom Ind Group Co Ltd 保全対象設備選定装置
EP0358994A1 (fr) * 1988-08-29 1990-03-21 Westinghouse Electric Corporation Système de surveillance et de diagnose de la tendance de corrosion et/ou d'érosion
JPH02126789A (ja) * 1988-11-07 1990-05-15 Hitachi Ltd 緊急対策支援装置
JPH0344708A (ja) * 1989-07-13 1991-02-26 Toshiba Corp プラント監視操作装置
US5311562A (en) * 1992-12-01 1994-05-10 Westinghouse Electric Corp. Plant maintenance with predictive diagnostics

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 362 (E - 0960) 6 August 1990 (1990-08-06) *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 72 (P - 1004) 9 February 1990 (1990-02-09) *
PATENT ABSTRACTS OF JAPAN vol. 15, no. 192 (P - 1202) 17 May 1991 (1991-05-17) *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770944A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique des structures des procédés industriels
EP0770943A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique de circuits de réglage
EP0770945A1 (fr) * 1995-10-24 1997-05-02 ABBPATENT GmbH Procédé pour la génération automatique des schémas de procédés industriels
EP0906593A4 (fr) * 1996-06-19 1999-09-15 Arch Dev Corp Systeme de surveillance de procede industriel
US6181975B1 (en) 1996-06-19 2001-01-30 Arch Development Corporation Industrial process surveillance system
EP0866468A1 (fr) * 1997-03-20 1998-09-23 Siemens Aktiengesellschaft Procédure et système pour enregistrer chronologiquement des signaux de procédé d'une installation technique
EP0892231A3 (fr) * 1997-07-14 2000-05-10 Smc Corporation Système à prédire l'entretien d'un appareil à circulation de liquide isotherme
WO2001001212A1 (fr) * 1999-06-23 2001-01-04 Saab Ab Procede de supervision et de commande d'un dispositif au moyen d'un modele informatique
EP1162527A1 (fr) * 2000-06-05 2001-12-12 Metso Automation Networks Oy Méthode et système de commande d'un processus
EP1178381A3 (fr) * 2000-08-02 2003-11-26 General Electric Company Procédé automatisé interactif de collection, de transmission et d' évaluation des données
EP1178381A2 (fr) * 2000-08-02 2002-02-06 General Electric Company Procédé automatisé interactif de collection, de transmission et d' évaluation des données
US7457785B1 (en) 2000-08-25 2008-11-25 Battelle Memorial Institute Method and apparatus to predict the remaining service life of an operating system
US7957936B2 (en) 2001-03-01 2011-06-07 Fisher-Rosemount Systems, Inc. Presentation system for abnormal situation prevention in a process plant
WO2002071171A2 (fr) * 2001-03-01 2002-09-12 Fisher-Rosemount Systems, Inc. Generation et localisation automatiques de commande de travail/commande de pieces
WO2002071173A3 (fr) * 2001-03-01 2003-01-09 Fisher Rosemount Systems Inc Partage de donnees dans une installation de traitement
WO2002071173A2 (fr) * 2001-03-01 2002-09-12 Fisher-Rosemount Systems, Inc. Partage de donnees dans une installation de traitement
CN1324420C (zh) * 2001-03-01 2007-07-04 费舍-柔斯芒特系统股份有限公司 处理工厂内的数据共享
WO2002071171A3 (fr) * 2001-03-01 2003-09-25 Fisher Rosemount Systems Inc Generation et localisation automatiques de commande de travail/commande de pieces
WO2002097545A1 (fr) * 2001-05-29 2002-12-05 Westinghouse Electric Company Llc Systeme d'affichage de surveillance de la sante destine a une usine complexe
US7088255B2 (en) 2001-05-29 2006-08-08 Westinghouse Electric Co, Llc Health monitoring display system for a complex plant
FR2828945A1 (fr) * 2001-08-21 2003-02-28 Sascha Nick Systeme et procede multi-niveaux de maintenance predictive et de diagnostic a distance extensible a un tres grand nombre de machines
WO2003019377A3 (fr) * 2001-08-21 2003-09-25 Idtect Systeme et procede de diagnostic multiniveau echelonnable a distance et maintenance conditionnelle
US6904388B2 (en) 2001-11-08 2005-06-07 Siemens Aktiengesellschaft Method for preventing or minimizing operational failures in a technical installation
WO2003040843A1 (fr) * 2001-11-08 2003-05-15 Siemens Aktiengesellschaft Procede permettant d'eviter ou de reduire a un minimum la defaillance de fonctions d'une installation technique
WO2003054503A3 (fr) * 2001-12-07 2003-11-27 Battelle Memorial Institute Procedes et systemes d'analyse de la degradation et de la defaillance de systemes mecaniques
US6853951B2 (en) 2001-12-07 2005-02-08 Battelle Memorial Institute Methods and systems for analyzing the degradation and failure of mechanical systems
US9760651B2 (en) 2002-04-15 2017-09-12 Fisher-Rosemount Systems, Inc. Web services-based communications for use with process control systems
EP1457855A1 (fr) 2003-02-28 2004-09-15 General Electric Company Procédé et dispositif pour évaluer l'endommagement de turbines à gaz
CN100458122C (zh) * 2003-02-28 2009-02-04 通用电气公司 用于评定燃气轮机损伤的方法和装置
WO2004088443A1 (fr) * 2003-03-31 2004-10-14 British Telecommunications Public Limited Company Systeme et procede d'analyse de donnees
AU2004226618B2 (en) * 2003-03-31 2009-01-15 British Telecommunications Public Limited Company Data analysis system and method
CN100465842C (zh) * 2003-03-31 2009-03-04 英国电讯有限公司 数据分析系统和方法
US7676287B2 (en) 2004-03-03 2010-03-09 Fisher-Rosemount Systems, Inc. Configuration system and method for abnormal situation prevention in a process plant
US7660701B2 (en) 2004-06-12 2010-02-09 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a process gain of a control loop
WO2006031750A2 (fr) 2004-09-10 2006-03-23 Exxonmobil Research And Engineeering Company Application d'une technologie de detection d'evenements anormaux dans des unites d'hydrocraquage
US8005645B2 (en) 2004-09-10 2011-08-23 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to hydrocracking units
US7567887B2 (en) 2004-09-10 2009-07-28 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to fluidized catalytic cracking unit
