EP0614863B1 - Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wässriger Basis, beschichtete Metallpulver sowie deren Verwendung - Google Patents

Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wässriger Basis, beschichtete Metallpulver sowie deren Verwendung Download PDF

Info

Publication number
EP0614863B1
EP0614863B1 EP94103430A EP94103430A EP0614863B1 EP 0614863 B1 EP0614863 B1 EP 0614863B1 EP 94103430 A EP94103430 A EP 94103430A EP 94103430 A EP94103430 A EP 94103430A EP 0614863 B1 EP0614863 B1 EP 0614863B1
Authority
EP
European Patent Office
Prior art keywords
magnesium powder
water
metal powder
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94103430A
Other languages
English (en)
French (fr)
Other versions
EP0614863A1 (de
Inventor
Klaus Dipl.-Chem. Dr. Hieke
Angelika Dipl.-Chem. Frehn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Original Assignee
Buck Chemisch Technische Werke GmbH and Co
Buck Werke GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buck Chemisch Technische Werke GmbH and Co, Buck Werke GmbH and Co filed Critical Buck Chemisch Technische Werke GmbH and Co
Publication of EP0614863A1 publication Critical patent/EP0614863A1/de
Application granted granted Critical
Publication of EP0614863B1 publication Critical patent/EP0614863B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/30Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component
    • C06B45/32Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component the coating containing an organic compound

