EP0618364B1 - Hydrostatische Pumpe - Google Patents

Hydrostatische Pumpe Download PDF

Info

Publication number
EP0618364B1
EP0618364B1 EP19940104534 EP94104534A EP0618364B1 EP 0618364 B1 EP0618364 B1 EP 0618364B1 EP 19940104534 EP19940104534 EP 19940104534 EP 94104534 A EP94104534 A EP 94104534A EP 0618364 B1 EP0618364 B1 EP 0618364B1
Authority
EP
European Patent Office
Prior art keywords
rotors
drive shaft
insert
pairs
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940104534
Other languages
English (en)
French (fr)
Other versions
EP0618364A1 (de
Inventor
Willi Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEST-FUCHS , ING. FRITZ FUCHS GESELLSCHAFT M.B.H.
Original Assignee
"test-Fuchs" Ing Fritz Fuchs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by "test-Fuchs" Ing Fritz Fuchs GmbH filed Critical "test-Fuchs" Ing Fritz Fuchs GmbH
Publication of EP0618364A1 publication Critical patent/EP0618364A1/de
Application granted granted Critical
Publication of EP0618364B1 publication Critical patent/EP0618364B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle

Definitions

  • the invention relates to a hydrostatic pump, more precisely to a rotary displacement machine with at least one internally toothed and at least one externally toothed gear.
  • the hydraulic fluid is conveyed with uniform rotation in chambers, the volume of which is changed cyclically by the design of the boundary walls or the penetration of a tooth.
  • the circulation displacer simultaneously effects the mutual closure of the suction and pressure chambers.
  • gear pumps at least two toothed wheels are engaged and in an internal gear pump, at least one internally toothed wheel is in engagement with at least one externally toothed wheel.
  • Internal gear ring pumps consist of two wheels, the number of teeth of the ring gear being one more than that of the pinion. Due to the tooth mesh, a pulsation with the tooth frequency is superimposed on the delivery flow in gear pumps.
  • Hydrostatic internal gear pumps have the advantage of a very concentric design, small space requirements, large delivery capacity and good pumping speed.
  • a drive shaft is provided in a pump housing with inlet and outlet.
  • the pinion (inner rotor) of a gear pair (pair of rotors) is attached to the drive shaft.
  • the inner rotor meshes with an internally toothed ring gear (outer rotor).
  • the outer rotor is guided by a guide ring, which is fixed axially and radially to the pump housing.
  • the pump housings are normally not adapted to the rotational symmetry of the rotating components, etc. due to the environment in which they are installed.
  • the pumps have deformations of the pump housing over the pressure and temperature range of the fluid, which have a significant influence on the flow of force within the pump and can have negative effects on the service life of the bearings and rotors, on the pulsation behavior and on the volumetric efficiency.
  • the pumps are defined by the design of their housing adapted to their task and cannot be used for other types of application.
  • the variation of the volume flow or the pump power within a given housing through the use of rotors or rotor pairs differing in thickness is only possible within narrow limits.
  • the testing and setting of the pump performance can only be done by individual testing and adjustment with or on the pump housing.
  • the repair and maintenance of such a pump requires due to the complex installation and removal the adjustment or adjustment of the components a considerable amount of time and work.
  • FIG. 1 shows a sectional view of a first embodiment of the hydrostatic pump with a housing 1, which has an inlet 2 and an outlet 3, and which into a device 90, e.g. B. a gearbox of a helicopter is installed.
  • a device 90 e.g. B. a gearbox of a helicopter is installed.
  • the required seal between the pump and the device is provided by seals 91.
  • the housing 1 has a cup-shaped recess into which is inserted an insert 4 corresponding in its outer shape to the inner shape of the recess, which has a bottom 5 and a cylindrical interior having an opening on the side facing away from the bottom 5.
  • the insert has an inlet 6 which is formed in a plurality of openings and connects the interior to the inlet 2 and an outlet 7 which is likewise formed in a plurality of openings and which connects the interior to the outlet 3.
  • the bottom 5 of the insert 4 has a receptacle for a first bearing 10 on its side facing away from the cylindrical interior.
  • the first bearing 10 is inserted into the receptacle.
  • the outer cage 11 of the first bearing 10 is fixed directly to the bottom 5 and the inner cage 12 of the bearing 10 is fixed directly to the shaft collar of a drive shaft 8 which is guided through the through hole.
  • the drive shaft 8 is thus mounted in the bottom 5 of the insert 4.
  • the first embodiment of the gear pump shown in FIG. 1 has a first pair of rotors 21, 22, a second pair of rotors 31, 32 and a third pair of rotors 41, 42, each of which has an outer rotor 21, 31, 41 and an inner rotor 22, 32, 42 are formed.
