EP0626034B1 - Dampfkraftanlage - Google Patents

Dampfkraftanlage Download PDF

Info

Publication number
EP0626034B1
EP0626034B1 EP93903159A EP93903159A EP0626034B1 EP 0626034 B1 EP0626034 B1 EP 0626034B1 EP 93903159 A EP93903159 A EP 93903159A EP 93903159 A EP93903159 A EP 93903159A EP 0626034 B1 EP0626034 B1 EP 0626034B1
Authority
EP
European Patent Office
Prior art keywords
power plant
steam power
working medium
boiling point
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93903159A
Other languages
English (en)
French (fr)
Other versions
EP0626034A1 (de
Inventor
Doris Bankhamer
Alfred Bankhamer
Gerhard Zeman
Helmut Seyr
Albrecht Epple
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BANKHAMER, ALFRED
BANKHAMER, DORIS
EPPLE Albrecht
SEYR Helmut
Zeman Gerhard
Original Assignee
SEYR Helmut
Zeman Gerhard
EPPLE Albrecht
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEYR Helmut, Zeman Gerhard, EPPLE Albrecht filed Critical SEYR Helmut
Publication of EP0626034A1 publication Critical patent/EP0626034A1/de
Application granted granted Critical
Publication of EP0626034B1 publication Critical patent/EP0626034B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • a relaxation machine which is operated with a heated liquid working fluid from a mixture of two substances with different boiling points, for example water and hydraulic oil.
  • the two substances are mixed before entering the relaxation machine. After relaxation, they are run in separate circuits.
  • a Condenser in the circuit of the substance with the higher boiling point a heat exchanger to heat the substance.
  • the invention aims to significantly improve the efficiency of a steam power plant.
  • the working fluid in which the liquid working fluid heated in a pressure vessel is fed back to the pressure vessel via a relaxation machine for giving off energy and a condenser in a closed circuit, the working fluid consists of a mixture of at least two substances which have different boiling points at the same pressure exhibit.
  • the pressure of the liquid working fluid is reduced to such an extent that the substance with the lower boiling point essentially evaporates, while the substance with the higher boiling point essentially forms droplets.
  • a likewise closed opposing coolant circuit in which the gaseous coolant is liquefied with a heat pump, the liquid coolant is cooled with a heat exchanger and the cooled liquid coolant is evaporated and expanded, the condenser in the circuit of the working medium with the relaxed, cooled gaseous coolant is cooled.
  • a working medium which is a mixture of at least two substances which are the same Pressure have different boiling points.
  • the heated, liquid working medium under pressure in the pressure vessel is so relaxed when it passes through an expansion machine that it partially evaporates.
  • the substance with the low boiling point is essentially evaporated, while the substance with the higher boiling point essentially changes into fine mist droplets, that is to say remains in the liquid state.
  • These mist droplets initially have a temperature that approximately corresponds to the high temperature of the working medium in the pressure vessel. Due to their high temperature, the mist droplets keep the vapor from the material with the low boiling point in a highly overheated state. The heat of the droplets of the substance with the high boiling point is thus converted into working energy in the relaxation machine.
  • the substance of the working medium with the higher boiling point remains largely liquid, it being converted into hot mist droplets when it enters the expansion machine.
  • the steam from the material with the lower boiling point, which cools down during relaxation in the relaxation machine, is kept permanently in the hot steam area by the hot fog droplets, since the fog droplets have to give up their heat to the steam.
  • the substances which form the working medium according to the invention must be such that they mix well with one another.
  • ammonia and water, low-boiling alcohols, such as methyl alcohol, and water or carbon dioxide and water are suitable as such two-substance mixtures.
  • the working medium i.e. a mixture of a substance with a low boiling point, such as ammonia, and a substance with a high boiling point, such as water
  • a pressure vessel 1 can e.g. B. heated with the help of a solar system.
  • a pressure compensation vessel with a gas cushion 2 connected to the top of the pressure vessel 1 ensures that the desired pressure is maintained.
  • the pressure vessel 1 can also be heated, for example, with environmental heat or waste heat.
  • the pressurized, heated working fluid in the pressure vessel 1 is fed to a relaxation machine 4, that is to say a steam engine, such as a steam turbine, which drives an electric generator 5.
  • a relaxation machine 4 that is to say a steam engine, such as a steam turbine, which drives an electric generator 5.
