EP0617727A1 - Procede de collage de deux substrats non metalliques a l'aide d'un adhesif - Google Patents

Procede de collage de deux substrats non metalliques a l'aide d'un adhesif

Info

Publication number
EP0617727A1
EP0617727A1 EP93917511A EP93917511A EP0617727A1 EP 0617727 A1 EP0617727 A1 EP 0617727A1 EP 93917511 A EP93917511 A EP 93917511A EP 93917511 A EP93917511 A EP 93917511A EP 0617727 A1 EP0617727 A1 EP 0617727A1
Authority
EP
European Patent Office
Prior art keywords
adhesive
particles
magnetic field
temperature
charges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93917511A
Other languages
German (de)
English (en)
Inventor
Tatjana Berce
Michel Kornmann
Jacques Vermot-Gaud
Guy Negaty-Hindi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Memorial Institute Inc
Original Assignee
Battelle Memorial Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Memorial Institute Inc filed Critical Battelle Memorial Institute Inc
Publication of EP0617727A1 publication Critical patent/EP0617727A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3612Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3604Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint
    • B29C65/3608Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • B29C65/3616Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the type of elements heated by induction which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements comprising discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/36Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction
    • B29C65/3672Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint
    • B29C65/3676Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic
    • B29C65/368Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" heated by induction characterised by the composition of the elements heated by induction which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/4885Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their composition being non-plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • B29C66/91653Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating by controlling or regulating the voltage, i.e. the electric potential difference or electric tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
    • B29C65/4875Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being spherical, e.g. particles or powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4865Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives
    • B29C65/487Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical
    • B29C65/488Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding containing additives characterised by their shape, e.g. being fibres or being spherical being longitudinal, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72327General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of natural products or their composites, not provided for in B29C66/72321 - B29C66/72324
    • B29C66/72328Paper