  • the drive shaft 8 which is guided through the through hole in the receptacle for the first bearing, projects (from above in FIG. 1) into the cylindrical interior.
  • the washers 20, 30, 40, 50 all vertical have the same outline to the axis of the drive shaft (as shown in FIG. 6), are held radially and against rotation in a plane perpendicular to the axis of the drive shaft on the insert 4 by a fixation (as also shown in FIG. 6).
  • the outer rotors 21, 31, 41 are fixed radially over their entire circumference by guide areas 23, 33, 43 of the insert 4.
  • the inner rotors 22, 32, 42 are each rotatably connected to the drive shaft 8 by bolts, of which only the bolt 24 is shown in FIG. 1 (see also FIG. 5).
  • the external teeth of the inner rotors 22, 32, 42 interact in a known manner with the internal teeth of the outer rotors 21, 31, 41 in such a way that a space with a changing volume, which is used in a known manner to convey the fluid, is created.
  • the inlet side of the pump is separated from the pressure side of the pump by the disks 20, 30, 40, 50 and the rotor pairs.
  • a cover 51 the outer diameter of which corresponds to the inner diameter of the cylindrical interior, has a receptacle for a second bearing 60.
  • a through hole for the passage of the drive shaft 8 is formed centrally in the receptacle.
  • the drive shaft 8 is seen in the direction of the opening of the interior after the end plate 50 through the through hole in the cover 51.
  • the second bearing 60 with an outer cage 61 and an inner cage 62 is inserted into the receptacle formed in the cover 51.
  • a bearing bush 52 to which the rotational movement of the drive shaft 8 is transmitted by a bolt 53, is placed, which is connected in a rotationally fixed manner to the inner cage 62 of the bearing 60.
  • the outer cage 61 of the bearing 60 is held by the cover 51. In this way, the drive shaft 8 is mounted in the cover 51.
  • the bearing bush 52 is movable on the drive shaft 8 in the axial direction of the drive shaft 8.
  • the cover 51 connected to it via the bearing 60 is also movable in the axial direction of the shaft.
  • the distance between the cover and the floor is adjusted as follows:
  • the surface of the cover 51 facing away from the rotor pairs is plane-parallel in a region along the outer circumference to the likewise flat surface of the cover 51 facing the rotor pairs of the interior corresponds, arranged and secured by a locking element 57, a locking ring or the like, which engages with a groove which is formed in the wall of the cylindrical interior parallel to the plane-parallel surface.
  • the axial play adjustment of the first and second bearings 10, 60 takes place via the thickness of an adjusting disk 54, which on the end of the drive shaft which projects beyond the bearing bush 52 8 is pushed, and the limitation of the game takes place via a locking ring 55 which engages with a groove at the end of the drive shaft.
  • the bearings 10, 60 of the drive shaft are set against each other, that is, they only absorb forces in one axial direction of the shaft.
  • insert 4 all parts relevant to the performance of the pump are provided and adjusted in a simple manner.
  • the insert 4 with all the parts relevant to the performance of the pump is inserted in the recess of the housing 1 like a cartridge and is axially secured by the locking element 9.
  • the insert is secured against rotation by an anti-rotation lock, not shown.
  • FIG. 2 shows a top view of the first embodiment of the pump, which is not installed in the device 90 in this illustration.
  • the outer boundary line of the locking element 9 indicates the outer circumference of the insert 4. It can be clearly seen that the insert 4 is not seated centrally in the housing 1.
  • FIG. 3 shows a side view of a first embodiment of the insert 4.
  • the scope of the outer rotors guided through the guide areas is indicated by dashed lines.
  • the insert 4 is easy to manufacture as a turned part. In the case of maintenance, repair or even the variation in performance of the pump, the insert 4 can thus easily be removed from the housing 1, which is adapted to the particular application environment, and replaced by another insert 4.
  • FIG. 4 shows a sectional view of the first embodiment of the pump in the non-installed state.
  • the section plane indicated by line AA in FIG. 4 is shown in FIG. 5 and the section plane indicated by line BB in FIG. 4 is shown in FIG. 6.
  • the inner rotor 22 is in engagement with the outer rotor 21.
  • the outer rotor 21 is guided radially by the guide area 23 of the insert 4.
  • the intermediate disk 30 can be seen in the plan view below the inner rotor 22 and the outer rotor 21. In FIG. 6 it can be seen that the intermediate disk 30, like all other disks, is guided radially from the insert 4 and is secured against rotation in the plane of rotation of the rotors by a fixation 30a.
  • variable volume space receives fluid to be conveyed on the inlet or suction side and is reduced in volume by the rotation of the rotor pair while it is between the larger sections of the disks (in FIGS. 5 and 6 above), and gives the conveyed Fluid on the outlet or pressure side by further reducing the volume.
