EP0610972B1 - Procédé de production d'azote - Google Patents
Procédé de production d'azote Download PDFInfo
- Publication number
- EP0610972B1 EP0610972B1 EP94106964A EP94106964A EP0610972B1 EP 0610972 B1 EP0610972 B1 EP 0610972B1 EP 94106964 A EP94106964 A EP 94106964A EP 94106964 A EP94106964 A EP 94106964A EP 0610972 B1 EP0610972 B1 EP 0610972B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- column
- nitrogen
- fraction
- mixture
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims description 73
- 229910052757 nitrogen Inorganic materials 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000203 mixture Substances 0.000 claims description 23
- 239000007788 liquid Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 238000004821 distillation Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 230000008016 vaporization Effects 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 4
- 238000009834 vaporization Methods 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 3
- 239000006200 vaporizer Substances 0.000 claims description 2
- 238000009434 installation Methods 0.000 description 3
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- -1 air Chemical compound 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/0443—A main column system not otherwise provided, e.g. a modified double column flowsheet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04472—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
- F25J3/04496—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
- F25J3/04503—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
- F25J3/04509—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/52—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the high pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
- F25J2200/54—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
- F25J2215/44—Ultra high purity nitrogen, i.e. generally less than 1 ppb impurities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/42—Separating low boiling, i.e. more volatile components from nitrogen, e.g. He, H2, Ne
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/901—Single column
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/912—External refrigeration system
- Y10S62/913—Liquified gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/939—Partial feed stream expansion, air
Definitions
- the present invention relates to a process for the production of nitrogen gas under low or medium pressure, from a mixture to be treated containing mainly nitrogen and oxygen, such as air, in a distillation column. .
- the subject of the present invention is a method as defined above, allowing both a good nitrogen extraction yield and a resistance to cold of the device by expansion in a turbine of a gas poor in oxygen.
- the method of the present invention is characterized in that it comprises the step of extracting from the top of the column the vaporized part of step g) as waste gas and of joining it to the expanded mixture in the front turbine to send it to the exchanger and in that only a second non-expanded fraction of the mixture is distilled in the column.
- the production of cold can also be ensured by expansion of a fraction of the recycled nitrogen, at a pressure less than or equal to the low pressure, then reheated and recompressed.
- a condensed part of the cycle gas can be diverted to a buffer capacity, with sampling and reintroduction into the column in the event of an increase in the nitrogen production rate, while a part of the stream of liquid rich in oxygen is sent to a buffer capacity to be reinjected into the column head condenser, in the event of a reduction in the production of nitrogen gas, which makes it possible to replenish the stock of liquid nitrogen under pressure.
- the two cold productions are combined by expansion of the recycling gas.
- this stream 1 is cooled to an intermediate temperature represented by level 2a. Then this gas stream is expanded at low pressure of the order of 3 to 5 bar abs. in the turbine 3, while part of the non-turbinated gas stream continues to cool with the products of the distillation and is introduced into the distillation column 4, at an intermediate level between two distillation stages, the upper one, 4a , and the other lower, 4b.
- a liquid fraction enriched in oxygen 7 is collected, which is extracted from the column, expanded in valve 8 and finally introduced into the condenser of column 4, essentially consisting of an exchanger. 5 for the condensation of all or part of the gaseous fraction available at the head of column 4.
- This oxygen-enriched fraction is extracted from the abovementioned condenser, in the form of a stream 9, which is mixed with part of the turbinated gaseous stream 112, reheated in exchanger 2, and finally used or evacuated at the outlet of exchanger 2.
- a part condensed in exchanger 5 provides part of the reflux of the distillation. Part can be extracted in liquid form via line 12. Another part is extracted in gaseous form via line 11. The corresponding stream is heated in the exchanger 2, to obtain a stream of nitrogen at the outlet of the latter.
- relatively pure gas under low pressure part of which (X and / or Y) constitutes the production of the separation unit.
- This stream 14 is firstly cooled in the exchanger 2, at least partly condensed at the bottom of the column 4, in the exchanger 6, in exchange for heat with the oxygen-rich fraction, during vaporization. Then the stream 20 of condensed nitrogen is expanded in valve 17 and introduced at the head of column 4.
- the distillation column 4 works under a relatively low pressure, between 3 and 5 bar abs. for example.
- the stream of recycled nitrogen can be extracted by a line 20a towards a buffer capacity 20c and returned by the line 20b to the column 4, downstream of the valve 17.
- the rich fraction in oxygen 7 can be extracted from the installation by a bypass duct 7a towards the buffer capacity 7c and returned by the duct 7b to the column 4 downstream of the valve 8.