  • the energy released during the expansion of the superheated steam portion of the working medium is converted into a rotary movement which is used to drive the electrical generator 5.
  • the mist emerging from the throttle valve 3 with the hot droplets of the substance with the higher boiling point causes the relaxation machine 4 during the entire relaxation process an overheating of the steam from the material with the low boiling point, whereby the whole work process takes place in the superheated steam area and thus a high efficiency is achieved.
  • the end of the expansion process i.e.
  • the working medium consisting of cooled steam and mist droplets is fed to a condenser 6, in which the steam-mist mixture cooled by the expansion is completely liquefied and, via a condensate pump 7, the pressure vessel 1 for heating again is fed.
  • the liquefaction of the working medium in the condenser 6 has the great advantage that only the heat of vaporization of the vapor portion, that is to say the substance with the low boiling point, has to be recooled for condensation, while the substance with the higher boiling point is already present in the form of mist droplets, is already fluid.
  • a coolant circuit with a heat pump is used for heat recovery in order to generate a lower temperature level, so that the condensation of the working fluid is ensured.
  • the evaporator 8 of the heat pump is arranged in the condenser 6 for the working fluid and extracts the heat of condensation from the vaporous portion of the working fluid.
  • the compressor 9 With the compressor 9, the coolant of the heat pump is liquefied and heated.
  • the cooling of the coolant heated by the pump 9 takes place in a heat exchanger 10 by means of the working medium liquefied in the condenser 6.
  • the coolant of the heat pump gives the condensation heat of the working fluid, which has been extracted in the condenser 6 with the evaporator 8 and which has been pumped up with the heat pump, to that with the Condensate pump 7 pumped liquid working fluid, which is thereby preheated. In this way, the energy extracted with the coolant from the heat of condensation is returned to the working medium before it enters the pressure vessel 1.
  • the liquid coolant cooled with the heat exchanger 10 is evaporated and expanded, as a result of which it cools further and is able to extract the required heat of condensation from the working medium.
  • a throttle valve 12 is connected into the coolant circuit following the heat exchanger 10.
  • the coolant vapor is expanded via a relaxation machine 13, as a result of which almost all of the energy introduced into the system, insofar as it has not been consumed by useful energy generation, remains in the system, apart from radiant heat and insulation losses.
  • the energy for operating the compressor 9 of the heat pump and for operating the condensate pump 7 can also be applied by the system.
  • the working medium is a mixture of at least two substances with different boiling points, the substance with the higher boiling point in the mixture being essentially not evaporated during expansion in the expansion machine 4, but in Form of mist droplets is present, while the part of the mixture of the substance with the lower boiling point essentially evaporates and this steam portion continuously absorbs heat energy from the mist droplets during the relaxation and thus remains in the superheated steam area.
  • the heat of condensation that arises when the steam portion is condensed in the condenser 6 is first removed by means of a heat pump and returned to the working medium via the heat exchanger 10 after the condensate pump 7 before it enters the pressure vessel 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die bekannten Dampfkraftanlagen, die praktisch ausschließlich mit Wasserdampf betrieben werden, und zwar mit überhitztem Dampf oder Heißdampf, haben den großen Nachteil, daß der im allgemeinen nur wenig überhitzte Heißdampf in der Entspannungsmaschine bald in Sattdampf und dann in Naßdampf übergeht, wodurch der Wirkungsgrad in der Energiegewinnung nicht sehr hoch ist.
  • Weiters wird bei einem geschlossenen System die ganze Kondensationswärme ungenutzt abgegeben, während bei einem offenen System der austretende Dampf noch einen Teil seiner Energie an das zu erhitzende Arbeitsmittel zur Vorerwärmung abgeben kann. Diese Systeme haben dadurch bei niedrigen Temperaturgefällen und niedrigen Temperaturen einen äußerst schlechten Wirkungsgrad.
  • Aus US-A-3,879,949 ist eine Entspannungsmaschine bekannt, die mit einem erhitzten flüssigen Arbeitsmittel aus einem Gemisch aus zwei Stoffen mit unterschiedlichen Siedepunkten betrieben wird, beispielsweise Wasser und Hydrauliköl. Die beiden Stoffe werden vor Eintritt in die Entspannungsmaschine vermischt. Nach der Entspannung werden sie in getrennten Kreisläufen geführt. Im Kreislauf des Stoffs mit dem niedrigeren Siedepunkt, der in der Entspanungsmaschine verdampft, befindet sich ein Kondensator, im Kreislauf des Stoffs mit dem höheren Siedepunkt ein Wärmetauscher, um den Stoff zu erwärmen.