  • the variable volume of the space between the smaller areas of the disks 20, 30, 40, 50 in FIGS. 5 and 6 below is almost zero. So no fluid is conveyed back from the pressure side to the suction side.
  • the inner rotors 22, 32, 42 are offset relative to one another with respect to the axis of the drive shaft by 360 ° / number of rotor pairs, ie by 120 °.
  • the pump capacity depends essentially on the number of rotors and the rotor thickness.
  • the pump output can be changed simply by replacing the insert 4 with another insert 4, which contains rotor pairs with a correspondingly different pump output.
  • a simple change of insert 4 is also possible for maintenance, repair and the like.
  • the relative change in the temperature-dependent viscosity ⁇ (T ) of the fluid versus the viscosity ⁇ (T 0 ) at a predetermined temperature T 0 is approximately proportional to the relative temperature-dependent change in the sum of all gap thicknesses D j (T) compared to the sum of all gap thicknesses D j (T 0 ) at temperature T 0 .
  • This selection of the coefficients of thermal expansion prevents the leakage losses through the gaps from increasing too much due to the decreasing viscosity when the temperature of the fluid rises, and thus the efficiency of the pump decreases disproportionately with increasing temperature.
  • the insert 4, the drive shaft 8, the disks 20, 30, 40, 50, the rotors 21, 22, 31, 32, 41, 42 and the cover 51 are made of partially hardened steels.
  • some disks and / or some rotors are made of ceramic.
  • the bearings 10, 60 only absorb axial forces. This is achieved, inter alia, in that the drive shaft 8 is driven by an internal gearwheel which interacts with the external gearwheel 8a of the drive shaft 8. In other embodiments of the invention, the bearings 10, 60 are designed such that they also absorb radial and / or tilting forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die Erfindung betrifft eine hydrostatische Pumpe, nach dem Oberbegriff des Anspruches 1, genauer eine Umlaufverdrängermaschine mit mindestens einem innenverzahnten und mindestens einem außenverzahnten Zahnrad.
  • Bei Umlaufverdrängermaschinen wird die Druckflüssigkeit bei gleichförmiger Drehung in Kammern, deren Volumen durch die Gestaltung der Begrenzungswände oder das Eindringen eines Zahns zyklisch verändert wird, gefördert. Der Umlaufverdränger bewirkt gleichzeitig den gegenseitigen Abschluß der Saug- und Druckräume. Bei Zahnradpumpen stehen mindestens zwei verzahnte Räder im Eingriff und bei einer Innenzahnradpumpe steht mindestens ein innenverzahntes mit mindestens einem außenverzahnten Rad in Eingriff. Innenzahnringpumpen bestehen aus zwei Rädern, wobei die Zähnezahl des Hohlrades um eins größer als die des Ritzels ist. Durch den Zahneingriff wird dem Förderstrom bei Zahnradpumpen eine Pulsation mit der Zahnfrequenz überlagert. Hydrostatische Innenzahnradpumpen haben den Vorzug sehr konzentrischer Bauweise, geringen Platzbedarfs, großer Förderleistung und guten Saugvermögens.
  • Bekannte Innenzahnradpumpen weisen gewöhnlich folgenden Aufbau auf. In einem Pumpengehäuse mit Ein- und Auslaß ist eine Antriebswelle vorgesehen. Auf der Antriebswelle ist das Ritzel (Innenrotor) eines Zahnradpaares (Rotorpaar) befestigt. Der Innenrotor steht mit einem innenverzahnten Hohlrad (Außenrotor) in Eingriff. Der Außenrotor wird von einem Führungsring geführt, der am Pumpengehäuse axial und radial fixiert ist.
  • Es sind auch Pumpen bekannt, bei denen mehrere Rotorpaare in axialer Richtung der Antriebswelle übereinander angeordnet sind. Diese Rotorpaare sind dann durch Zwischenscheiben voneinander getrennt. Zwischen den einzelnen Rotorpaaren und den Scheiben, die feststehend im Gehäuse montiert sind, entsteht durch die Rotation der Rotorpaare Reibung. Die genaue Einstellung bzw. Justierung der Rotationsebenen der Rotorpaare, der Dicke der Spalte zwischen den Rotorpaaren und den feststehenden Scheiben der axialen und radialen Führung der Außenrotoren, der Rotationssymmetrie der einzelnen Rotorpaare und der Antriebswelle und der jeweiligen Lagerspiele ist bei einem solchen Aufbau sehr aufwendig.
  • Die Pumpengehäuse sind aufgrund der Umgebung, in die sie eingebaut werden, normalerweise nicht der Rotationssymmetrie der rotierenden Bauteile, etc. angepaßt. Die Pumpen weisen über den Druck- und Temperaturbereich des Fluids Verformungen des Pumpengehäuses auf, die den Kraftfluß innerhalb der Pumpe wesentlich beeinflussen und zu negativen Einwirkungen auf die Lebensdauer der Lager und der Rotoren, auf das Pulsationsverhalten sowie auf den volumetrischen Wirkungsgrad führen können. Die Pumpen sind durch die auf ihre Aufgabe angepaßte Bauart ihres Gehäuses definiert und nicht für andersartige Einsatzlösungen zu benutzen. Die Variation des Volumenstromes bzw. der Pumpleistung innerhalb eines gegebenen Gehäuses durch den Einsatz von in der Dicke differierenden Rotoren bzw. Rotorpaaren ist nur in engen Grenzen möglich. Das Testen und Einstellen der Pumpenleistung kann nur durch individuelles Testen und Anpassen mit dem bzw. an das Pumpengehäuse erfolgen. Die Reparatur und die Wartung einer solchen Pumpe erfordert aufgrund des aufwendigen Ein- und Ausbaus und der Einstellung bzw. Justierung der Bestandteile einen erheblichen Zeit- und Arbeitsaufwand.