Definitions

  • the invention relates to a process for the production of metal-based pyrotechnic active substances on an aqueous basis, coated metal powder and the use thereof.
  • pyrotechnic active materials often contain red phosphorus in combination with metal powder, in particular with aluminum or magnesium.
  • active compositions have been produced by dissolving a binder in a chlorinated hydrocarbon, slurrying the magnesium powder or aluminum powder and the red phosphorus in this solution and granulating the slurry by evaporating off the solvent. This granulate could then be processed and metered well.
  • Chlorinated hydrocarbons pose problems for environmental reasons and their use will be restricted over the next few years, so that they will have to be replaced by other solvents. Processing in an aqueous system which is easiest to handle in terms of safety, emission problems and toxicity problems would, of course, be advantageous.
  • metal powders cannot easily be slurried in water, as this could lead to an explosive reaction with the formation of hydrogen and hydroxides. They are also partially inactivated by the formation of hydroxides.
  • the metal powder such as magnesium powder or aluminum powder, must therefore be pretreated so that it cannot react with water.
  • AT-B 236 729 and AT-B 240 128 are processes for Chemical oxidation of aluminum powder and magnesium powder, in which the granules forming the powder are coated with an oxide skin that protects the metal. Furthermore, it is known to provide metal powder with a coating, for example made of stearic acid. A disadvantage of these processes, however, is that either they do not provide adequate protection against water or the reactivity is reduced in such a way that the metal powders can no longer or not sufficiently react to the desired reaction.
  • the object of the invention is now to provide a process for the preparation of pyrotechnic active compositions which, as an effective principle, contain, for example, red phosphorus in combination with metal powder in addition to other customary ingredients, in which the active composition can be processed in an aqueous system without the part the active powder forming metal powder is inactivated or can trigger an explosive reaction.
  • This object is achieved by a process for producing pyrotechnic active compositions containing magnesium powder on an aqueous basis, which is characterized in that the magnesium powder is coated with a plastic which is insoluble for dilute acids and water and essentially impermeable to water and oxygen in a vacuum fluidized bed process, where the coating in one Mass of not more than 5 percent by weight, based on the total mass of the magnesium powder, is present, the powder obtained is suspended in water, mixed with the other constituents of the active composition and brought into the desired shape.
  • magnesium powders by coating magnesium powders with a very thin layer of a plastic which is insoluble in water and dilute acids and is essentially impermeable to water and oxygen, the magnesium powder can be inactivated to such an extent that it becomes in storage during storage Processing in an aqueous slurry and the production of the pyrotechnic active compounds do not cause any undesirable reactions, although this coating does not have an adverse effect on the properties, in particular the reactivity, of the pyrotechnic active compound itself.
  • the magnesium powder is provided with a coating of a plastic which is insoluble for dilute acids and water and essentially impermeable for water and oxygen.
  • plastics are known to the person skilled in the art, and all plastics which have these properties and do not adversely affect the active composition are suitable here.
  • Polymers or copolymers based on acrylic acid, methacrylic acid, acrylic acid esters and / or methacrylic acid esters are preferably used for the plastic coating. These polymers or copolymers are suitable for forming very thin coatings which nevertheless prevent the coated metal grain from reacting with water or acid.
  • a methacrylic acid-methyl methacrylate copolymer is particularly preferably used.
  • the coating on the magnesium particles must be very thin and must not be more than 5 percent by weight based on the total mass of the magnesium powder. If the coating becomes too thick, the reaction of the particles in the active mass is hindered, which is undesirable. Particularly good results are achieved with coatings which are applied in an amount which corresponds to 1 to 4 percent by weight, in particular 2.5 to 3.5 percent by weight, based on the total mass of the magnesium powder.
  • a vacuum fluidized bed process As is known per se, is used.
  • the fluidized bed process must be carried out in such a way that moisture is excluded during the coating.
  • the process is suitable for magnesium powder, which is used for pyrotechnic active materials and is to be processed in aqueous systems.
  • the magnesium powder coated with the plastic can be stored in this form and is slurried in water to produce the pyrotechic active composition, mixed with the other constituents known per se, for example red phosphorus, and then brought into the desired shape.
  • the stability of the coated magnesium powder during storage and during slurrying in water is excellent and the reactivity of the active mass is not significantly impaired.
  • Another object of the invention is a magnesium powder with a coating of a plastic which is insoluble for dilute acids and water and essentially impermeable for water and oxygen, the coating making up no more than 5% by weight, based on the total mass of the magnesium powder.
  • the magnesium powder coated according to the invention can be stored and transported in this form. It is stabilized against change due to water or oxygen or acid and can therefore be used in a variety of ways, in particular for processes in which aqueous slurries of magnesium powder are used.