  • Die Erfindung setzt sich zum Ziel, den Wirkungsgrad einer Dampfkraftanlage wesentlich zu verbessern.
  • Dies wird erfindungsgemäß mit der im Anspruch 1 gekennzeichneten Dampfkraftanlage erreicht. In den Unteransprüchen sind vorteilhafte Ausgestaltungen der Erfindung wiedergegeben.
  • Bei der erfindungsgemäßen Kraftanlage, bei der das in einem Druckkessel erhitzte flüssige Arbeitsmittel über eine Entspannungsmaschine zur Energieabgabe und einem Kondensator in einem geschlossenen Kreislauf dem Druckkessel wieder zugeführt wird, besteht also das Arbeitsmittel aus einem Gemisch aus wenigstens zwei Stoffen, die bei gleichem Druck unterschiedliche Siedepunkte aufweisen. Der Druck des flüssigen Arbeitsmittels wird beim Durchtritt durch die Entspannungsmaschine soweit herabgesetzt, daß der Stoff mit dem niedrigeren Siedepunkt im wesentlichen verdampft, während der Stoff mit dem höheren Siedepunkt im wesentlichen Tröpfchen bildet. Ferner ist ein ebenfalls geschlossener gegenläufiger Kühlmittelkreislauf vorgesehen, in dem das gasförmige Kühlmittel mit einer Wärmepumpe verflüssigt wird, das flüssige Kühlmittel mit einem Wärmetauscher gekühlt und das gekühlte flüssige Kühlmittel verdampft und entspannt wird, wobei mit dem entspannten gekühlten gasförmigen Kühlmittel der Kondensator im Kreislauf des Arbeitsmittels gekühlt wird.
  • Nach der Erfindung wird also ein Arbeitsmittel verwendet, das ein Gemisch von wenigstens zwei Stoffen ist, die bei gleichem Druck unterschiedliche Siedepunkte besitzen. Das in dem Druckkessel unter Druck stehende, erhitzte, flüssige Arbeitsmittel wird beim Durchtritt durch eine Entspannungsmaschine so entspannt, daß es zum Teil verdampft. D. h., es wird im wesentlichen der Stoff mit dem niedrigen Siedepunkt verdampft, während der Stoff mit dem höheren Siedepunkt im wesentlichen in feine Nebeltröpfchen übergeht, also im flüssigen Zustand verbleibt. Diese Nebeltröpfchen weisen zunächst eine Temperatur auf, die annähernd der hohen Temperatur des Arbeitsmittels im Druckkessel entspricht. Durch ihre hohe Temperatur halten die Nebeltröpfchen den Dampf aus dem Stoff mit dem niedrigen Siedepunkt in einem stark überhitzten Zustand. Die Wärme der Tröpfchen des Stoffs mit dem hohen Siedepunkt wird also in der Entspannungsmaschine in Arbeitsenergie umgesetzt. Mit anderen Worten, bei der erfindungsgemäßen Dampfkraftanlage bleibt der Stoff des Arbeitsmittels mit dem höheren Siedepunkt großteils flüssig, wobei er bei Eintritt in die Entspannungsmaschine in heiße Nebeltröpfchen übergeführt wird. Der sich bei der Entspannung in der Entspannungsmaschine abkühlende Dampf aus dem Stoff mit dem niedrigeren Siedepunkt wird durch die heißen Nebeltröpfchen dauernd im Heißdampfbereich gehalten, da die Nebeltröpfchen ihre Wärme an den Dampf abgeben müssen.
  • Damit braucht bei der Kondensation des Arbeitsmittels im Kondensator nur der Anteil des verdampften Stoffes mit dem niedrigeren Siedepunkt rückgekühlt zu werden. Die im Kondensator durch Kondensation des Dampfes erzeugte Kondensationswärme wird mit Hilfe einer Wärmepumpe abgeführt.
  • Die Stoffe, die erfindungsgemäß das Arbeitsmittel bilden, müssen so beschaffen sein, daß sie sich gut miteinander mischen. So sind beispielsweise Ammoniak und Wasser, niedrigsiedende Alkohole, wie Methylalkohol, und Wasser oder Kohlendioxid und Wasser als derartige Zweistoffgemische geeignet.
  • Nachstehend ist eine Ausführungsform der erfindungsgemäßen Dampfkraftanlage anhand der Zeichnung näher erläutert, deren einzige Figur schematisch einen Schnitt durch die Anlage zeigt.
  • Danach wird das Arbeitsmittel, also ein Gemisch aus einem Stoff mit einem niedrigen Siedepunkt, wie Ammoniak, und ein Stoff mit einem hohen Siedepunkt, wie Wasser, im flüssigen Zustand einem Druckkessel 1 zugeführt, und darin so erhitzt, daß es unter Druck flüssig oder zumindest flüssigkeitsähnlich bleibt. Der Druckkessel 1 kann z. B. mit Hilfe einer Solaranlage beheizt werden. Ein oben an den Druckkessel 1 angeschlossenes Druckausgleichsgefäß mit einem Gaspolster 2 sorgt für die Aufrechterhaltung des gewünschten Drucks.
  • Der Druckkessel 1 kann neben Solarenergie beispielsweise auch mit Umweltwärme oder Abwärme beheizt werden.
  • Das unter Druck stehende, erhitzte Arbeitsmittel im Druckkessel 1 wird einer Entspannungsmaschine 4, also einer Dampfkraftmaschine, wie einer Dampfturbine, zugeführt, welche einen elektrischen Generator 5 antreibt.
  • Um den gewünschten Druck zu erhalten, so daß in der Maschine 4 ein Arbeitsmittel erzeugt wird, in dem der Stoff mit dem niedrigen Siedepunkt im wesentlichen verdampft ist, während der Stoff mit dem höheren Siedepunkt im wesentlichen in Nebeltröpfchen übergeführt worden ist, passiert das noch flüssige Stoffgemisch ein Drosselventil 3.