EP1810162A2 (fr) * 2004-09-10 2007-07-25 Exxonmobil Research And Engineering Company Application d'une technologie de detection d'evenements anormaux dans des unites d'hydrocraquage
EP1810162A4 (fr) * 2004-09-10 2008-12-31 Exxonmobil Res & Eng Co Application d'une technologie de detection d'evenements anormaux dans des unites d'hydrocraquage
US7761172B2 (en) 2006-03-21 2010-07-20 Exxonmobil Research And Engineering Company Application of abnormal event detection (AED) technology to polymers
US7720641B2 (en) 2006-04-21 2010-05-18 Exxonmobil Research And Engineering Company Application of abnormal event detection technology to delayed coking unit
US7657399B2 (en) 2006-07-25 2010-02-02 Fisher-Rosemount Systems, Inc. Methods and systems for detecting deviation of a process variable from expected values
US8145358B2 (en) 2006-07-25 2012-03-27 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation of a level regulatory control loop
US8606544B2 (en) 2006-07-25 2013-12-10 Fisher-Rosemount Systems, Inc. Methods and systems for detecting deviation of a process variable from expected values
US7912676B2 (en) 2006-07-25 2011-03-22 Fisher-Rosemount Systems, Inc. Method and system for detecting abnormal operation in a process plant
US8762106B2 (en) 2006-09-28 2014-06-24 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a heat exchanger
US7966149B2 (en) 2006-09-29 2011-06-21 Fisher-Rosemount Systems, Inc. Multivariate detection of transient regions in a process control system
US8489360B2 (en) 2006-09-29 2013-07-16 Fisher-Rosemount Systems, Inc. Multivariate monitoring and diagnostics of process variable data
US7853339B2 (en) 2006-09-29 2010-12-14 Fisher-Rosemount Systems, Inc. Statistical signatures used with multivariate analysis for steady-state detection in a process
US8014880B2 (en) 2006-09-29 2011-09-06 Fisher-Rosemount Systems, Inc. On-line multivariate analysis in a distributed process control system
US7937164B2 (en) 2006-09-29 2011-05-03 Fisher-Rosemount Systems, Inc. Multivariate detection of abnormal conditions in a process plant
US7917240B2 (en) 2006-09-29 2011-03-29 Fisher-Rosemount Systems, Inc. Univariate method for monitoring and analysis of multivariate data
US7853431B2 (en) 2006-09-29 2010-12-14 Fisher-Rosemount Systems, Inc. On-line monitoring and diagnostics of a process using multivariate statistical analysis
US8032340B2 (en) 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Method and system for modeling a process variable in a process plant
US8032341B2 (en) 2007-01-04 2011-10-04 Fisher-Rosemount Systems, Inc. Modeling a process using a composite model comprising a plurality of regression models
US7827006B2 (en) 2007-01-31 2010-11-02 Fisher-Rosemount Systems, Inc. Heat exchanger fouling detection
EP2147411A1 (fr) * 2007-05-09 2010-01-27 Edsa Micro Corporation Systemes et procedes de creation d'une interface utilisateur schematique servant a controler et predire l'etat, la fiabilite et les performances en temps reel d'un systeme d'alimentation electrique
EP2147411A4 (fr) * 2007-05-09 2012-05-02 Edsa Micro Corp Systemes et procedes de creation d'une interface utilisateur schematique servant a controler et predire l'etat, la fiabilite et les performances en temps reel d'un systeme d'alimentation electrique
EP2147387A4 (fr) * 2007-05-16 2012-05-02 Edsa Micro Corp Systèmes prédictifs en temps réel pour la surveillance d'énergie et la gestion intelligentes de réseaux d'alimentation électrique
EP2147387A1 (fr) * 2007-05-16 2010-01-27 EDSA Micro Corporation Systèmes prédictifs en temps réel pour la surveillance d'énergie et la gestion intelligentes de réseaux d'alimentation électrique
US8862250B2 (en) 2010-05-07 2014-10-14 Exxonmobil Research And Engineering Company Integrated expert system for identifying abnormal events in an industrial plant
US9927788B2 (en) 2011-05-19 2018-03-27 Fisher-Rosemount Systems, Inc. Software lockout coordination between a process control system and an asset management system
US11599812B2 (en) 2015-03-31 2023-03-07 Mitsubishi Heavy Industries, Ltd. Condition determination system, condition determination method, decision-making support system, computer program, and storage medium
EP3279758A4 (fr) * 2015-03-31 2018-05-30 Mitsubishi Heavy Industries, Ltd. Système de détermination de condition, procédé de détermination de condition, système de support de prise de décision, programme informatique et support d'informations
EP3301528A4 (fr) * 2015-09-25 2018-08-08 Mitsubishi Heavy Industries, Ltd. Système d'exploitation de centrale et procédé d'exploitation de centrale
EP3355312A4 (fr) * 2015-09-25 2019-05-15 Mitsubishi Heavy Industries, Ltd. Système d'aide à la maintenance d'installation
US10504631B2 (en) 2015-09-25 2019-12-10 Mitsubishi Heavy Industries, Ltd. Plant abnormality prediction detection system
US10573421B2 (en) 2015-09-25 2020-02-25 Mitsubishi Heavy Industries, Ltd. Plant operation system and plant operation method
EP3312844A4 (fr) * 2015-09-25 2018-09-12 Mitsubishi Heavy Industries, Ltd. Système de surveillance d'indication d'anomalie
EP3712735A1 (fr) * 2019-03-22 2020-09-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Méthode de détection d'anomalies dans une installation de traitement des eaux
WO2020193000A1 (fr) * 2019-03-22 2020-10-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Méthode de détection d'anomalies dans une installation de traitement des eaux
US11983001B2 (en) 2019-03-22 2024-05-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for detecting anomalies in a water treatment plant using an apparatus for injecting oxygen into a waste pool