  • Aus der US-A-3,272,130 ist eine hydrostatische Pumpe nach dem Oberbegriff des Patentanspruches 1 bekannt. Die Innenrotore sind auf einer Antriebswelle drehfest durch einen Keil angebracht. Die Außenrotore sind an dem Gehäuse angebracht.
  • Aus der EP-A-0 437 919 ist eine hydrostatische Pumpe mit einem Gehäuse bekannt, in dem Flügelzellenpumpen durch Scheiben getrennt sind. Die Flügelzellenpumpen sind in das Gehäuse eingesetzt.
  • Es ist Aufgabe der vorliegenden Erfindung, eine hydrostatische Pumpe nach dem Oberbegriff des Anspruches 1 vorzusehen, die einen mehrstufigen Aufbau aufweist, die einfacher im Aufbau ist und zwecks Reparatur, Wartung und Ersatzarbeiten einfacher montierbar und demontierbar ist.
  • Diese Aufgabe wird gelöst durch eine hydrostatische Pumpe nach Patentanspruch 1.
  • Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Weitere Vorteile und Zweckmäßigkeiten der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Figuren.
  • Von den Figuren zeigen:
  • Fig. 1
    eine Schnittansicht einer ersten Ausführungsform, der Pumpe die in ein Gerät eingebaut ist;
    Fig. 2
    eine Draufsicht auf die erste Ausführungsform der Pumpe ohne Gerät;
    Fig. 3
    eine Seitenansicht einer ersten Ausführungsform eines Einsatzes;
    Fig. 4
    eine Schnittansicht der ersten Ausführungsform der Pumpe in nichteingebautem Zustand;
    Fig. 5
    eine Schnittansicht auf die in Fig. 4 mit A-A gekennzeichnete Ebene; und
    Fig. 6
    eine Schnittansicht auf die in Fig. 4 mit B-B gekennzeichnete Ebene.
  • Fig. 1 zeigt eine Schnittansicht einer ersten Ausführungsform der hydrostatischen Pumpe mit einem Gehäuse 1, welches einen Einlaß 2 und einen Auslaß 3 aufweist, und das in ein Gerät 90, z. B. ein Getriebe eines Hubschraubers, eingebaut ist. Die erforderliche Abdichtung zwischen Pumpe und Gerät erfolgt durch Dichtungen 91.
  • Das Gehäuse 1 weist eine becherförmige Ausnehmung auf, in die ein in seiner Außenform der Innenform der Ausnehmung entsprechender Einsatz 4, der einen Boden 5 und einen auf der dem Boden 5 abgewandten Seite eine Öffnung aufweisenden zylinderförmigen Innenraum aufweist, eingesetzt ist. Der Einsatz weist einen bei dieser Ausführungsform in mehreren Öffnungen ausgebildeten Eingang 6, der den Innenraum mit dem Einlaß 2 verbindet und einen ebenfalls in mehreren Öffnungen ausgebildeten Ausgang 7, der den Innenraum mit dem Auslaß 3 verbindet, auf. Der Boden 5 des Einsatzes 4 weist auf seiner dem zylinderförmigen Innenraum abgewandten Seite eine Aufnahme für ein erstes Lager 10 auf. Zentrisch in der Aufnahme ist ein Durchgangsloch, dessen Mittachse um einen Abstand a parallel zur Zylinderachse des zylinderförmigen Innenraums des Einsatzes 4 versetzt ist, vorgesehen. In die Aufnahme ist das erste Lager 10 eingesetzt. Der Außenkäfig 11 des ersten Lagers 10 ist direkt am Boden 5 und der Innenkäfig 12 des Lagers 10 ist direkt am Wellenbund einer Antriebswelle 8, die durch das Durchgangsloch geführt ist, fixiert. Die Antriebswelle 8 wird so im Boden 5 des Einsatzes 4 gelagert.
  • Die in Fig. 1 dargestellte erste Ausführungsform der Zahnradpumpe weist ein erstes Rotorpaar 21, 22, ein zweites Rotorpaar 31, 32 und ein drittes Rotorpaar 41, 42 auf, die jeweils von einem Außenrotor 21, 31, 41 und einem Innenrotor 22, 32, 42 gebildet werden. Die durch das Durchgangsloch in der Aufnahme für das erste Lager geführte Antriebswelle 8 ragt (in Fig. 1 von oben) in den zylinderförmigen Innenraum. Sie ist in Richtung des Bodens 5 des Einsatzes 4 in Richtung der Öffnung des Innenraumes des Einsatzes 4 nacheinander durch Öffnungen einer ersten Endscheibe 20, des ersten Innenrotors 22, einer ersten Zwischenscheibe 30, des zweiten Innenrotors 32, einer zweiten Zwischenscheibe 40, des dritten Innenrotors 42 und einer zweiten Endscheibe 50 geführt. Die Scheiben 20, 30, 40, 50, die alle senkrecht zur Achse der Antriebswelle den gleichen Umriß aufweisen (wie in Fig. 6 gezeigt), sind radial und gegen Rotation in einer zur Achse der Antriebswelle senkrechten Ebene am Einsatz 4 durch eine Fixierung (wie ebenfalls in Fig. 6 gezeigt) gehalten. Die Außenrotoren 21, 31, 41 sind radial an ihrem ganzen Umfang durch Führungsbereiche 23, 33, 43 des Einsatzes 4 fixiert. Die Innenrotoren 22, 32, 42 sind jeweils durch Bolzen, von denen in Fig. 1 nur der Bolzen 24 dargestellt ist, drehfest mit der Antriebswelle 8 verbunden (siehe auch Fig.5). Die Außenverzahnung der Innenrotoren 22, 32, 42 wirkt in bekannter Weise mit der Innenverzahnung der Außenrotoren 21, 31, 41 so zusammen, daß ein Raum mit sich änderndem Volumen, der in bekannter Weise zur Förderung des Fluids genutzt wird, entsteht. Die Abtrennung der Einlaßseite der Pumpe von der Druckseite der Pumpe erfolgt durch die Scheiben 20, 30, 40, 50 und die Rotorpaare.