  • In der Entspannungsmaschine 4 wird die bei der Entspannung des überhitzten Dampfanteils des Arbeitsmittels freiwerdende Energie in eine Drehbewegung umgesetzt, die zum Antrieb des elektrischen Generators 5 verwendet wird. D. h., der aus dem Drosselventil 3 austretende Nebel mit den heißen Tröpfchen aus dem Stoff mit dem höheren Siedepunkt bewirkt während des ganzen Entspannungsprozesses in der Entspannungsmaschine 4 eine Überhitzung des Dampfes aus dem Stoff mit dem niedrigen Siedepunkt, wodurch der ganze Arbeitsprozeß im Heißdampfbereich erfolgt und somit ein hoher Wirkungsgrad entsteht. Am Ende des Entspannungsprozesses, also nach Verlassen der Entspannungsmaschine 4, wird das aus abgekühltem Dampf und Nebeltröpfchen bestehende Arbeitsmittel einem Kondensator 6 zugeführt, in dem das durch die Entspannung abgekühlte Dampf-Nebelgemisch zur Gänze verflüssigt und über eine Kondensatpumpe 7 dem Druckkessel 1 zur Erhitzung wieder zugeführt wird.
  • Bei der Verflüssigung des Arbeitsmittels im Kondensator 6 ergibt sich der große Vorteil, daß nur die Verdampfungswärme des Dampf-Anteils, also des Stoffes mit dem niedrigen Siedepunkt zur Kondensation rückgekühlt werden muß, während der Stoff mit dem höheren Siedepunkt bereits in Form von Nebeltröpfchen vorliegt, also schon flüssig ist.
  • Um zu vermeiden, daß die Kondensationswärme des dampfförmigen Anteils des Arbeitsmittels verlorengeht, wird zur Wärmerückgewinnung ein Kühlmittelkreislauf mit einer Wärmepumpe eingesetzt, um ein tieferes Temperaturniveau zu erzeugen, so daß die Kondensation des Arbeitsmittels gewährleistet wird.
  • Der Verdampfer 8 der Wärmepumpe ist dabei in dem Kondensator 6 für das Arbeitsmittel angeordnet und entzieht dort dem dampfförmigen Anteil des Arbeitsmittels die Kondensationswärme. Mit dem Kompressor 9 wird das Kühlmittel der Wärmepumpe verflüssigt und erhitzt.
  • Die Abkühlung des durch die Pumpe 9 erhitzten Kühlmittels erfolgt in einem Wärmetauscher 10 durch das im Kondensator 6 verflüssigte Arbeitsmittel. Dabei gibt das Kühlmittel der Wärmepumpe die im Kondensator 6 mit dem Verdampfer 8 entzogene Kondensationswärme des Arbeitsmittels, die mit der Wärmepumpe hochgepumpt worden ist, an das mit der Kondensatpumpe 7 gepumpte flüssige Arbeitsmittel ab, das dadurch vorerwärmt wird. Auf diese Weise wird also die mit dem Kühlmittel aus der Kondensationswärme entzogene Energie wieder in das Arbeitsmittel vor dessen Eintritt in den Druckkessel 1 zurückgeführt.
  • Das mit dem Wärmetauscher 10 gekühlte flüssige Kühlmittel wird verdampft und entspannt, wodurch es sich weiter abkühlt und in der Lage ist, dem Arbeitsmittel die erforderliche Kondensationswärme zu entziehen. Um den richtigen Druck, die richtigen Temperatur- und somit richtigen Rückkühlungsenergieübergänge zu schaffen, ist dazu im Anschluß an den Wärmetauscher 10 ein Drosselventil 12 in den Kühlmittelkreislauf geschaltet.
  • Um keine Energie zu verlieren, erfolgt die Entspannung des Kühlmitteldampfes über eine Entspannungsmaschine 13, wodurch nahezu die gesamte in die Anlage eingebrachte Energie, soweit sie nicht durch Nutz-Energieerzeugung verbraucht wurde, im System bleibt, abgesehen von Abstrahlungswärme und Isolationsverlusten. Auch die Energie zum Betrieb des Kompressors 9 der Wärmepumpe und zum Betrieb der Kondensatpumpe 7 kann durch die Anlage aufgebracht werden.
  • Durch Verwendung von sehr tiefsiedenden Mehrstoffkomponenten kann mit der erfindungsgemäßen Dampfkraftanlage auch noch bei sehr tiefen Temperaturen Energie erzeugt werden.
  • Man kann z. B. an eine Schiffshaut einen Druckkessel anschließen und dann aus dem Wasser, in dem das Schiff schwimmt, die für die Erwärmung des Arbeitsmittels im Druckkessel erforderliche Energie durch Wärmeaustausch über die Schiffshaut beziehen.
  • Mit der erfindungsgemäßen Dampfkraftanlage kann Umwelt- und Sonnenenergie mit einem relativ hohen Wirkungsgrad in nutzbare mechanische, elektrische oder sonstige Energie umgewandelt werden. Wie vorstehend geschildert, wird dies im wesentlichen dadurch erreicht, daß das Arbeitsmittel ein Gemisch von wenigstens zwei Stoffen mit unterschiedlichen Siedepunkten ist, wobei der Stoff mit dem höheren Siedepunkt in dem Gemisch bei der Entspannung in der Entspannungsmaschine 4 im wesentlichen nicht verdampft wird, sondern in Form von Nebeltröpfchen vorliegt, während der Teil des Gemisches aus dem Stoff mit dem niedrigeren Siedepunkt im wesentlichen verdampft und dieser Dampfanteil während der Entspannung dauernd Wärmeenergie von den Nebeltröpfchen aufnimmt und somit im Heißdampfbereich bleibt.
  • Die Kondensationswärme, die beim Kondensieren des Dampfanteils in dem Kondensator 6 anfällt, wird mittels einer Wärmepumpe zunächst entzogen und über den Wärmetauscher 10 nach der Kondensatpumpe 7 dem Arbeitsmittel vor Eintritt in den Druckkessel 1 wieder zurückgegeben.
  • Damit ergibt sich eine Dampfkraftanlage mit maximaler Energieausbeute bei minimalen Wärmeaufnahmeflächen.