  • the magnesium powder coated according to the invention is particularly preferably used for the production of aqueous-based pyrotechnic active compositions.
  • FIG. 1 shows a diagram in which the results are plotted for the hydrogen evolution m W / m E, based on the weight, for the magnesium powder coated with 1%, 2% and 3% and for the uncoated magnesium powder.
  • 1% and 2% coating quantity there are only slight differences in the hydrogen evolution; however, there is a significant delay compared to the uncoated sample.
  • a further improvement is made in the sample provided with a 3% coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Glanulating (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wäßriger Basis, beschichtete Metallpulver sowie deren Verwendung.
  • Pyrotechnische Wirkmassen enthalten als wirksames Prinzip häufig roten Phosphor in Kombination mit Metallpulver, insbesondere mit Aluminium oder Magnesium. Bisher erfolgte die Herstellung solcher Wirkmassen, indem ein Bindemittel in einem Chlorkohlenwasserstoff gelöst wurde, das Magnesiumpulver oder Aluminiumpulver und der rote Phosphor in dieser Lösung aufgeschlämmt wurde und die Aufschlämmung durch Abdampfen des Lösemittels granuliert wurde. Dieses Granulat konnte dann gut weiterverarbeitet und dosiert werden. Chlorkohlenwasserstoffe werfen jedoch aus Gründen des Umweltschutzes Probleme auf, und ihre Verwendung wird im Laufe der nächsten Jahre eingeschränkt werden, so daß sie durch andere Lösungsmittel ersetzt werden müssen. Vorteilhaft wäre natürlich die Verarbeitung in einem wäßrigen System, das in bezug auf Sicherheit, Emissionsprobleme und Toxizitätsprobleme am einfachsten zu handhaben ist. Metallpulver können jedoch nicht ohne weiteres in Wasser aufgeschlämmt werden, da dies zu einer explosionsartigen Reaktion unter Bildung von Wasserstoff und Hydroxiden führen könnte. Außerdem werden sie durch die Bildung von Hydroxiden teilweise inaktiviert. Das Metallpulver, wie Magnesiumpulver oder Aluminiumpulver, muß daher so vorbehandelt werden, daß es nicht mit Wasser reagieren kann.
  • Es ist bereits bekannt, Metallpulver durch chemische Oxidation oder physikalische Verfahren so zu verändern, daß bei Kontakt mit Wasser keine schädlichen Reaktionen auftreten. So sind beispielsweise aus AT-B 236 729 und AT-B 240 128 Verfahren zur chemischen Oxidation von Aluminiumpulver und Magnesiumpulver bekannt, bei denen die das Pulver bildenden Körnchen mit einer Oxidhaut überzogen werden, die das Metall schützt. Weiterhin ist es bekannt, Metallpulver mit einem Überzug, beispielsweise aus Stearinsäure, zu versehen. Ein Nachteil dieser Verfahren ist es jedoch, daß entweder kein ausreichender Schutz gegenüber Wasser gewährt oder daß die Reaktionsfähigkeit derart vermindert wird, daß die Metallpulver die gewünschte Reaktion nicht mehr oder nicht mehr genügend eingehen können.
  • Aus DE-A 36 26 861 war ein Verfahren zur Herstellung von handhabungssicherem Treibladungspulver auf Basis von kristallinen Sprengstoffen bekannt, bei dem die einzelnen Kristalle des Sprengstoffs mit einem Harz in einem Wirbelschichtverfahren umhüllt wurden. Weiterhin ist aus der US-A 3 706 611 ein Verfahren zur Herstellung einer pyrotechnischen Kunststoffzusammensetzung bekannt, die aus einem flüssigen Polysulfidpolymer, einem kautschukbildenden Mittel, einem Metallpulver, einem organischen Oxidationsmittel und Farbstoff besteht, wobei zuerst das Metallpulver und das flüssige Polymer bei sehr niedrigem Druck vermischt werden und dann nach und nach das Oxidationsmittel und die Farbstoffe zugegeben werden.
  • Aus DE-B 12 34 195 ist ein Verfahren zur Herstellung beschichteter fester Teilchen mit einer polymeren Überzugsschicht in einer Dispersion bekannt. Dieses Verfahren wird entweder zum Überziehen von Pigmenten angewendet, wobei der Überzug auf Dauer völlig undurchlässig bleiben soll, oder zum Überziehen von reaktionsfähigen Substanzen, wie Pestiziden oder Düngemitteln, wobei die eingekapselte Substanz nach und nach abgegeben werden soll.
  • Aufgabe der Erfindung ist nun die Bereitstellung eines Verfahrens zur Herstellung von pyrotechnischen Wirkmassen, die als wirksames Prinzip zum Beispiel roten Phosphor in Kombination mit Metallpulver neben anderen üblichen Inhaltsstoffen enthalten, bei dem die Wirkmasse in einem wäßrigen System verarbeitet werden kann, ohne daß das einen Teil der Wirkmasse bildende Metallpulver inaktiviert wird oder eine explosionsartige Reaktion auslösen kann.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Magnesiumpulver enthaltenden pyrotechnischen Wirkmassen auf wäßriger Basis, das dadurch gekennzeichnet ist, daß das Magnesiumpulver mit einem für verdünnte Säuren und Wasser unlöslichen und für Wasser und Sauerstoff im wesentlichen undurchlässigen Kunststoff in einem Vakuumwirbelschichtverfahren beschichtet wird, wobei die Beschichtung in einer Masse von nicht mehr als 5 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, vorhanden ist, das erhaltene Pulver in Wasser aufgeschlämmt, mit den anderen Bestandteilen der Wirkmasse vermischt und in die gewünschte Form gebracht wird.
  • Überraschenderweise wurde gefunden, daß durch Beschichten von Magnesiumpulvern mit einer sehr dünnen Schicht aus einem Kunststoff, der in Wasser und verdünnten Säuren unlöslich und für Wasser und Sauerstoff im wesentlichen undurchlässig ist, das Magnesiumpulver so weit inaktiviert werden kann, daß es während der Lagerung, der Verarbeitung in wäßriger Aufschlämmung und der Herstellung der pyrotechnischen Wirkmassen keine unerwünschten Reaktionen eingeht, wobei diese Beschichtung jedoch keine nachteilige Wirkung auf die Eigenschaften, insbesondere die Reaktivität, der pyrotechnischen Wirkmasse selbst hat.