  • Ein Deckel 51, dessen Außendurchmesser dem Innendurchmesser des zylinderförmigen Innenraums entspricht, weist eine Aufnahme für ein zweites Lager 60 auf. Zentrisch in der Aufnahme ist ein Durchgangsloch zur Durchführung der Antriebswelle 8 ausgebildet. Die Antriebswelle 8 ist in Richtung auf die Öffnung des Innenraums gesehen nach der Endscheibe 50 durch das Durchgangsloch in dem Deckel 51 geführt. In die in dem Deckel 51 ausgebildete Aufnahme ist das zweite Lager 60 mit einem Außenkäfig 61 und einem Innenkäfig 62 eingesetzt. Auf die Antriebswelle 8 ist eine Lagerbuchse 52, auf die durch einen Bolzen 53 die Drehbewegung der Antriebswelle 8 übertragen wird, gesetzt, die mit dem Innenkäfig 62 des Lagers 60 drehfest verbunden ist. Der Außenkäfig 61 des Lagers 60 wird vom Deckel 51 gehalten. Derart wird die Antriebswelle 8 im Deckel 51 gelagert.
  • Die Lagerbuchse 52 ist auf der Antriebswelle 8 in axialer Richtung der Antriebswelle 8 beweglich. Damit ist auch der mit ihr über das Lager 60 verbundene Deckel 51 in axialer Richtung der Welle beweglich. Somit sind alle Bauteile der Pumpe, durch die die Antriebswelle 8 in Richtung auf die Öffnung des Innenraumes gesehen nach dem Durchgangsloch im Boden 5 geführt wurde, in axialer Richtung der Welle beweglich.
  • Die einander gegenüberliegenden Flächen der Scheiben 20, 30, 40, 50 einerseits und der rotierenden Innen- und Außenrotoren 21, 22, 31, 32, 41, 42 andererseits müssen planparallel mit entsprechenden Spalten j (j = 1 ... J) mit einer jeweiligen Dicke Dj zwischen den Flächen justiert werden. Da alle einander zugewandten Flächen der Scheiben, der Rotorpaare, des Bodens und des Deckels plan verlaufen, ist die Einstellung der Summe über alle Spaltdicken Dj durch einfaches Fixieren des Abstandes des Dekkels 51 von der dem Innenraum zugewandten Oberfläche des Bodens 5 möglich.
  • Bei der in Fig. 1 gezeigten Ausführungsform erfolgt die Einstellung des Abstandes des Deckels vom Boden wie folgt:
  • Die den Rotorpaaren abgewandte Fläche des Deckels 51 ist in einem Bereich entlang des äußeren Umfanges planparallel zu der den Rotorpaaren zugewandten ebenfalls planen Oberfläche des Deckels 51. Auf dieser planparallelen Oberfläche ist ein Distanzelement 56, zum Beispiel eine Einstellscheibe mit vorbestimmter Dicke, deren Außendurchmesser dem Innendurchmesser des Innenraums entspricht, angeordnet und durch ein Sicherungselement 57, einen Sicherungsring oder ähnliches, der mit einer Nut, die in der Wand des zylinderförmigen Innenraums parallel zu der planparallelen Oberfläche ausgebildet ist, in Eingriff steht, gesichert. Derart ist zwar nur die Summe der Spaltdicken Dj festgelegt, aber beim Betrieb der Pumpe wird durch die Gleichverteilung des Drucks des Fluids auf die einander zugewandten Oberflächen der Rotorpaare einerseits und der Rotorpaare und der Scheiben andererseits eine Gleichverteilung auf die jeweiligen Spaltdicken zwangsläufig hergestellt.
  • Die axiale Spieleinstellung des ersten und des zweiten Lagers 10, 60 erfolgt über die Dicke einer Einstellscheibe 54, die auf das über die Lagerbuchse 52 hinausstehende Ende der Antriebswelle 8 geschoben wird, und die Begrenzung des Spiels erfolgt über einen Sicherungsring 55, der mit einer Nut am Ende der Antriebswelle in Eingriff steht. Die Lager 10, 60 der Antriebswelle sind gegeneinander angestellt, das heißt sie nehmen jeweils nur Kräfte in einer Achsrichtung der Welle auf.
  • In dem Einsatz 4 sind damit alle für die Leistung der Pumpe relevanten Teile vorgesehen und in einfacher Weise justiert. Der Einsatz 4 mit allen für die Leistung der Pumpe relevanten Teile ist in die Ausnehmung des Gehäuses 1 patronenartig eingesetzt und axial durch das Verriegelungselement 9 gesichert. Gegen Verdrehen ist der Einsatz durch eine nicht dargestellte Verdrehsicherung gesichert.
  • In Fig. 2 ist eine Draufsicht auf die erste Ausführungsform der Pumpe, die in dieser Darstellung nicht in das Gerät 90 eingebaut ist, zu sehen. Die äußere Begrenzungslinie des Verriegelungselementes 9 deutet den Außenumfang des Einsatzes 4 an. Deutlich zu erkennen ist, daß der Einsatz 4 nicht zentrisch im Gehäuse 1 sitzt.
  • In Fig. 3 ist eine Seitenansicht einer ersten Ausführungsform des Einsatzes 4 dargestellt. Deutlich zu erkennen sind der Eingang 6 und der Ausgang 7, die in mehreren Öffnungen ausgebildet sind, und die den Innenraum des eingesetzten Einsatzes 4 mit dem Einlaß 2 beziehungsweise dem Auslaß 3 verbinden. Die Führungsbereiche 23, 33, 43 des Einsatzes 4, die die Außenrotoren 21, 31, 41 radial fixieren, sind in Fig. 3 deutlich zu erkennen. Der Umfang der durch die Führungsbereiche geführten Außenrotoren ist gestrichelt angedeutet.
  • Wie in Fig. 3 ebenfalls deutlich zu erkennen ist, ist der Einsatz 4 leicht als Drehteil zu fertigen. Im Falle der Wartung, der Reparatur oder auch der Leistungsvariation der Pumpe ist der Einsatz 4 somit leicht aus dem Gehäuse 1, das auf die jeweilige Einsatzumgebung angepaßt ist, zu entnehmen und durch einen anderen Einsatz 4 zu ersetzen.
  • In Fig. 4 ist eine Schnittansicht der ersten Ausführungsform der Pumpe im nichteingebauten Zustand dargestellt. Die in Fig. 4 durch die Linie AA angedeutete Schnittebene ist in Fig. 5 und die in Fig. 4 durch die Linie BB angedeutete Schnittebene ist in Fig. 6 dargestellt.