Claims (12)

  1. Dampfkraftanlage, bei der das erhitzte flüssige Arbeitsmittel einer Entspannungsmaschine (4) zugeführt wird, wobei das Arbeitsmittel aus einem Gemisch aus wenigstens zwei Stoffen besteht, die bei gleichem Druck unterschiedliche Siedepunkte aufweisen, dadurch gekennzeichnet, daß das Arbeitsmittel als Gemisch aus den wenigstens zwei Stoffen über einen Kondensator (6) in einem geschlossenem Kreislauf einem Druckkessel (1) zugeführt wird, und daß ein geschlossener gegenläufiger Kühlmittelkreislauf vorgesehen ist, wobei der Kondensator (6) im Kreislauf des Arbeitsmittels mit dem entspannten gekühlten gasförmigen Kühlmittel gekühlt wird.
  2. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Herabsetzung des Drucks des flüssigen Arbeitsmittels unter Verdampfung des Stoffs mit dem niedrigen Siedepunkt und Tröpfchenbildung des Stoffs mit dem höheren Siedepunkt der Entspannungsmaschine (4) ein Drosselventil (3) vorgeschaltet ist.
  3. Dampfkraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das im Kondensator (6) verflüssigte Arbeitsmittel über den Wärmetauscher (10) im Kühlmittelkreislauf erwärmt und dem Druckkessel (1) zugeführt wird.
  4. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß an dem Druckkessel (1) ein Druckausgleichgefäß mit einem Gaspolster (2) angeschlossen ist.
  5. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß im Kreislauf des Arbeitsmittels zwischen dem Kondensator (6) und dem Wärmetauscher (10) eine Kondensatpumpe (7) vorgesehen ist.
  6. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Verdampfung des im Wärmetauscher (10) gekühlten Kühlmittels ein Drosselventil (12) vorgesehen ist.
  7. Dampfkraftanlage nach Anspruch 1, dadurch gekennzeichnet, daß zur Entspannung des im Wärmetauscher (10) gekühlten Kühlmittels eine Entspannungsmaschine (13) vorgesehen ist.
  8. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Arbeitsmittel aus einem Gemisch aus Ammoniak und Wasser, einem Alkohol mit niedrigem Siedepunkt und Wasser oder aus Kohlendioxid und Wasser gebildet wird.
  9. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kühlmittel durch einen Stoff gebildet wird, der einen Siedepunkt aufweist, der dem Siedepunkt des Stoffes des Arbeitsmittels mit dem niedrigen Siedepunkt entspricht.
  10. Dampfkraftanlage nach Anspruch 9, dadurch gekennzeichnet, daß das Kühlmittel durch den Stoff des Arbeitsmittels mit dem niedrigen Siedepunkt gebildet wird.
  11. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Kühlmittel Ammoniak ist.
  12. Dampfkraftanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Druckkessel (1) durch Umweltwärme, Abwärme oder Solarenergie erhitzt wird.
EP93903159A 1992-02-13 1993-02-10 Dampfkraftanlage Expired - Lifetime EP0626034B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT23792 1992-02-13
AT237/92 1992-02-13
PCT/DE1993/000113 WO1993016271A1 (de) 1992-02-13 1993-02-10 Dampfkraftanlage