Definitions

  • the present invention relates to a process for bonding two non-metallic substrates using a heat-curing resin.
  • this heating must allow to bring into a time less than one minute the entire mass of resin and especially the resin substrate interface at the polymerization temperature, the temperature of the latter not falling below the lower polymerization limit.
  • This heating time must not involve very high frequencies, the use of which on an industrial scale poses too many problems, both with regard to the installation and to safety; it must not involve too large proportions of fillers under penalty of damaging the mechanical properties of the resin.
  • the temperature of the particles heated by induction must not significantly exceed the upper polymerization temperature, otherwise the resin will burn in contact with the particles.
  • the thermal energy generated by induction in a magnetic field can be the result of three types of losses, the losses by eddy current which increase with the dimensions of the conductive element, and are all the more high that the resistivity is low, the losses by hysteresis which are almost independent of the size, but dependent on the shape of the ferromagnetic or ferrimagnetic particles and which are more important than the losses by eddy current when it is a question of fine particles , and residual losses which involve phenomena such as dielectric losses or "magnetic viscosity" which represent a significant part of the losses in the case of ferrites.
  • the eddy current and hysteresis losses increase with the square of the frequency and the frequency respectively.
  • US 5,075,034 relates to a solution according to which conductive carbon black is combined with ferromagnetic or ferrimagnetic particles in an adhesive composition.
  • the aim of carbon black is to lower the volume resistivity of the adhesive mixture to allow rapid induction heating at relatively low frequency, probably by eddy current.
  • This solution leads to putting a relatively large proportion of solid matter in the resin, capable of damaging its bonding properties.
  • the aim of the present invention is to show that it is possible to work at frequencies below 250 kHz, to poly erise or prepolymerize the resin in less than 60 s with a shear strength> 50 56 of the bond strength by oven polishing using a small proportion of ferromagnetic or ferrimagnetic charges.
  • the subject of this invention is a process for bonding two non-metallic substrates using a heat-polymerizable resin according to claim 1.
  • the advantage of the present invention is to make it possible to obtain results equivalent to, or even superior to, those obtained according to the state of the art without having the above-mentioned disadvantages. It will be seen in the following description that the choice of parameters according to the invention allows good transmission of energy to the resin and to the resin-substrate interface without the duration exceeding the time set according to industrial requirements. .
  • an induction coil 40 mm long comprising 6 oval turns of 20 x 30 mm supplied by a generator of 6 kW and 200 kHz, voltage regulated.
  • the samples to be bonded consist of two substrates 25 mm wide and 3 mm thick overlapping 25 mm and the space provided between the substrates for the adhesive is 2 mm.
  • the adhesive used is either of the polyurethane type or of the one-component epoxy type.
  • hot-polymerizable adhesives can be used depending on the nature of the substrate.
  • the fillers are always added to the resin. However, they can also be placed in the substrates to be bonded to reduce the temperature difference between the middle of the joint and the substrate and guarantee a sufficient polymerization temperature at the substrate-adhesive interface. Tests have shown that it is not essential, but that it can be useful.
  • the thickness of the adhesive is very small, in particular of the order of 0.1 mm, the charges can be placed either in the substrate, in the adhesive, or in both, but the latter alternative is not not very useful given the small thickness of adhesive to be heated, it can be heated with such a thickness, both from the inside and from the outside.
  • these fibers are capable of heating by induction and can be sized and / or the composition suitable for exhibiting resin heating properties comparable to other types of fillers. .
  • the shape of the charges has an important influence on the demagnetization factor and therefore on the real magnetic field inside the material and that this influence increases with the increase in the relative permeability ⁇ r of the material.
  • the magnetic field and magnetic induction (B) inside a well oriented fiber are larger than inside a spherical or flat portion particle.
  • induction B describes a hysteresis loop as a function of the field.
  • the surface of this loop is roughly equal to 4 B m ITl ⁇ QV X H_ where B m fUC ⁇ - v ⁇ is the maximum induction in Tesla and H___ is the coercive field in A / m.
  • This surface is an energy per unit of volume (J / m 3 ).
  • the shape of the particles has a great importance on these losses by hysteresis due to the influence of this shape on the real magnetic field inside the particles as explained above.
  • the magnetic permeability is limited to 3, while with acicular particles typically having a length-width ratio of 10, the demagnetization factor decreases and the effective permeability is typically between 30 and 50 for ⁇ r equal to 100, respectively 1000. Consequently, the value of the maximum induction field B ma ⁇ is 10 times higher for acicular particles with a width-length ratio of 10 having a relative permeability ⁇ r > 100 only for spherical particles.
  • a power is required which takes into account the volume to be heated, the density of the resin, its specific heat, the temperature for polyerizing it, the thermal yield taking into account the losses in the substrate and heating time.
  • This power for the above tests is of the order of 8 - 20 W per joint.
  • the specific power relative to the weight of adhesive loaded varies from 9.6 W per gram of adhesive to 4.8 W / g depending on whether the thermal efficiency is 50% or 100%.
  • the specific power for loads varies from 1000 to 10000 W per cm 3 of loads depending on the yields and the concentrations of loads.
  • the particles are not too large, that is to say that they have a high exchange surface relative to their volume otherwise the heat of the particles increases rapidly and i There is a risk of burning the adhesive in contact with these particles before the mass of the adhesive reaches the polymerization temperature.
  • the geometry of the samples used during the tests has already been indicated above.
  • the following examples were carried out under the following conditions: before applying the adhesive, the surfaces of the substrates to be bonded were cleaned with trichloroethane.
  • the adhesive of the polyurethane type is Togocoll FPM 500/24566, FMP 500/90096 from EMS Togo CH-8590 Romanshorn. These are adhesives whose polymerization temperature ranges from 90 "to 120 * C.
  • the epoxy, 1C component used is Naftotec 1361 from Chemetal1 whose polymerization temperature ranges from 120 to 140 ° C. .
  • the samples were obtained by mixing the fillers in the adhesive until the dispersion was homogeneous.
  • the adhesive was then applied to one of the substrates which was then placed on a template intended to obtain assemblies of reproducible substrates, then the second substrate was placed on the template and pressed so that the spacing of approximately 2 mm between the substrates is formed thanks to the template. The adhesive that protrudes from the surface of the substrates is removed.
  • the losses of the charges subjected to the magnetic field of given amplitude and frequency depend on the nature of the material, the concentration, the dimension and the shape of the particles.
  • Adhesive samples of different charge concentrations were prepared to determine the concentration load capable of obtaining the desired temperature in ⁇ 45 s.
  • the temperature measurement was carried out using a thermocouple. Since this heats up in an alternating magnetic field, the measurement was made when the magnetic field was stopped.
  • the rise in temperature in the adhesive is almost linear over time. The higher the supply voltage of the inductor, the shorter the heating time.
  • the distribution of the temperature in the adhesive bond may not be uniform in the event of poor dispersion of the charges as well as in the presence of agglomerates, so that certain zones could be overheated and others not sufficiently polymerized.
  • the risk of forming agglomerates is manifested in particular for particles ⁇ 5 ⁇ m.
  • this means consists in choosing particles whose Curie point is slightly higher than the maximum polymerization temperature of the adhesive, so that even if the temperature rises quickly, there is no risk of the adhesive overheating, so it suffices to adjust the heating time to the energy required.
  • Norsk Hydro magnetite was used in the form of fibers obtained by extraction from the molten material and having an L / D ratio of 50 with a diameter of
  • the heating time is 15 s.
  • Cerac magnetite with spherical grains of uniform size of the order of 3 ⁇ m with a purity of 99.5% With a concentration of 5% by weight and a magnetic field of 60.4 kA / m heating time at 120 ° C is 25s. It goes down to 15s with a field of 65.6 kA / m and to 8s with 10% by weight and the same field of 65.6 kA / m.
  • the resistance of the bond to shear is in the first two cases, of the order of 75% of the resistance obtained by heating in an oven.
  • the magnetic and electrical properties of the pigment are the same as those of Example 1.
  • Ferrite FeMnZn from TDK, type PQ 32 This ferrite was first crushed and sieved to obtain a particle size ⁇ 45 ⁇ m.
  • the resistivity of the material is 6.5 Ohm m
  • the coercive field Hc at room temperature is 14 A / m
  • the maximum induction Bs is 510 mT.
  • the adhesive used is of the FPM 90096 type, the proportion of fillers by weight is 10%, the applied field 65.6 kA / m.
  • the time to reach 120 ° C is 28 s and the shear strength compared to the resistance by heating in an oven is 84%.
  • FeMnZn ferrite from Philips type 3B1, having a resistivity of 0.2 Ohm • m a coercive field of 30 A / m a maximum induction Bs of 400 mT, with a Curie point of the order of 160 * C These particles have a size of around 20 ⁇ m.
  • These fillers were added to one of the components of an epoxy resin to a component Naftotec 1361 from Chemetall in an amount re .0% by weight of the final mixture. These components were then mixed. It is a resin whose upper point ⁇ e polymerization is 160 ° C. To reach 120 ° C, the heating time in a field of 65.6 kA / m is 25 s.
  • stainless steel fibers from Bekaert * R ' are used as fillers in a proportion of 2.5% by weight.
  • Their resistivity is 74-10 -8 Ohm "m
  • the coercive field of 20 A / m the residual induction of 0.9 mT
  • the fiber size 2000/8 ⁇ m.
  • the applied field is 56 kA / m.
  • the heating time at 120 ° C is 26s and the bonding strength is 55%.
  • Nickel was used in the form of sponge particles of Sheritt Gordon of a dimension ⁇ 30 ⁇ m in a proportion of 10% by weight. With an applied magnetic field of 65.4 kA / m heating time at 120 ° C is 22s and the shear strength of the binding is 68% of that obtained by polymerization in the oven.
  • the heating can be repeated after a certain cooling.
  • Example 1 The magnetite of Example 1 was taken up in a proportion of 5% by weight, it was heated in a magnetic field of 60.4 kA / m for 30 s to reach 120 ° C. it was allowed to cool for less than 60 s and reheated for 15s.
  • the shear strength of the bond is 80%.
  • Example 11 The Ni flakes from Novamet from Example 9 were used in the same proportion. After the first heating of 20s, it is allowed to cool to around 100 ° C for less than 30s and it is reheated for 10s. The shear strength obtained is then 82%.
  • Example 13 it involves sticking two sheets of paper.
  • 1% by weight of Cerac magnetite is mixed with the polyethylene and the paper is coated by extrusion at 280 ° C. and on an aluminum-paper composite.
  • Two pieces of these sheets thus covered are joined by their faces coated with charged polyethylene and are subjected to a magnetic field of 57.6 kA / m. After 5s the pieces are glued.
  • the peel resistance test is carried out and gives about 2.5 N / 15 mm at a peeling speed of 127 mm / min.
  • This example relates to the bonding of SMC type substrates in which the substrate is loaded with ferromagnetic or ferrimagnetic particles or fibers so that the substrate heats up at the same time as the adhesive, which makes it possible to reduce the temperature gradient.
  • the change of substrate and adhesive makes it possible to reduce the heating time, to increase the resistance of the bonding and the charges of the substrate can serve at the same time to reinforce it when they are in the form of fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Ce procédé de collage consiste à répartir des charges ferromagnétiques dans un adhésif voire dans le substrat et à les chauffer par induction dans un champ magnétique compris entre 10 kHz et 1 MHz. On choisit soit un matériau à résistivité comprise entre et 108 ohm . m avec un champ coercitif <60 A/m un champ magnétique induit <1000 mT et une taille de particules de 1500 à 100.000 mum3 soit un matériau à résistivité comprise entre 10 et 108 ohm . m avec un champ coercitif entre 60 et 12.000 A/m, un champ magnétique induit entre 1000 et 10.000 mT et une taille de particules entre 1 et 1500 mum3 de sorte que l'addition des pertes par courant de Foucault et par hystérésis permette de produire une puissance de 1000 à 10.000 W/cm3 de ces charges. On limite la température de chauffage aux environs de la température maximum de polymérisation de l'adhésif en fixant la durée à <40s pour que la température à l'interface corresponde au moins à la température minimum de polymérisation.