  • Aus den Fig. 5 und 6 läßt sich leicht das Zusammenwirken der Innen- und der Außenrotoren der jeweiligen Rotorpaare und der Zwischen- beziehungsweise Endscheiben zur Erzeugung eines in seinem Volumen veränderlichen Raumes und zur Abtrennung der Ansaug- von der Druckseite vorstellen. In den Figuren ist ebenfalls deutlich der Abstand a des Parallelversatzes der Achse der Antriebswelle 8 gegenüber der Zylinderachse des Innenraumes des Einsatzes 4 zu erkennen. Der Abstand a entspricht einer halben Zahnhöhe in radialer Richtung der Innenrotoren 22, 32, 42.
  • Der Innenrotor 22 steht in Eingriff mit dem Außenrotor 21. Der Außenrotor 21 wird vom Führungsbereich 23 des Einsatzes 4 radial geführt. In der Draufsicht unterhalb des Innenrotors 22 und des Außenrotors 21 ist die Zwischenscheibe 30 zu erkennen. In Fig. 6 ist zu sehen, daß die Zwischenscheibe 30 ebenso wie alle anderen Scheiben radial vom Einsatz 4 geführt und gegen Verdrehen in der Rotationsebene der Rotoren durch eine Fixierung 30a gesichert ist.
  • Der Raum mit dem veränderlichen Volumen nimmt auf der Einlaßbeziehungsweise Ansaugseite zu förderndes Fluid auf und wird in seinem Volumen durch die Rotation des Rotorpaares während er sich zwischen den großflächigeren Abschnitten der Scheiben (in Fig. 5 und 6 oben) befindet, verringert und gibt das geförderte Fluid auf der Auslaß- beziehungsweise Druckseite durch weitere Verringerung des Volumens wieder ab. Wie in den Fig. 5 und 6 gut zu erkennen ist das veränderliche Volumen des Raumes zwischen den kleinflächigeren Bereichen der Scheiben 20, 30, 40, 50 (in Fig. 5 und 6 unten) nahezu null. Es wird also kein Fluid von der Druckseite auf die Ansaugseite zurückgefördert.
  • Die Innenrotoren 22, 32, 42 sind relativ zueinander bezüglich der Achse der Antriebswelle um 360°/Anzahl der Rotorpaare also um 120° versetzt.
  • Die Förderleistung der Pumpe hängt im wesentlichen von der Rotoranzahl und der Rotordicke ab. Bei der beschriebenen Ausführungsform kann die Pumpenleistung einfach durch Austausch des Einsatzes 4 gegen einen anderen Einsatz 4, der Rotorpaare mit einer entsprechend anderen Pumpenleistung enthält, geändert werden. Außerdem kann die Pumpenleistung im gleichen Einsatz 4 durch Änderung der Dicke der Rotorpaare (max. Dicke = Höhe der Führungsbereiche 23, 33, 43), d. h. durch Einsatz in der Dicke veränderter Rotorpaare unter gleichzeitiger Anpassung der Scheiben 20, 30, 40, 50, variiert werden. Ebenso ist bei Wartung, Reparatur und ähnlichem ein einfacher Wechsel des Einsatzes 4 möglich.
  • Zum Einstellen und Testen der Pumpenleistung ist es nicht notwendig den Einsatz in ein bestimmtes Gehäuse 1 einzusetzen, sondern dies kann in jedem anderen Gehäuse, das den Einsatz 4 aufnehmen kann, geschehen.
  • Durch die Führungsbereiche 23, 33, 43 des Einsatzes 4 ist keine Justierung beziehungsweise Einstellung der radialen und axialen Fixierung der Außenrotoren notwendig. Sämtliche Einstell- und Justiervorgänge der Spaltdicken zwischen den Scheiben und den Rotorpaaren und der Rotationsebenen der Rotorpaare erfolgen durch ein Distanzelement und ein Sicherungselement in axialer Richtung der Antriebswelle 8. Dadurch ist es möglich alle an der Einstellung beteiligten Bauteile mit einer axialen Maßtoleranz zu fertigen. Diese Toleranz muß nur innerhalb der möglichen Dicke des Distanzelementes liegen.
  • Die Materialien i (i = 1 ... I) aus denen die Rotorpaare 21, 22, 31, 32, 41, 42, die Scheiben 20, 30, 40, 50, der Deckel 51, der Einsatz 4 und das Distanzelement 56 gefertigt sind, weisen jeweils einen Wärmeausdehnungskoeffizienten λi auf, der so gewählt ist, daß unter Berücksichtigung der jeweiligen Dicke di der Materialien i und der Summe der Dicke Dj der einzelnen Spalte j (j = 1 ... J) in axialer Richtung der Antriebswelle (8) die relative Änderung der temperaturabhängigen Viskosität η (T) des Fluids gegenüber der Viskosität η (T0) bei einer vorbestimmten Temperatur T0 ungefähr proportional zur relativen temperaturabhängigen Änderung der Summe aller Spaltdicken Dj(T) gegenüber den Summe aller Spaltdicken Dj(T0) bei der Temperatur T0 ist. Diese Auswahl der Wärmeausdehnungskoeffizienten verhindert, daß durch die abnehmende Viskosität bei einer Temperaturerhöhung des Fluids die Leckverluste durch die Spalte zu stark ansteigen und damit der Wirkungsgrad der Pumpe mit steigender Temperatur überproportional abnimmt.
  • Bei dieser ersten Ausführungsform sind der Einsatz 4, die Antriebswelle 8, die Scheiben 20, 30, 40, 50, die Rotoren 21, 22, 31, 32, 41, 42 und der Deckel 51 aus zum Teil gehärteten Stählen hergestellt. Bei anderen Ausführungsformen der Erfindung sind insbesondere einige Scheiben und/oder einige Rotoren aus Keramik hergestellt.
  • Zur Erfüllung hoher Notlaufanforderungen, das heißt eine hohe Lebensdauer bei fehlender Schmierung,- sind die relevanten Flächen durch Härten entsprechend vergütet.
  • Bei der ersten Ausführungsform nehmen die Lager 10, 60 nur axiale Kräfte auf. Dies wird unter anderem dadurch erreicht, daß die Antriebswelle 8 durch ein mit dem Außenzahnrad 8a der Antriebswelle 8 zusammenwirkendes Innenzahnrad angetrieben wird. Bei anderen Ausführungsformen der Erfindung sind die Lager 10, 60 so ausgebildet, daß sie auch Radial- und/oder Kippkräfte aufnehmen.