Publications (2)

Publication Number Publication Date
EP0626034A1 EP0626034A1 (de) 1994-11-30
EP0626034B1 true EP0626034B1 (de) 1996-05-01

Family

ID=3485193

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93903159A Expired - Lifetime EP0626034B1 (de) 1992-02-13 1993-02-10 Dampfkraftanlage

Country Status (6)

Country Link
EP (1) EP0626034B1 (de)
JP (1) JPH07508327A (de)
AT (1) ATE137563T1 (de)
CA (1) CA2117465A1 (de)
DE (1) DE59302452D1 (de)
WO (1) WO1993016271A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278264B2 (en) * 2005-03-31 2007-10-09 Air Products And Chemicals, Inc. Process to convert low grade heat source into power using dense fluid expander
BE1017812A5 (fr) * 2008-01-09 2009-07-07 Cohen Albert Moteur pendulaire.
JP5847387B2 (ja) * 2010-10-08 2016-01-20 白川 利久 能動的復水器
CN109059342B (zh) * 2018-06-21 2020-08-04 冰轮环境技术股份有限公司 低温制冷与高温供热综合供给系统
GB2581770B (en) * 2019-01-14 2023-01-18 Gas Expansion Motors Ltd Engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE691549C (de) * 1937-06-16 1940-05-30 Emile Franciskus Johannes Mari Kraftanlage mit einer mittels Dampf niedriger Verdampfungstemperatur getriebenen Turbine
GB703979A (en) * 1952-10-02 1954-02-10 Henry Gordon Turnell Improvements in steam power installations
US3879949A (en) * 1972-11-29 1975-04-29 Biphase Engines Inc Two-phase engine
WO1985002881A1 (en) * 1983-12-22 1985-07-04 Lipovetz Ivan System for converting heat energy, particularly for utilizing heat energy of the environment
CA1323991C (en) * 1989-08-18 1993-11-09 Thomas C. Edwards Heat engine, refrigeration and heat pump cycles approximating the carnot cycle and apparatus therefor