Description

PROCEDE DE COLLAGE DE DEUX SUBSTRATS NON METALLIQUES
A L'AIDE D'UN ADHESIF
La présente invention se rapporte à un procédé de collage de deux substrats non métalliques à l'aide d'une résine poly- mérisable à chaud.
On a déjà proposé d'ajouter des charges ferromagnétiques ou ferrimagnétiques à des résines polymérisables à chaud pour les chauffer par induction.
Pour qu'un tel procédé de chauffage présente un intérêt économique par rapport au chauffage dans un four dans lequel l'ensemble substrat résine est amené progressivement à la température supérieure de polymérisation de la résine, il faut que ce chauffage permette d'amener dans un temps inférieur à une minute l'ensemble de la masse de résine et surtout l'interface résine substrat à la température de polymérisa¬ tion, la température de ce dernier ne descendant pas au- dessous de la limite inférieure de polymérisation. Ce temps de chauffage ne doit pas faire intervenir les très hautes fréquences dont l'utilisation à l'échelle industrielle pose trop de problèmes, aussi bien vis-à-vis de l'installation que de la sécurité; il ne doit pas non plus faire intervenir des proportions trop grandes de charges sous peine de nuire aux propriétés mécaniques de la résine. Compte tenu de la faible conductivité thermique, aussi bien de la résine que du substrat à coller, la température des particules chauffées par induction ne doit pas dépasser sensiblement la température supérieure de polymérisation sous peine de brûler la résine en contact avec les particules. Ceci veut dire que la montée en température des particules doit être relativement lente pour permettre la diffusion de la chaleur vers la résine et le substrat. Le chauffage est interrompu dès que la température supérieure de polymérisation est atteinte. Si cette montée en température est trop rapide, il faut aussi l'interrompre dès que la température supérieure de polymérisation est atteinte pour permettre à la chaleur de diffuser mais ensuite appliquer à nouveau le champ d'induction alternatif jusqu'à ce que l'énergie nécessaire à la polymérisation soit transmise.
On sait que l'énergie thermique engendrée par induction dans un champ magnétique peut être le résultat de trois types de pertes, les pertes .-par courant de Foucault qui augmentent avec les dimensions de- _1 'élément conducteur, et sont d'autant plus élevées que la résistivité est faible, les pertes par hystérésis qui sont presque indépendantes de la taille, mais dépendantes de la forme des particules ferromagnétiques ou ferrimagnétiques et qui sont plus importantes que les pertes par courant de Foucault lorsqu'il s'agit de particules fines, et les pertes résiduelles qui font intervenir des phénomènes tels que les pertes diélectriques ou la "viscosité magnétique" qui représentent une part importante des pertes dans le cas des ferrites. Les pertes par courant de Foucault et par hystérésis augmentent avec respectivement le carré de la fréquence et la fréquence.
Dans le cas du chauffage d'une résine par incorporation de charges susceptibles de chauffer par induction, selon l'état de la technique, on s'est déjà préoccupé des pertes par hystérésis et on a cherché à cet effet les particules aptes à monter le plus rapidement en température grâce à ces pertes.
Tel est notamment l'enseignement qui ressort du EP-A2- 403276 dans lequel on a cherché des particules présentant des champs magnétiques coercitifs élevés associés à des champs d'induction magnétique de 1 à 15 fois la force coercitive des particules de chauffage. Ceci conduit à choisir des particules très fines < 1μm avec des résistivités très élevées en concentration importante et à appliquer des champs magnétiques pouvant aller jusqu'à 480 kA/m. Aucune information n'est donnée sur les propriétés mécaniques obtenues lorsque ce procédé est utilisé pour coller deux substrats non métalliques à l'aide d'une résine chauffée par induction.
Le US 5.075.034 se rapporte à une solution selon laquelle on associe du noir de carbone conducteur à des particules ferromagnétiques ou ferrimagnétiques dans une composition adhesive. Le noir de carbone a pour but d'abaisser la résistivité volumique du mélange adhésif pour permettre un chauffage par induction rapide à relativement basse fréquence, sans doute par courant de Foucault. Cette solution conduit à mettre une proportion relativement importante de matières solides dans la résine, susceptible de nuire à ses propriétés de collage. e
Le but de la présente invention est de montrer qu'il est possible de travailler à des fréquences inférieures à 250 kHz, de poly ériser ou prepolymériser la résine en moins de 60 s avec une résistance au cisaillement > 50 56 de la résistance du collage par pol mérisation au four en utilisant une faible proportion de charges ferromagnétiques ou ferrimagnétiques.
A cet effet, cette invention a pour objet un procédé de collage de deux substrats non métalliques à l'aide d'une résine polymérisable à chaud selon la revendication 1.
L'avantage de la présente invention est de rendre possible l'obtention de résultats équivalents, voire supérieurs, à ceux obtenus selon l'état de la technique sans présenter les désavantages susmentionnés. On verra dans la suite de la description que le choix des paramètres selon l'invention permet une bonne transmission de l'énergie à la résine et à l'interface résine-substrat sans que la durée ne dépasse le temps fixé en fonction des impératifs industriels.
Cette invention met en évidence plusieurs facteurs qui ne semblent pas avoir retenu l'attention jusqu'ici, à savoir :
- l'inutilité voire l'inconvénient d'avoir un chauffage trop rapide des charges ferromagnétiques ou ferrimagnétiques dans un milieu présentant une faible conductivité thermique,
- la nécessité de chauffer non seulement la résine mais aussi l'interface résine substrat, c'est-à-dire au moins une partie du substrat, sans quoi on peut avoir une résine parfaitement polymérisée au milieu du joint et une résistance au cisaillement négligeable,
- la possibilité d'avoir peu de charges sans pour autant avoir des valeurs du champ coercitif et de l'induction maximum très élevés, malgré les fréquences auxquelles on limite le procédé pour des impératifs industriels,
- le fait qu'il n'est pas nécessaire de choisir des particules ferromagnétiques ou ferrimagnétiques uniquement en fonction des pertes par hystérésis, mais que les autres pertes par courant de Foucault et résiduelles permettent d'obtenir l'énergie désirée même si les pertes par hystérésis ne sont pas optimales.
L'ensemble de ces réflexions a conduit au choix des paramètres du procédé de collage objet de l'invention.