Claims (7)

  1. Hydrostatische Pumpe mit
    einem Gehäuse (1) mit einem Einlaß (2) und einem Auslaß (3) und mit einer becherförmigen Ausnehmung,
    mindestens zwei sich in einer Ebene quer zu der Zylinderachse in dem zylinderförmigen Innenraum erstreckenden und jeweils aus einem Außenrotor (21, 31, 41) und einem Innenrotor (22, 32, 42) bestehenden Rotorpaaren,
    wobei die Innenrotoren radial auf einer parallel zu der Zylinderachse verlaufenden Antriebswelle (8) befestigt sind und eine Scheibe (30, 40) in axialer Richtung der Antriebswelle (8) zwischen den Rotorpaaren, die am Einsatz radial und gegen Verdrehen (30a) fixiert ist, vorgesehen ist,
    dadurch gekennzeichnet,
    daß ein in seiner Außenform der Innenform der becherförmigen Ausnehmung entsprechender Einsatz (4) mit einem Boden (5) und einem auf der dem Boden (5) abgewandten Seite eine Öffnung aufweisenden zylinderförmigen Innenraum vorgesehen ist,
    daß der Einsatz (4) einen den zylinderförmigen Innenraum mit dem Einlaß (2) verbindenden Eingang (6) und einen den zylinderförmigen Innenraum mit dem Auslaß verbindenden Ausgang (7) aufweist, daß der Einsatz (4) patronenartig in die becherförmige Ausnehmung eingeführt und durch ein Verriegelungselement (9) gehalten ist, und
    daß eine Scheibe (30, 40) die Rotorpaare mit Spalten dazwischen voneinander trennt und an dem Einsatz (4) fixiert.
  2. Hydrostatische Pumpe nach Anspruch 1, dadurch gekennzeichnet,
    daß die Pumpe als Gerotorpumpe, die Außenrotoren (21, 31, 41) als innenverzahnte Hohlräder und die Innenrotoren (22, 32, 42) als außenverzahnte Ritzel ausgebildet sind,
    daß die Antriebswelle (8) um einen Abstand (a), der einer halben Zahnhöhe der Innenrotoren bzw. einer halben Kammhöhe der Außenrotoren in radialer Richtung entspricht, parallel zu der Zylinderachse versetzt ist, und
    daß die Innenrotoren (22, 32, 42) so an der Antriebswelle (8) befestigt sind, daß eine Drehbewegung der Antriebswelle (8) auf die Innenrotoren übertragen wird und die Innenrotoren axial entlang der Antriebswelle (8) beweglich sind.
  3. Hydrostatische Pumpe nach Anspruch 2, dadurch gekennzeichnet,
    daß der Boden (5) des Einsatzes (4) auf der dem Innenraum abgewandten Seite eine Aufnahme für ein erstes Lager (10) und zentrisch in der Aufnahme ein Durchgangsloch, dessen Mittenachse um den Abstand (a) parallel zur Zylinderachse versetzt ist, aufweist,
    daß in der Aufnahme ein erstes Lager (10) zur Lagerung der Antriebswelle (8), die durch das Durchgangsloch geführt ist, im Boden (5) vorgesehen ist,
    daß auf der dem Boden (5) abgewandten Seite der Rotorpaare ein Deckel (51), der auf der den Rotorpaaren abgewandten Seite eine Aufnahme für ein zwertes Lager (60) und zentrisch in der Aufnahme ein Durchgangsloch, dessen Mittenachse um den Abstand (a) parallel zur Zylinderachse versetzt ist, aufweist, auf die Antriebswelle (8) gesetzt ist,
    daß in der Aufnahme des Deckels das zweite Lager (60) zur Lagerung der Antriebswelle (8) im Deckel (51) vorgesehen ist, daß der Deckel (51) durch ein Sicherungselement (57) mit dem Einsatz (4) verbunden ist, und
    daß in axialer Richtung der Antriebswelle (8) ober- und unterhalb der Rotorpaare Spalte vorgesehen sind.
  4. Hydrostatische Pumpe nach Anspruch 2 oder 3, dadurch gekennzeichnet,
    daß in axialer Richtung ober- und unterhalb des obersten beziehungsweise des untersten Rotorpaares (21, 22, 41, 42) je eine weitere Scheibe (20, 50) mit einem Spalt vorgesehen ist.
  5. Hydrostatische Pumpe nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet,
    daß der relative Winkelversatz bezüglich der Achse der Antriebswelle der Verzahnung der Innen- und Außenrotoren der Rotorpaare 360°/(Anzahl der Rotorpaare) beträgt.
  6. Hydrostatische Pumpe nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet,
    daß zum Einstellen der Spalte ein Distanzelement (56) zwischen dem Deckel (51) und dem Sicherungselement (57) vorgesehen ist.
  7. Hydrostatische Pumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet,
    daß die Wärmeausdehnungskoeffizienten λi der jeweiligen Materialien, aus denen die jeweiligen Rotorpaare (21, 22, 31, 32, 41, 42), die Scheiben (20, 30, 40, 50), der Deckel (51), der Einsatz (4) und das Distanzelement (56) gefertigt sind, so gewählt sind, daß unter Berücksichtigung der jeweiligen Dicke di der Materialien die relative Änderung der temperaturabhängigen Viskosität η (T) des Fluids gegenüber der Viskosität η (T0) bei einer vorbestimmten Temperatur T0 gemäß dem Ausdruck
    Figure imgb0001
    ungefähr proportional zur relativen Änderung der temperaturabhängigen Summe aller Spaltdicken Dj(T) gegenüber der Summe aller Spaltdicken Dj(T0) bezüglich der Temperatur T0 ist.
EP19940104534 1993-03-23 1994-03-22 Hydrostatische Pumpe Expired - Lifetime EP0618364B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934309318 DE4309318C2 (de) 1993-03-23 1993-03-23 Hydrostatische Pumpe
DE4309318 1993-03-23