  • Wesentlich für das erfindungsgemäße Verfahren ist die Behandlung des Magnesiumpulvers. Erfindungsgemäß wird das Magnesiumpulver mit einer Beschichtung aus einem für verdünnte Säuren und Wasser unlöslichen und für Wasser und Sauerstoff im wesentlichen undurchlässigen Kunststoff versehen. Derartige Kunststoffe sind dem Fachmann bekannt, und alle Kunststoffe, die diese Eigenschaften aufweisen und die Wirkmasse nicht nachteilig beeinflussen, sind hier geeignet. Bevorzugt werden für die Kunststoffbeschichtung Polymere oder Copolymere auf Basis von Acrylsäure, Methacrylsäure, Acrylsäureestern und/oder Methacrylsäureestern verwendet. Diese Polymere oder Copolymere eignen sich zur Bildung sehr dünner Beschichtungen, die trotzdem eine Reaktion des umhüllten Metallkorns mit Wasser oder Säure verhindern. Besonders bevorzugt wird ein Methacrylsäure-Methylmethacrylat-Copolymer verwendet. Beim Beschichten des Magnesiumpulvers kann es zu einer Agglomerierung der Teilchen kommen, was sich jedoch nicht nachteilig auf die Eigenschaften auswirkt, da die Agglomerate bei der Verarbeitung zu Wirkmassen wieder auseinanderbrechen.
  • Die Beschichtung auf den Magnesiumteilchen muß sehr dünn sein und darf nicht mehr als 5 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, betragen. Wenn die Beschichtung zu dick wird, wird die Reaktion der Teilchen in der Wirkmasse behindert, was unerwünscht ist. Besonders gute Ergebnisse werden mit Beschichtungen erzielt, die in einer Menge aufgetragen werden, welche 1 bis 4 Gewichtsprozent, insbesondere 2,5 bis 3,5 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, entspricht.
  • Um derartig dünne Beschichtungen auf das Magnesiumpulver gleichmäßig aufbringen zu können, wird ein Vakuum-Wirbelschichtverfahren, wie es an sich bekannt ist, verwendet. Das Wirbelschichtverfahren muß so durchgeführt werden, daß während der Beschichtung Feuchtigkeit ausgeschlossen ist. Das Verfahren eignet sich für Magnesiumpulver, das für pyrotechnische Wirkmassen verwendet werden und in wäßrigen Systemen verarbeitet werden soll.
  • Das mit dem Kunststoff beschichtete Magnesiumpulver kann in dieser Form gelagert werden und wird zur Herstellung der pyrotechischen Wirkmasse in Wasser aufgeschlämmt, mit den übrigen an sich bekannten Bestandteilen, zum Beispiel rotem Phosphor, vermischt und dann in die gewünschte Form gebracht.
  • Die Stabilität des beschichteten Magnesiumpulvers während der Lagerung und während der Aufschlämmung in Wasser ist ausgezeichnet, und die Reaktivität der Wirkmasse wird nicht nennenswert beeinträchtigt.
  • Ein weiterer Gegenstand der Erfindung ist ein Magnesiumpulver mit einer Beschichtung aus einem für verdünnte Säuren und Wasser unlöslichen und für Wasser und Sauerstoff im wesentlichen undurchlässigen Kunststoff, wobei die Beschichtung nicht mehr als 5 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, ausmacht.
  • Das erfindungsgemäß beschichtete Magnesiumpulver kann in dieser Form gelagert und transportiert werden. Es ist stabilisiert gegenüber einer Veränderung durch Wasser oder Sauerstoff oder Säure und kann daher vielfältig eingesetzt werden, insbesondere für Verfahren, in denen wäßrige Aufschlämmungen von Magnesiumpulver verwendet werden. Besonders bevorzugt wird das erfindungsgemäß beschichtete Magnesiumpulver zur Herstellung von pyrotechnischen Wirkmassen auf wäßriger Basis eingesetzt.
  • Die Erfindung wird durch die folgenden Beispiele erläutert.
  • Beispiel 1
  • Magnesiumpulver wurde mit einer stabilisierenden Beschichtung versehen. Es wurde ein Magnesiumpulver mit einer durchschnittlichen Teilchengröße von 90 bis 140 µm verwendet. 9,0 kg dieses Magnesiumpulvers wurden in einer Vakuumwirbelschicht verwirbelt. Es wurde eine Lösung von 3,5% Methacrylsäure-Methylmethacrylat-1:2-Copolymer in Aceton/Methanol (12%:88%) aufgesprüht. Dabei wurden die folgenden Prozeßbedingungen eingehalten:
  • Systemdruck:
    etwa 250 mbar
    Gaseintrittstemperatur:
    etwa 90°C
    Sprühdruck:
    etwa 40 bar
    Sprührate:
    etwa 80 g/min
    Temperatur der Sprühlösung:
    etwa 60°C
    Kondensationstemperatur:
    etwa -35°C
  • Nach Versprühen von 2,57 kg, 5,14 kg und 7,71 kg Lösung wurden ohne Prozeßunterbrechung Proben entnommen. Dies entsprach einem Filmauftrag von 1%, 2% und 3%.
  • Mit diesen Proben wurden Stabilitätsprüfungen durchgeführt, wobei jeweils 300 mg unbeschichtetes Magnesium und mit 1%, 2% und 3% beschichtetes Magnesium untersucht wurden. Das Probenmaterial wurde dazu in einen 500 ml Zweihalskolben gebracht, der bis zum Schliffansatz in einem auf 25°C thermostatisierten Wasserbad stand. Der mit einem 100 ml Tropftrichter versehene Zweihalskolben war über eine Schlauchverbindung mit einer thermostatisierten Bürette verbunden. Diese war wiederum mit einem Druckausgleichsgefäß versehen. Als Sperrflüssigkeit in der Bürette und dem Druckausgleichsgefäß diente Wasser. Vor Beginn der Messung wurde der Bürettenstand nivelliert. Nach Temperaturangleichung der gesamten Apparatur auf 25°C wurden 50,0 ml einer 0,1 n Salzsäure aus dem Tropftrichter schnell zur vorgelegten Probe gegeben. Die zeitabhängige Wasserstoffentwicklung wurde dann durch einfaches Ablesen des in der Bürette verdrängten Wasservolumens ermittelt. Das Ergebnis wird als Quotient mW/mE aus der Wasserstoffentwicklung mW (D25 = 0,1 mg/ml) und der Einwaage mE angegeben.
  • Bei den angegebenen Bedingungen erfolgte eine Agglomeration von Partikeln unter Bildung stabiler Sekundäragglomerate. Die mittlere Korngröße wurde dadurch von etwa 120 µm auf etwa 310 µm angehoben. Dadurch wurden die Fließeigenschaften des beschichteten Magnesiumpulvers wesentlich verbessert. Für die Auswertung wurden die Proben nicht gesiebt.
  • Beim nicht beschichteten Magnesiumpulver war die Wasserstoffentwicklung so stark, daß in der ersten Minute nach Zugabe der 0,1 n Salzsäure die Meßkapazität der Bürette (50 ml) überschritten wurde.
  • Die Figur 1 zeigt ein Diagramm, in dem die Ergebnisse eingezeichnet sind für die auf die Einwaage bezogene Wasserstoffentwicklung mW/mE für das mit 1%, 2% und 3% beschichtete und für das nicht beschichtete Magnesiumpulver. Bei 1% und 2% Beschichtungsmenge bestehen nur geringe Unterschiede in der Wasserstoffentwicklung; es besteht jedoch eine deutliche Verzögerung im Vergleich zur nicht beschichteten Probe. Eine weitere Verbesserung erfolgt bei der mit 3% Beschichtung versehenen Probe.