D'autres avantages de cette invention apparaîtront dans la suite de la description, ainsi que dans les exemples qui 1 'accompagnent.
Pour effectuer les essais, on a utilisé une bobine d'induction de 40 mm de longueur comprenant 6 spires ovales de 20 x 30 mm alimentées par un générateur de 6 kW et 200 kHz, régulé en tension.
Les échantillons à coller sont constitués de deux substrats de 25 mm de largeur et de 3 mm d'épaisseur se recouvrant sur 25 mm et l'espace ménagé entre les substrats pour la colle est de 2 mm. Dans le cas des substrats composite polyester fibres de verre moulés en feuille connus sous le signe SMC (sheet moulding compound), la colle utilisée est soit du type polyuréthane, soit du type epoxy à un composant.
D'autres colles polymérisables à chaud sont utilisables suivant la nature du substrat. Les charges sont toujours ajoutées dans la résine. Toutefois on peut les mettre également dans les substrats à coller pour réduire la différence de température entre le milieu du joint et le substrat et garantir une température de polymérisation suf¬ fisante à l'interface substrat-adhésif. Les essais ont montré que ce n'est pas indispensable, mais que ce peut être utile. Lorsque l'épaisseur de l'adhésif est très faible, notamment de l'ordre de 0.1 mm, on peut mettre les charges soit dans le substrat, soit dans l'adhésif, ou encore dans les deux, mais cette dernière alternative n'est pas très utile compte tenu de la faible épaisseur d'adhésif à chauffer, celui-ci peut être chauffé avec une telle épaisseur, aussi bien de l'intérieur que de l'extérieur.
Selon une variante, on peut aussi imaginer dans le cas d'un substrat composite renforcé de fibres de verre , de remplacer simplement les fibres de verre par des fibres de matériaux ferromagnétiques ou ferrimagnétiques obtenues en particulier par une technique d'extraction à partir du matériau en fusion. Outre l'effet de renforcement de la résine comparable à celui des fibres de verre , ces fibres sont aptes à chauffer par inductior et peuvent être dimensionnées et/ou la composition adaptée pour présenter des propriétés de chauffage de la résine comparables aux autres types de charges.
A ce sujet il faut relever que la forme des charges a une influence importante sur le facteur de démagnétisation et donc sur le champ magnétique réel à l'intérieur du matériau et que cette influence croît avec l'augmentation de la perméabilité relative μr du matériau. C'est ainsi que le champ magnétique et l'induction magnétique (B) à l'intérieur d'une fibre bien orientée sont plus grands qu'à l'intérieur d'une particule εphérique ou à portion plate.
Si nous examinons maintenant les paramètres influant sur les différentes pertes lorsque les charges sont soumises à un champ magnétique, rappelons que les pertes par courant de Foucault sont proportionnelles aux carrés de l'amplitude du champ magnétique induit Bm, de la taille D des particules et de la fréquence f et inversement proportionnelles à la résistivité ,f de ces particules. Ces pertes sont donc appréciables pour des particules relativement grosses (50 - 100 μm typiquement) avec une résistivité < 10 * 10~8 ohm «m et l'amplitude d'induction BQ > 0,01 Tesla. Il est encore à relever que ceci n'est valable que lorsque l'effet de peau est négligeable, c'est-à-dire lorsque sa profondeur est supérieure au rayon de la particule. A titre indicatif, à 200 kHz cette profondeur est de 0,14 mm pour le fer.
Pour les pertes par hystérésis, rappelons que lorsqu'un matériau magnétique est soumis à un champ d'excitation alterna¬ tif, l'induction B décrit une boucle d'hystérésis en fonction du champ. La surface de cette boucle est à peu près égale à 4 Bm ITlαQVX H_ où BmfUCα-vΛ est l'induction maximum en Tesla et H___ est le champ coercitif en A/m. Cette surface est une énergie par unité de volume (J/m3). Lorsque la boucle d'hystérésis est complètement parcourue, c'est-à-dire lorsque le champ d'excita¬ tion maximum est supérieur au champ coercitif Hc, l'énergie dissipée est égale à cette surface. La puissance dissipée est proportionnelle à la fréquence qui correspond au nombre de fois que la boucle d'hystérésis est parcourue par unité de temps.
En dehors de l'effet de peau qui doit être supérieur au rayon des particules, la dimension de celles-ci n'a pas d'influence sur les pertes par hystérésis lorsque Hc est constant.
La forme des particules a par contre une forte importance sur ces pertes par hystérésis en raison de l'influence de cette forme sur le champ magnétique réel à l'intérieur des particules comme on l'a expliqué précédemment. Compte tenu du facteur de démagnétisation avec des particules sphériques, la perméabilité magnétique est limitée à 3, -alors qu'avec des particules aciculaires présentant typiquement un rapport longueur-largeur de 10, le facteur de démagnétisation diminue et la perméabilité effective est comprise typiquement entre 30 et 50 pour μr égal à 100, respectivement 1000. Par conséquent, la valeur du champ d'induction maximum Bmaχ est 10 fois plus élevée pour les particules aciculaires d'un rapport largeur- longueur de 10 présentant une perméabilité relative μr > 100 que pour des particules sphériques.
Pour chauffer la composition adhesive à sa température de polymérisation, il faut une puissance tenant compte du volume à chauffer, de la densité de la résine, de sa chaleur spécifique, de la température pour la poly ériser, du rendement thermique tenant compte des pertes dans le substrat et du temps de chauffage. Cette puissance pour les essais susmentionnés est de l'ordre de 8 - 20 W par joint. Pour sélectionner les charges à ajouter à l'adhésif, il est important de déterminer les puissances spécifiques relatives au poids d'adhésif chargé ou au poids de charges. La puissance spécifique relative au poids d'adhésif chargé varie de 9,6 W par gramme d'adhésif à 4,8 W/g suivant que le rendement thermique est de 50 -% ou de 100 %. La puissance spécifique pour les charges varie de 1000 à 10000 W par cm3 de charges suivant les rendements et les concentrations de charges.
Pour obtenir un chauffage efficace de l'adhésif qui est un milieu à faible conductivité thermique, il est important que les particules ne soient pas trop grosses, c'est-à-dire qu'elles aient une surface d'échange élevée par rapport à leur volume sinon la chaleur des particules croît rapidement et i 1 y a un risque de brûler l'adhésif en contact avec ces particules avant que la masse de l'adhésif n'arrive à la température de polymérisation.