Publications (2)

Publication Number Publication Date
EP0618364A1 EP0618364A1 (de) 1994-10-05
EP0618364B1 true EP0618364B1 (de) 1997-09-10

Family

ID=6483569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940104534 Expired - Lifetime EP0618364B1 (de) 1993-03-23 1994-03-22 Hydrostatische Pumpe

Country Status (2)

Country Link
EP (1) EP0618364B1 (de)
DE (1) DE4309318C2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807972B2 (en) * 2011-04-15 2014-08-19 Hydro-Aire Inc. Housingless positive displacement pump assembly
DE102022206319A1 (de) 2022-06-23 2023-12-28 Brose Fahrzeugteile SE & Co. Kommanditgesellschaft, Würzburg Elektrische Zahnradpumpe für ein Kraftfahrzeug, insbesondere Gerotor-Pumpe sowie Set aus mehreren Zahnradpumpen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE325849C (de) * 1917-03-03 1920-09-21 Emil Ludwig Zahnradpumpe, bei welcher ein Stirnrad mit einem innen verzahnten Hohlrad zusammenarbeitet
US2312886A (en) * 1940-05-25 1943-03-02 Adel Prec Products Corp Pump
FR1205452A (fr) * 1957-04-15 1960-02-03 Borg Warner Groupe de pompes à engrenage avec carter en cuvette formant réservoir
US3034446A (en) * 1957-09-06 1962-05-15 Robert W Brundage Hydraulic pump or motor
US3272130A (en) * 1964-03-11 1966-09-13 Roper Ind Inc Multiple stage pump
CH482923A (de) * 1967-11-20 1969-12-15 Truninger Ag Zahnradpumpenbausatz
US4240567A (en) * 1979-05-09 1980-12-23 Nordson Corporation Pump
CH661323A5 (de) * 1983-09-21 1987-07-15 Walter Weber Zahnradpumpe.
US5037283A (en) * 1990-01-19 1991-08-06 Lear Romec Corp. Vane type positive displacement pump having multiple pump units
JP2830342B2 (ja) * 1990-03-29 1998-12-02 アイシン精機株式会社 ベーンポンプ

Also Published As

Publication number Publication date
DE4309318A1 (de) 1994-09-29
EP0618364A1 (de) 1994-10-05
DE4309318C2 (de) 1995-10-12

Similar Documents

Publication Publication Date Title
DE69123898T3 (de) Drehanlage für flüssige Medien
DE19613833A1 (de) Innenzahnradmaschine, insbesondere Innenzahnradpumpe
EP0367046B1 (de) Hydrostatische Kreiskolbenmaschine
WO1997001037A1 (de) Vakuumpumpe
DE2033201C3 (de) Schraubenspindelmotor oder -pumpe
DE4134964C2 (de) Spiralverdichter
EP0618364B1 (de) Hydrostatische Pumpe
DE2630222A1 (de) Innenzahnradpumpe oder -motor
DE1264958B (de) Zahnradpumpe oder -motor
DE19957024A1 (de) Pumpeinrichtung mit einer Pumpe vom Roots-Typ
DE3225790A1 (de) Pumpe oder motor
EP0381682B1 (de) Drehkolbenverdichter
DE2402283C3 (de) Hydrostatische Pumpe bzw. hydrostatischer Motor
DE2203868A1 (de) Zahnradpumpe mit Abdichtungsplatten
DE19502173C2 (de) Schraubenpumpe für drehrichtungsunabhängigen Betrieb
DE1528958A1 (de) Hydraulische Pumpe
CH667702A5 (de) Zahnradpumpe.
DE3824686C2 (de) Rotationskolbenmaschine der Gerotor-Bauart
DE102007017652A1 (de) Rotationskolbenmaschine
DE3141682A1 (de) "zahnradpumpe, insbesondere zur foerderung von schmieroel"
CH649133A5 (de) Zahnradpumpenanordnung.
DE2142323A1 (de) Flüssigkeitstrieb
EP2690252A1 (de) Trochoiden-Innenzahnradmaschine
EP0244575B1 (de) Innenzahnradpumpe
DE4325285A1 (de) Ölgedichtete Vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950314

17Q First examination report despatched

Effective date: 19960205

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEST-FUCHS , ING. FRITZ FUCHS GESELLSCHAFT M.B.H.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970910

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970910

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970910

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19971210

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070321

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331