Claims (7)

  1. Verfahren zur Herstellung von Magnesiumpulver enthaltenden pyrotechnischen Wirkmassen auf wäßriger Basis,
    dadurch gekennzeichnet, daß das Magnesiumpulver mit einem für verdünnte Säuren und Wasser unlöslichen und für Wasser und Sauerstoff im wesentlichen undurchlässigen Kunststoff in einem Vakuumwirbelschichtverfahren beschichtet wird, wobei die Beschichtung in einer Masse von nicht mehr als 5 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, vorhanden ist, das erhaltene Pulver in Wasser aufgeschlämmt, mit den anderen Bestandteilen der Wirkmasse vermischt und in die gewünschte Form gebracht wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß als Kunststoff Polymere oder Copolymere auf Basis von Acrylsäure, Methacrylsäure, Acrylsäureestern und/oder Methacrylsäureestern verwendet werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß das Magnesiumpulver mit einem Methacrylsäure-Methylmethacrylat-Copolymer, gelöst in einem Lösemittel, beschichtet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß das Magnesiumpulver mit dem Kunststoff in solcher Menge beschichtet wird, daß eine Beschichtung von 1 bis 4 Gewichtsprozent, bezogen auf die Gesamtmasse des Magnesiumpulvers, erreicht wird.
  5. Magnesiumpulver mit einer Beschichtung aus einem für verdünnte Säuren und Wasser unlöslichen und für Wasser und Sauerstoff im wesentlichen undurchlässigen Kunststoff, hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 4.
  6. Magnesiumpulver nach Anspruch 5,
    dadurch gekennzeichnet, daß die Beschichtung aus einem Polymer oder Copolymer auf Basis von Acrylsäure, Methacrylsäure, Acrylsäureestern und/oder Methacrylsäureestern besteht.
  7. Verwendung eines Magnesiumpulvers nach einem der Ansprüche 5 oder 6 zur Herstellung von Magnesiumpulver enthaltenden pyrotechnischen Wirkmassen.
EP94103430A 1993-03-08 1994-03-07 Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wässriger Basis, beschichtete Metallpulver sowie deren Verwendung Expired - Lifetime EP0614863B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4307237A DE4307237C1 (de) 1993-03-08 1993-03-08 Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wäßriger Basis, beschichtete Metallpulver sowie deren Verwendung
DE4307237 1993-03-08