On a déjà indiqué ci-dessus la géométrie des échantillons utilisés au cours des essais. Les exemples qui suivent ont été réalisés dans les conditions suivantes : avant d'appliquer l'adhésif, les surfaces des substrats à coller ont été nettoyées au trichloréthane. L'adhésif utilisé du type polyuréthane est le Togocoll FPM 500/24566, FMP 500/90096 de EMS Togo CH-8590 Romanshorn. Il s'agit d'adhésifs dont la température de polymérisation s'étend de 90" à 120*C. L'epoxy ,1C composant utilisé est le Naftotec 1361 de Chemetal1 dont la température de polymérisation s'étend de 120 à 140'C.
Les échantillons ont été obtenus en mélangeant les charges dans l'adhésif jusqu'à ce que la dispersion soit homogène. L'adhésif a alors été appliqué sur un des substrats qui a été ensuite placé sur une gabarit destiné à obtenir des assemblages de substrats reproductibles, puis le second substrat a été placé sur le gabarit et pressé pour que l'écartement d'environ 2 mm entre les substrats soit formé grâce au gabarit. L'adhésif qui déborde de la surface des substrats est éliminé.
Comme on l'a indiqué, les pertes des charges soumises au champ magnétique d'amplitude et fréquence données dépendent de la nature du matériau, de la concentration, de la dimension et de la forme des particules.
Dans ces conditions, certaines charges ont été utilisées telles que livrées. D'autres ont été tamisées au préalable. Enfin, les matériaux céramiques ne sont pas disponibles en poudre, de sorte qu'ils ont été broyés dans un broyeur à billes et tamisés pour ne conserver que les particules < 45 μm.
On a préparé des échantillons d'adhésifs de différentes concentrations de charges afin de déterminer la concentration de charge apte à obtenir la température désirée en < 45 s.
Pour fixer la durée de chauffage, on a observé l'évolution du dégagement de fumée qui se produit au-dessus de 130'C et mesuré le temps de chauffage, ensuite on a réduit progressivement cette durée pour atteindre 120*C.
La mesure de température a été effectuée à l'aide d'un thermo-couple. Etant donné que celu-ci chauffe dans un champ magnétique alternatif, la mesure s'est effectuée à l'arrêt du champ magnétique.
La montée de la température dans l'adhésif est presque linéaire avec le temps. Plus la tension d'alimentation de l'inducteur est élevée, plus le temps de chauffage diminue.
La répartition de la température dans la liaison adhesive pourrait ne pas être uniforme en cas d'une mauvaise dispersion des charges ainsi qu'en présence d'agglomérats, de sorte que certaines zones pourraient être surchauffées et d'autres pas assez polymérisées. Le risque de former des agglomérats se manifeste en particulier pour des particules < 5 μm. Plus l'adhésif a une faible conductivité thermique, plus il est important de ne pas mélanger des particules de tailles trop différentes qui ne chauffent et refroidissent pas de la même manière, de sorte que l'adhésif n'est pas polymérisé uniformément.
On a constaté que plus le temps de montée en température est court, plus le refroidissement l'est aussi. Ceci signifie que l'énergie totale transmise à l'adhésif, représentée par la surface formée par la courbe chauffage-refroidissement en fonction du temps, est inférieure lorsque la montée en température est rapide que lorsqu'elle est plus lente.
Ceci montre qu'il n'est pas forcément souhaitable de choisir des charges avec les plus grandes pertes par hystérésis et de leur appliquer un champ magnétique très élevé, comme on l'a cru jusqu'ici. Dès lors, les matériaux métalliques présentant une résistivité inférieure aux ferrites et des pertes par hystérésis faibles, voire très faibles, comme le fer ne sont pas forcément dépourvues d'intérêt, comme on le verra dans les exemples. Compte tenu du fait que les perte par courant de Foucault sont plus faibles avec des particules fines, il est recommandé dans ce cas d'augmenter la taille des particules entre 75 et 150 μm, domaine dans lequel les pertes par courant de Foucault deviennent sensibles.
Avec des particules chauffant rapidement, la température maximum de polymérisation est atteinte rapidement. Etant donné que l'énergie transmise vers l'adhésif et substrat est insuf¬ fisante, il est alors nécessaire de re-chauffer les charges dès que la température s'est abaissée d'une certaine valeur, sans laisser refroidir à la température ambiante pour ne pas interrompre la réaction de polymérisation. Ce re-chauffage obtenu par la réalimentation de la bobine d'induction peut être répété jusqu'à ce que l'énergie transmise à l'adhésif et au substrat soit suffisante pour obtenir une polymérisation donnant une résistance du joint > 50 % de la résistance résultante d'une polymérisation au four.
Il existe un troisième moyen pour limiter la puissance de chauffage tout en garantissant la production de l'énergie nécessaire sur une durée < 45 s, ce moyen consiste à choisir des particules dont le point de Curie est légèrement supérieur à la température maximum de polymérisation de l'adhésif, de sorte que même si la montée en température est rapide, il n'existe aucun risque de surchauffe de l'adhésif, de sorte qu'il suffit d'ajuster la durée de chauffage à l'énergie nécessaire.
Exemple 1
On a ajouté 10 % en poids de magnétite de Norsk Hydro dans l 'adhésif susmentionné FPM 500/24566. La granulométrie moyenne était de l'ordre de 10 μm et le champ magnétique d'induction de l'ordre de 60,4 kA/m (tension d'alimentation 5kV). Le temps de chauffage pour chauffer l'adhésif à 120*C et que la température du substrat proche de l 'adhésif ne descende pas au-dessous de 90*G, limite inférieure de polymérisation, est de 30 s. La résistance au cisaillement est de 60 % de la résistance obtenue par chauffage au four est de 60 %. Le champ coercitif des particules à température ambiante est de 12000 A/m et l'induction maximum Bs de 800 mT. La résistivité du matériau dont les particules sont faites est de 10~4 Ohm • m.
Exemple 2
On a utilisé de la magnétite de Norsk Hydro sous forme de fibres obtenues par extraction à partir de la matière en fusion et présentant un rapport L/D de 50 avec un diamètre de
20 μm. En appliquant le même champ que dans l'exemple 1 et avec la même proportion de 5 SE en poids, la durée de chauffage est de 15s.
Exemple 3
Magnétite de Cerac à grains sphériques de taille uniforme de l'ordre de 3 μm d'une pureté de 99,5 % . Avec une concentration de 5 % en poids et un champ magnétique de 60,4 kA/m le temps de chauffage à 120*C est de 25s. Il descend à 15s avec un champ de 65,6 kA/m et à 8s avec 10 % en poids et le même champ de 65,6 kA/m. La résistance du collage au cisaillement est dans les deux premier cas, de l'ordre de 75 % de la résistance obtenue par chauffage au four. Les propriétés magnétiques et électriques du pigment sont les mêmes que celles de l'exemple 1.