Also Published As

Publication number Publication date
ATE137563T1 (de) 1996-05-15
JPH07508327A (ja) 1995-09-14
EP0626034A1 (de) 1994-11-30
DE59302452D1 (de) 1996-06-05
WO1993016271A1 (de) 1993-08-19
CA2117465A1 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
DE69627480T2 (de) Turbinenkreislauf mit vorgewärmter injektion
DE102008005978B4 (de) Niedertemperaturkraftwerk und Verfahren zum Betreiben eines thermodynamischen Zyklus
DE60127040T2 (de) Verfahren und Vorrichtung zur Krafterzeugung aus Wärme
DE69935087T2 (de) Einlassluftkühlung für Gas-Dampf Kombikraftwerk
DE2611890C3 (de) Anordnung zum Umformen von in einem gasförmigen Primärfluid enthaltener Wärme in eine andere Energieart
DE3708649C2 (de)
DE69032108T2 (de) Verfahren und Vorrichtung für thermodynamischen Zyklus
DE69917722T2 (de) Gefriertrocknung mit reduziertem Kryogenmittelverbrauch
DE2904232A1 (de) Verfahren und anlage zur verbesserung des wirkungsgrades von kraftwerken
DE3735386A1 (de) Kuehlsystem mit einer von abwaerme angetriebenen pumpe
CH675749A5 (de)
DE3420293A1 (de) Rankine-cyclus-kraftwerk mit einem verbesserten organischen arbeitsfluid bzw. -fluessigkeit
DE2929995A1 (de) Verfahren zur umwandlung geringer waermeenergie in mechanische energie in einer turbine zur weiteren verwendung und anlage zur durchfuehrung des verfahrens
EP1706598B1 (de) Verfahren und anlage zur umwandlung von wärmeenergie aus kältemaschinen
WO1985004216A1 (en) Method and plant intended to a thermodynamic cycle process
DE2639187C3 (de) Verfahren zur Nutzung von Abwärme
EP0626034B1 (de) Dampfkraftanlage
DE1551234A1 (de) Verfahren zur Umwandlung von Waerme in mechanische Energie
EP0531293B1 (de) Thermische prozesse des ausdampfens, kondensierens und absorbierens und ihre kombinationen
WO2008055720A2 (de) Arbeitsmedium für dampfkreisprozesse
DE2629441A1 (de) Verfahren zur erhoehung der temperatur eines waermetraegers
DE19515287C2 (de) Verfahren zur Erzeugung von Behandlungsatmosphären für Kryotherapie und zur Durchführung des Verfahrens bestimmte Anlage zur Ganzkörperbehandlung
DE2638084A1 (de) Verfahren zur isentropen expansion von gasen
WO2008031613A2 (de) Stromerzeugung im grundlastbereich mit geothermischer energie
DE19921336A1 (de) Thermisches Kraftwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPPLE, ALBRECHT

Owner name: SEYR, HELMUT

Owner name: ZEMAN, GERHARD

Owner name: BANKHAMER, ALFRED

Owner name: BANKHAMER, DORIS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EPPLE, ALBRECHT

Owner name: SEYR, HELMUT

Owner name: ZEMAN, GERHARD

Owner name: BANKHAMER, ALFRED

Owner name: BANKHAMER, DORIS

17Q First examination report despatched

Effective date: 19950901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960501

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960501

Ref country code: GB

Effective date: 19960501

Ref country code: FR

Effective date: 19960501

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960501

Ref country code: DK

Effective date: 19960501

Ref country code: BE

Effective date: 19960501

REF Corresponds to:

Ref document number: 137563

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 68206

REF Corresponds to:

Ref document number: 59302452

Country of ref document: DE

Date of ref document: 19960605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19960802

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970228

Ref country code: CH

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970306

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 68206

Country of ref document: IE

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010426

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010816

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903