Publications (2)

Publication Number Publication Date
EP0614863A1 EP0614863A1 (de) 1994-09-14
EP0614863B1 true EP0614863B1 (de) 1997-08-13

Family

ID=6482223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103430A Expired - Lifetime EP0614863B1 (de) 1993-03-08 1994-03-07 Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wässriger Basis, beschichtete Metallpulver sowie deren Verwendung

Country Status (4)

Country Link
US (1) US5541009A (de)
EP (1) EP0614863B1 (de)
CA (1) CA2117157A1 (de)
DE (2) DE4307237C1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605346C1 (de) * 1996-02-14 1997-07-24 Fraunhofer Ges Forschung Phlegmatisierter Energieträger und Verfahren zur Rückgewinnung des in dem phlegmatisierten Energieträger enthaltenen Explosivstoffs
US6077372A (en) * 1999-02-02 2000-06-20 Autoliv Development Ab Ignition enhanced gas generant and method
DE10138745A1 (de) 2001-08-07 2010-09-30 Buck Neue Technologien Gmbh Flächenflares
DE102010022983A1 (de) * 2010-06-08 2011-12-08 Rheinmetall Waffe Munition Gmbh Zweischalige Sprengladung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1180530A (fr) * 1957-08-02 1959-06-04 Le Secretaire D Etat A La Defe Perfectionnements aux mélanges explosifs contenant de l'aluminium ou autres métaux ou alliages et à leur fabrication
GB1025694A (en) * 1962-02-19 1966-04-14 North American Aviation Inc Polymer coating of solid particles
AT240128B (de) * 1963-10-03 1965-05-10 Walter Marx & Co K G Verfahren zur chemischen Oxydation von Aluminiumpulvern bzw. Aluminiumlegierungspulvern
AT236729B (de) * 1962-12-13 1964-11-10 Walter Marx & Co K G Verfahren zur chemischen Oxydation von Magnesiumpulver
US3706611A (en) * 1965-08-26 1972-12-19 Secr Defence Method of making pyrotechnic composition containing a polysulphide polymer
NL6911554A (de) * 1968-08-01 1970-02-03
DE2337524A1 (de) * 1973-07-24 1975-04-03 Dynamit Nobel Ag Pyrotechnischer brennsatz
US3903219A (en) * 1973-12-18 1975-09-02 Fluid Energy Process Equip Process for mixing, pulverizing and grinding black powder
US4092383A (en) * 1977-08-15 1978-05-30 The United States Of America As Represented By The Secretary Of The Navy Modification of ballistic properties of HMX by spray drying
US4434009A (en) * 1981-12-03 1984-02-28 Toyo Aluminium Kabushiki Kaisha Polymer-coated metallic pigments
JPS58223437A (ja) * 1982-06-18 1983-12-26 Tdk Corp 分散性を改良した無機粉末
US4981535A (en) * 1982-09-30 1991-01-01 General Technology Applications, Inc. Process for making finely divided solids
NO153804C (no) * 1984-02-08 1986-05-28 Dyno Indusrtrier A S Nitroglyc Fremgangsmaate for belegning av krystallinske hoeyeksplosiver.
JPS61151551A (ja) * 1984-12-25 1986-07-10 関東電化工業株式会社 電子写真現像剤用キヤリヤ−
DE3515166A1 (de) * 1985-04-26 1986-10-30 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Wurfkoerper zur darstellung eines infrarot-flaechenstrahlers
DE3626861A1 (de) * 1986-08-08 1988-02-11 Dynamit Nobel Ag Verfahren zur herstellung von treibladungsgranulat mit kristallinen sprengstoffen
US4828882A (en) * 1987-03-16 1989-05-09 Canadian Patents & Developments Limited Particle encapsulation technique
SE460848B (sv) * 1987-09-29 1989-11-27 Bofors Ab Saett att framstaella pyrotekniska foerdroejnings- och anfyringssatser