Exemple 4
Ferrite FeMnZn de TDK, type PQ 32. Cette ferrite a tout d'abord été broyée et tamisée pour obtenir une granulométrie < 45 μm. La résistivité du matériau est de 6,5 Ohm m, le champ coercitif Hc à température ambiante est de 14 A/m et l'induction maximum Bs est de 510 mT. L'adhésif utilisé est du type FPM 90096 la proportion de charges en poids est de 10 % , le champ appliqué 65,6 kA/m. Le temps pour atteindre 120'C est de 28s et la résistance au cisaillement par rapport à la résistance par chauffage au four est de 84 %.
Exemple 5
On a utilisé une ferrite FeMnZn de Philips type 3B1 , présentant une résistivité de 0,2 Ohm • m un champ coercitif de 30 A/m une induction maximum Bs de 400 mT, avec un point de Curie de l'ordre de 160*C. Ces particules ont une taille de l'ordre de 20 μm. On a ajouté ces charges à un des composants d'une résine époxy à un composant Naftotec 1361 de Chemetall dans une proportion re .0 % en poids du mélange final. On a ensuite mélangé les c-e..***' composants. Il s'agit d'une résine dont le point supérieur ιe polymérisation est de 160°C. Pour atteindre 120'C, le temps de chauffage dans un champ de 65,6 kA/m est de 25s. On a atteint 148°C après 45s, 158'C après 60s et 160*C après 1 min 30s. Ceci montre que le choix de matériaux pour les charges présentant un point de Curie proche de la température de polymérisation de l'adhésif permet de limiter automatiquement la température sans risque de surchauffe.
Exemple 6
On a pris des particules de fer de Hoganas type NC 100.24 allongées avec un rapport longueur—largeur 3, d'une structure spongieuse d'une dimension inférieure d'au moins 74 μm avec une résistivité de 10 "' Ohm «m une induction maximum de 1000 mT, un champ coercitif Hc de 10 A/m. Ces particules produisent principalement des pertes par courant de Foucault d'où leur taille relativement élevée. On les a mélangées à raison de 20 % en poids dans un adhésif de type Togocoll. Avec un champ de 60,4 kA/m le temps de chauffage à 120"C avec la température à l'interface avec le substrat ne descendant pas au-dessous de 90*C est de 20s. La résistance obtenue est de 51,5 % de la résistance obtenue par chauffage dans un four.
Exemple 7
Dans cet exemple, on utilise des fibres d'acier ino¬ xydable de Bekaert*R' comme charges dans une proportion de 2,5 % en poids. Leur résistivité est de 74-10-8 Ohm «m, le champ coercitif de 20 A/m, l'induction rémanente de 0.9 mT, et la dimension des fibres de 2000/8 μm. Le champ appliqué est de 56 kA/m. Le temps de chauffage à 120*C est de 26s et la résistance de la liaison est de 55 %. Exempl e 8
On mélange 5 % de paillettes de nickel de Novamet de 25 x 0,4 μm présentant une résistivité de 10~7 Ohm • m un champ coercitif de 10 A/m, une induction de 700 T. Avec un champ magnétique appliqué de 65,4 kA/m la durée de chauffage pour atteindre 120'C est de 20s avec 5 * en poids de charges et de 12s avec 10 % en poids. La résistance au cisaillement de la liaison est de 60 % par rapport à la polymérisation au four.
Exemple 9
On a utilisé du nickel sous forme de particules spongieuses de Sheritt Gordon d'une dimension < 30 μm dans une proportion de 10 % en poids. Avec un champ magnétique appliqué de 65,4 kA/m le temps de chauffage à 120*C est de 22s et la résistance au cisaillement dé la liaison est de 68 % de celle obtenue par polymérisation au four.
Exemple 10
Comme on l'a dit précédemment si la montée en température est trop rapide pour fournir l'énergie nécessaire, on peut répéter le chauffage après un certain refroidissement.
On a repris la magnétite de l'exemple 1 dans une proportion de 5 % en poids on a chauffé dans un champ magnétique de 60,4 kA/m pendant 30s pour atteindre 120°C on a laissé refroidir pendant moins de 60s et on a réchauffé pendant 15s. La résistance au cisaillement de la liaison est de 80 %.
. Exemple 11 On a repris les paillettes de Ni de Novamet de l'exemple 9 dans la même proportion. Après le premier chauffage de 20s on laisse refroidir jusqu'à environ 100'C durant moins de 30s et on rechauffe pendant 10s. La résistance au cisaillement obtenue est alors de 82 %.
Exemple 12
Il s'agit dans cet exemple de réaliser un stratifié en collant deux feuilles de papier de 20 μm d'épaisseur chacune desquelles étant revêtue d'une couche de polyéthylène de 35 μm d'épaisseur, le papier contient 2 % en poids de magnétite de Cerac comme dans l'exemple 3. Le champ magnétique appliqué est de 60,4 kA/m. La température du polyéthylène est montée à 90"C en 10s. La résistance au pelage s'élève à 3,5 N/15 mm à une vitesse de pelage de 127 mm/min.
Exemple 13
Comme dans l'exemple 13 il s'agit de coller deux feuilles de papier. Dans ce cas, on mélange 1 % en poids de magnétite de Cerac au polyéthylène et on revêt le papier par extrusion à 280°C et sur un composite aluminium-papier. Deux morceaux de ces feuilles ainsi recouvertes sont réunis par leurs faces enduites de polyéthylène chargé et sont soumises à un champ magnétique de 57,6 kA/m. Après 5s les morceaux sont collés. Immédiatement après le test de résistance au pelage est effectué et donne environ 2,5 N/15 mm à une vitesse de pelage de 127 mm/min.
Exemple 14
Cet exemple est relatif au collage de substrats type SMC dans lequel le substrat est chargé de particules ou de fibres ferromagnétiques ou ferrimagnétiques de façon que le substrat chauffe en même temps que l'adhésif ce qui permet de réduire le gradient de température.
On produit une feuille de 4 mm d'épaisseur en ajoutant 2,5 % en poids de magnétite en fibres obtenues par extraction à partir du matériau en fusion (rapport L/D = 100 et D = 50 μ) dans un adhésif époxy à deux composants polymérisé à 180'C au four. Deux morceaux destinés à être collés par recouvrement comme expliqué précédemment sont découpés. Entre eux on place comme dans les exemples précédents un adhésif époxy à un composant dans lequel on a ajouté 7,5 % en poids de ferrite de l'exemple 4 et on forme entre les feuilles SMC un joint de 3 mm d'épaisseur que l'on chauffe avec un champ magnétique de 49,6 kA/m. Au bout de 15s la température du substrat est de 90*C et celle de l'adhésif de 140*C. La résistance au cisaillement représente 80 % de la résistance par polymérisation au four.
Le changement du s-ubstrat et de l'adhésif permet de diminuer le temps de chauffage, d'augmenter la résistance du collage et les charges du substrat peuvent servir en même temps à le renforcer lorsqu'elles sont sous forme de fibres.