Also Published As

Publication number Publication date
DE69404557T2 (de) 1998-03-12
DE69404557D1 (de) 1997-09-04
JP3147586B2 (ja) 2001-03-19
JPH06331507A (ja) 1994-12-02
EP0626697B1 (fr) 1997-07-30
US5623109A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
EP0626697B1 (fr) Procédé de surveillance et de diagnostic des défaillances d'une installation
US5817958A (en) Plant monitoring and diagnosing method and system, as well as plant equipped with the system
EP1031159B1 (fr) Procede et dispositif d'evaluation de l'integrite du combustible nucleaire d'une centrale nucleaire
Miksch et al. Evaluation of fatigue of reactor components by on-line monitoring of transients
Däuwel et al. Framatome ANP GmbH concept of plant life management (PLIM)
Lobel et al. Improvements to technical specifications surveillance requirements
Anselmi et al. Reliability and Integrity Management Scoping Study
Vo et al. Risk-Based Inspection and Maintenance
Schulz The evaluation of component lifetime on the basis of operating experience
Baier et al. COMSY-A software tool for aging and plant life management with an integrated documentation tool
Golay et al. Extending the life of nuclear power plants: technical and institutional issues
Cadwallader et al. Failure rate data for glovebox components and cleanup systems at the tritium systems test assembly
Nakai 9.1 Relationship Between Design and Maintenance
Seibold et al. Operational monitoring in German nuclear power plants
PROCESSINGDEPARTMENT DEgLSSFtEI
SWELLING et al. Siemens AG, Power Generation Group KWU, Erlangen, Federal Republic of Germany
Berg et al. Operational data collection and analysis for nuclear plant life extension
Michel et al. Ranking of ageing mechanisms relevant to passive mechanical components in German NPPs with LWRs with respect to their safety significance
Vo Turbine missiles assessment
Cason et al. Nuclear Reactors and Technology;(USA)
Baierl Extending the life of primary system components/Lebensdauerverlängerung von Primärkreiskomponenten
Maurer Surveillance strategy for a four year operating cycle in commercial boiling water reactors
Verma et al. Applications of Probabilistic Safety Assessment
Gal'berg Post-chernobyl period at the Kursk Nuclear Power Plant: Advances and prospects
BLAMK COMPILATION OF GENERIC SAFETY ISSUES FOR LIGHT WATER REACTOR NUCLEAR POWER PLANTS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE SE

17Q First examination report despatched

Effective date: 19960115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 69404557

Country of ref document: DE

Date of ref document: 19970904

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030605

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041201

EUG Se: european patent has lapsed