Also Published As

Publication number Publication date
DE59403687D1 (de) 1997-09-18
EP0614863A1 (de) 1994-09-14
DE4307237C1 (de) 1994-04-07
US5541009A (en) 1996-07-30
CA2117157A1 (en) 1994-09-09

Similar Documents

Publication Publication Date Title
EP0058765B1 (de) In Magensaft lösliche oder quellbare Überzugsmasse und ihre Verwendung in einem Verfahren zum Überziehen von Arzneiformen
DE3410241A1 (de) Thermoplastisch verarbeitbare polyvinylalkohol-kompositionen, verfahren zu ihrer herstellung und daraus hergestellte folien und formteile
DE3438291A1 (de) Verfahren zur herstellung einer waessrigen ueberzugsmitteldispersion und ihre verwendung zum ueberziehen von arzneimitteln
DE2031871B2 (de) Überzugsmasse fur Arzneiformen
DE2721603C3 (de) Beschichtete Körnchen aus Alkalimetallsalzen der Polyacrylsäure und Verfahren zu ihrer Herstellung
DE4139963A1 (de) Redispergierbares dispersionspulver aus n-vinylpyrrolidon-vinylacetat-copolymerisat, dessen herstellung und verwendung
DE4101292A1 (de) Entmischungsfreie metallurgische pulvermischungen durch verwendung eines polyvinylpyrrolidon-bindemittels
DE1221215B (de) Verfahren zur Herstellung eingekapselter Isocyanate
DE3831265C2 (de)
DE3536902C2 (de)
DE2512238B1 (de) Bindemittel fuer arzneimittelueberzuege
DE3875811T2 (de) Nichtentflammbare harzmischung.
EP0614863B1 (de) Verfahren zur Herstellung von Metallpulver enthaltenden pyrotechnischen Wirkmassen auf wässriger Basis, beschichtete Metallpulver sowie deren Verwendung
DE69005306T2 (de) Herstellungsverfahren für ein pulver aus geordneten teilchen durch zerstäubung ausgehend von mindestens zwei verschiedenen korngerössen und ein dadurch hergestelltes pulver.
EP0175335A1 (de) Verfahren zur Herstellung von unlöslichen, nur wenig quellbaren pulverförmigen Polymeren
EP0000565B1 (de) Wässrige Copolymerisatlösungen, Verfahren zu deren Herstellung und deren Verwendung als Hüllenbildner für die Herstellung von Microkapseln durch Komplexkoazervation
DE2348926C3 (de) Feuerlöschzusammensetzung
DE3016189A1 (de) Lagerbestaendige, pflanzenbehandlungsmittel enthaltende mikrokapsel-suspensionen, verfahren zu deren herstellung und deren verwendung
DE2025104A1 (de) Verfahren zur Herstellung eines kornförmigen Polymeren
EP0275865B1 (de) Phosphorwasserstoff entwickelnde Schädlingsbekämpfungsmittel mit regelbarer Feuchtigkeitsdurchlässigkeit und Ausgasungsverfahren
EP0665266A2 (de) Verfahren zur Herstellung von Zusammensetzungen, enthaltend Metallpartikel im Nanometergrössenbereich
DE2010110A1 (de) Verfahren zur Herstellung von Mikrokapseln mit Hilfe von synthetischen Koazervaten
EP0590382A1 (de) Verfahren zur Herstellung von Pellets aus einem Ephedrinderivat
DE2222122B2 (de) Pulverfoermiges beschichtungsmittel zum beschichten von metallen bei hohen temperaturen auf der basis von polyamiden
EP0418600B1 (de) Verfahren zur Herstellung von Xanthinderivat-Pellets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19941013

17Q First examination report despatched

Effective date: 19950524

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970814

REF Corresponds to:

Ref document number: 59403687

Country of ref document: DE

Date of ref document: 19970918

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990318

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990323

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000927

Year of fee payment: 7

BERE Be: lapsed

Owner name: BUCK WERKE G.M.B.H. & CO.

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010308

EUG Se: european patent has lapsed

Ref document number: 94103430.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020307

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020315

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110325

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59403687

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002