Claims

REVENDICATIONS
1. Procédé de col " âge de deux substrats non métalliques à l'aide d'un adhésif . ^lymérisable à chaud, la conductivité thermique des substrats. t de l'adhésif étant <0.9 w/m'C selon lequel on répartit en , s 1 et 20 % en poids de charges de matériaux ferromagnétiques ou ferrimagnétiques dans au moins un des éléments, substrats-adhésif et que l'on soumet l'ensemble à un champ magnétique d'une fréquence comprise entre 10 kHz et 1 MHz pour chauffer les charges par induction, caractérisé en ce qu'on choisit soit un matériau à résistivité comprise entre 10 et 10~8 ohm • m avec un champ coercitif <60 A/m un champ magnétique induit <1000 mT et une taille de particules de 1500 à 100.000 μm3 soit un matériau à résis¬ tivité comprise entre 10 et 108 ohm-m avec un champ coercitif entre 60 et 12.000 A/m, un champ magnétique induit entre 1000 et 10.000 mT et une taille de particules entre 1 et 1500 μm3 de sorte que l'addition des pertes par courant de Foucault et par hystérésis permette de produire une puissance de 1000 à 10.000 W/cm3 desdites charges, et en ce qu'on limite la température de chauffage aux environs de la température maximum de polymérisation de l'adhésif en fixant la durée à <60s, de préférence <40s, pour que l'énergie ainsi produite chauffe l'adhésif et que la température à l'interface adhésif- substrat corresponde au moins à la température minimum de polymérisation afin d'obtenir une résistance au cisaillement >50 % de la résistance du collage des substrats lorsque l'adhésif est polymérisé au four.
2. Procédé de collage selon la revendication 1 , caractérisé par le fait que l'on choisit des particules sous forme aciculaire notamment sous forme de fibres.
3. Procédé de collage selon la revendication 1 , caractérisé en ce qu'on applique un champ magnétique coercitif compris entre 10 et 100 kA/m.
4. Procédé selon la revendication 1, caractérisé en ce que pour les charges métalliques ferromagnétiques on choisit la résistivité < 10~6 Ohm • m.
5. Procédé selon la revendication 1, caractérisé en ce qu'on choisit des charges sous forme de paillettes dont l'une des dimensions ne dépasse pas 30 μm.
6. Procédé selon la revendication 1, caractérisé en ce qu'on choisit les particules sous forme de fibres.
7. Procédé selon la revendication 1, caractérisé en ce qu'on choisit des particules.
8. Procédé selon la revendication 1, caractérisé en ce qu'on limite la température de chauffage en choisissant des charges dont le point de Curie est voisin de la température maximale de polymérisation.
9. Procédé selon la revendication 1, caractérisé en ce qu'on chauffe jusqu'à la température supérieure de polymérisa¬ tion de l'adhésif, on laisse refroidir jusqu'à environ la température inférieure de polymérisation et on réchauffe au moins une deuxième fois jusqu'à la température supérieure de polymérisation.
EP93917511A 1992-08-24 1993-08-17 Procede de collage de deux substrats non metalliques a l'aide d'un adhesif Withdrawn EP0617727A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2622/92 1992-08-24
CH262292A CH685942A5 (fr) 1992-08-24 1992-08-24 Procede de collage de deux substrats non metalliques a l'aide d'un adhesif.
PCT/CH1993/000205 WO1994004623A1 (fr) 1992-08-24 1993-08-17 Procede de collage de deux substrats non metalliques a l'aide d'un adhesif

Publications (1)

Publication Number Publication Date
EP0617727A1 true EP0617727A1 (fr) 1994-10-05

Family

ID=4237904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93917511A Withdrawn EP0617727A1 (fr) 1992-08-24 1993-08-17 Procede de collage de deux substrats non metalliques a l'aide d'un adhesif

Country Status (5)

Country Link
US (1) US5447592A (fr)
EP (1) EP0617727A1 (fr)
JP (1) JPH07500629A (fr)
CH (1) CH685942A5 (fr)
WO (1) WO1994004623A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037180A (en) * 1996-03-08 2000-03-14 Minnesota Mining And Manufacturing Company Method for measuring the quantity of a polymeric or pre-polymeric composition
US6543976B1 (en) * 1996-05-03 2003-04-08 Senco Products, Inc. Fastening device
US6971829B2 (en) * 1996-05-03 2005-12-06 Senco Products, Inc Fastening device
AU746100B2 (en) * 1997-02-28 2002-04-18 Robert Harlan Johnson Jr. High efficiency heating agents
WO1998042988A1 (fr) 1997-03-21 1998-10-01 Creaholic S.A. Procede pour ancrer des elements de liaison dans un materiau comportant des pores ou des cavites, et elements de liaison pour ledit ancrage
US6348679B1 (en) * 1998-03-17 2002-02-19 Ameritherm, Inc. RF active compositions for use in adhesion, bonding and coating
US6649888B2 (en) 1999-09-23 2003-11-18 Codaco, Inc. Radio frequency (RF) heating system
JP4528397B2 (ja) * 1999-12-17 2010-08-18 ポリマテック株式会社 接着方法および電子部品
WO2001076851A1 (fr) * 2000-04-06 2001-10-18 Formteile Helmer Gmbh Joint soude entre deux pieces en polymere, en particulier dans la construction de conduites et de raccords
DE10032817B4 (de) * 2000-07-06 2010-02-25 Newfrey Llc, Newark Befestigungsteil mit einem schmelzbaren Leit-Klebstoff
DE10141674A1 (de) * 2000-09-01 2002-03-14 Henkel Kgaa Reaktionsklebstoff mit mindestens einer mikroverkapselten Komponente
EP1363543B1 (fr) * 2001-03-02 2006-09-06 Woodwelding AG Implants et dispositif permettant de relier des parties de tissu
WO2003056104A1 (fr) * 2001-12-24 2003-07-10 Woodwelding Ag Procede pour appliquer des elements sur des surfaces d'objets de construction utilises dans le domaine de la circulation routiere
US6955540B2 (en) * 2002-08-23 2005-10-18 Woodwelding Ag Preparation for being fastened on a natural tooth part or tooth and corresponding fastening method
US7008226B2 (en) * 2002-08-23 2006-03-07 Woodwelding Ag Implant, in particular a dental implant
US8293828B2 (en) * 2005-08-29 2012-10-23 Kubota Research Associates, Inc. Adhesive and process for attaching and detaching articles
DE102006040049B4 (de) * 2006-08-26 2009-12-17 Airbus Deutschland Gmbh Verfahren und Vorrichtung zum Vorformen von Kohlenstofffaser-Halbzeugen für die Herstellung von Faserverbundbauteilen
JP2010510516A (ja) * 2006-11-21 2010-04-02 ギロス パテント アーべー マイクロ流体装置とマイクロ流体装置とを結合する方法
FR2918919B1 (fr) * 2007-07-17 2013-03-29 Eurocopter France Procede et dispositif pour coller la coiffe metallique d'un bord d'attaque d'une voiture
US20100316498A1 (en) * 2008-02-22 2010-12-16 Horton, Inc. Fan manufacturing and assembly
US7984718B2 (en) 2009-09-29 2011-07-26 Joshua C. Harrison Method for cleaning or limiting adhesive
DE102009055099A1 (de) * 2009-12-21 2011-06-22 tesa SE, 20253 Hitzeaktiviert verklebbare Flächenelemente
JP5899443B2 (ja) * 2012-07-03 2016-04-06 パナソニックIpマネジメント株式会社 シリコンインゴット固定用熱硬化性接着剤、それを用いたシリコンインゴット固定方法およびシリコンウエハの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655474A (en) * 1979-10-12 1981-05-16 Sekisui Chem Co Ltd Radiofrequency heating curable adhesive
CA1268107A (fr) * 1984-07-19 1990-04-24 Alfred Fuller Leatherman Adhesif thermodurcissable pour l'assemblage sans distorsion d'elements thermodurcissables autostables
JPS63118931A (ja) * 1986-11-07 1988-05-23 Hitachi Ltd デ−タベ−ス管理方式
JP2546316B2 (ja) * 1988-02-12 1996-10-23 東亞合成株式会社 接着剤組成物
US5123989A (en) * 1989-06-14 1992-06-23 Toda Kogyo Corporation Resin-bonding method
JP2671525B2 (ja) * 1989-10-23 1997-10-29 東亞合成株式会社 接着剤
DE69124111T2 (de) * 1990-11-28 1997-08-07 Fuller H B Licensing Financ Härtung von thermoplastischen rezeptorzusammensetzungen mittels hochfrequenz

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9404623A1 *

Also Published As

Publication number Publication date
CH685942A5 (fr) 1995-11-15
US5447592A (en) 1995-09-05
WO1994004623A1 (fr) 1994-03-03
JPH07500629A (ja) 1995-01-19

Similar Documents

Publication Publication Date Title
EP0617727A1 (fr) Procede de collage de deux substrats non metalliques a l&#39;aide d&#39;un adhesif
US6056844A (en) Temperature-controlled induction heating of polymeric materials
JP2791595B2 (ja) 温度自動調節、自己加熱の回復可能物品
US7984738B2 (en) Temperature controlled polymer composition for inductive control heating using electrical conductive and magnetic particles
CA2058335C (fr) Systeme et methode pour chauffer a distance un polymere a la temperature voulue
US5837088A (en) Radio frequency induction heatable compositions
CA2112243C (fr) Article adhesif pour micro-onde et methode d&#39;utilisation connexe
TWI269702B (en) Welding techniques for polymer or polymer composite components
JP2004506065A5 (fr)
JP2004506065A (ja) 接着剤の硬化促進方法
CN104531002A (zh) 一种磁热熔胶及其制备和使用方法
Verna et al. Adhesive joining technologies activated by electro-magnetic external trims
WO1999024520A1 (fr) Adhesif durcissable par micro-onde
CA1125155A (fr) Methode de liaison par fusion d&#39;elements thermoplastiques, non elastomeriques au moyen d&#39;un agent elastomerique sequence place a l&#39;interface
EP2878364A1 (fr) Installation et procédé correspondant d&#39;application à chaud d&#39;une composition adhésive
JPS58174474A (ja) 熱接着剤
WO2020021168A1 (fr) Procédé de soudage par induction mettant en œuvre un film polymère composite conducteur et/ou magnétique
Cheng et al. Enabling contactless rapid on-demand debonding and rebonding using hysteresis heating of ferrimagnetic nanoparticles
JPH0493381A (ja) ホットメルト接着剤及び剥離方法
JPS63118391A (ja) 接着方法
Arias et al. The impulse resistance welding: a new technique for joining advanced thermoplastic composite parts
JP2024012767A (ja) 光メルト接着剤粒子及び前記接着剤粒子を用いる位置選択的接着方法
WO1990004844A1 (fr) Procede de traitement de surface de couches magnetiques et couche magnetique obtenue selon ce procede
Verna et al. Adhesive joining technologies activated by external trims for automotive applications
JPH04209315A (ja) 記録ディスクの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960509

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980826