- the two rocker-type versions described in Figures 1 and 2 have the advantage of having a production of gaseous nitrogen which can range from 50 to 150% of nominal production.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8911009A FR2651035A1 (fr) | 1989-08-18 | 1989-08-18 | Procede de production d'azote par distillation |
FR8911009 | 1989-08-18 | ||
EP90402289A EP0413631B1 (fr) | 1989-08-18 | 1990-08-13 | Procédé de production d'azote |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90402289.4 Division | 1990-08-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0610972A2 EP0610972A2 (fr) | 1994-08-17 |
EP0610972A3 EP0610972A3 (en) | 1994-09-28 |
EP0610972B1 true EP0610972B1 (fr) | 1997-03-26 |
Family
ID=9384790
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94106964A Expired - Lifetime EP0610972B1 (fr) | 1989-08-18 | 1990-08-13 | Procédé de production d'azote |
EP90402289A Expired - Lifetime EP0413631B1 (fr) | 1989-08-18 | 1990-08-13 | Procédé de production d'azote |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90402289A Expired - Lifetime EP0413631B1 (fr) | 1989-08-18 | 1990-08-13 | Procédé de production d'azote |
Country Status (6)
Country | Link |
---|---|
US (2) | US5325674A (enrdf_load_stackoverflow) |
EP (2) | EP0610972B1 (enrdf_load_stackoverflow) |
JP (1) | JP3162361B2 (enrdf_load_stackoverflow) |
CA (1) | CA2023503C (enrdf_load_stackoverflow) |
DE (2) | DE69015504T2 (enrdf_load_stackoverflow) |
FR (1) | FR2651035A1 (enrdf_load_stackoverflow) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5251450A (en) * | 1992-08-28 | 1993-10-12 | Air Products And Chemicals, Inc. | Efficient single column air separation cycle and its integration with gas turbines |
FR2697325B1 (fr) * | 1992-10-27 | 1994-12-23 | Air Liquide | Procédé et installation de production d'azote et d'oxygène. |
FR2700205B1 (fr) * | 1993-01-05 | 1995-02-10 | Air Liquide | Procédé et installation de production d'au moins un produit gazeux sous pression et d'au moins un liquide par distillation d'air. |
US5303556A (en) * | 1993-01-21 | 1994-04-19 | Praxair Technology, Inc. | Single column cryogenic rectification system for producing nitrogen gas at elevated pressure and high purity |
US5511380A (en) | 1994-09-12 | 1996-04-30 | Liquid Air Engineering Corporation | High purity nitrogen production and installation |
JP3447437B2 (ja) * | 1995-07-26 | 2003-09-16 | 日本エア・リキード株式会社 | 高純度窒素ガス製造装置 |
DE19537910A1 (de) * | 1995-10-11 | 1997-04-17 | Linde Ag | Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft |
US5832748A (en) * | 1996-03-19 | 1998-11-10 | Praxair Technology, Inc. | Single column cryogenic rectification system for lower purity oxygen production |
US5682762A (en) * | 1996-10-01 | 1997-11-04 | Air Products And Chemicals, Inc. | Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns |
US5794458A (en) * | 1997-01-30 | 1998-08-18 | The Boc Group, Inc. | Method and apparatus for producing gaseous oxygen |
US5868006A (en) * | 1997-10-31 | 1999-02-09 | The Boc Group, Inc. | Air separation method and apparatus for producing nitrogen |
US5934106A (en) * | 1998-01-27 | 1999-08-10 | The Boc Group, Inc. | Apparatus and method for producing nitrogen |
DE19843629A1 (de) | 1998-09-23 | 2000-03-30 | Linde Ag | Verfahren und Verflüssiger zur Erzeugung von flüssiger Luft |
US6279345B1 (en) | 2000-05-18 | 2001-08-28 | Praxair Technology, Inc. | Cryogenic air separation system with split kettle recycle |
GB0119500D0 (en) * | 2001-08-09 | 2001-10-03 | Boc Group Inc | Nitrogen generation |
RU2279019C2 (ru) * | 2003-06-11 | 2006-06-27 | Государственное образовательное учреждение Воронежская государственная технологическая академия | Устройство для охлаждения сжиженного газа |
US7114352B2 (en) * | 2003-12-24 | 2006-10-03 | Praxair Technology, Inc. | Cryogenic air separation system for producing elevated pressure nitrogen |
US20050247005A1 (en) * | 2004-04-01 | 2005-11-10 | Chris Mroz | Rigid ribbon having overall sinusoidal-like waveform shape |
US8753440B2 (en) * | 2011-03-11 | 2014-06-17 | General Electric Company | System and method for cooling a solvent for gas treatment |
JP6900230B2 (ja) | 2017-04-19 | 2021-07-07 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 純度の異なる窒素を製造するための窒素製造システムおよびその窒素製造方法 |
US11686528B2 (en) | 2019-04-23 | 2023-06-27 | Chart Energy & Chemicals, Inc. | Single column nitrogen rejection unit with side draw heat pump reflux system and method |
WO2021242308A1 (en) * | 2020-05-26 | 2021-12-02 | Praxair Technology, Inc. | Enhancements to a dual column nitrogen producing cryogenic air separation unit |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5231839B1 (enrdf_load_stackoverflow) * | 1966-03-11 | 1977-08-17 | ||
FR2461906A1 (fr) * | 1979-07-20 | 1981-02-06 | Air Liquide | Procede et installation cryogeniques de separation d'air avec production d'oxygene sous haute pression |
US4594085A (en) * | 1984-11-15 | 1986-06-10 | Union Carbide Corporation | Hybrid nitrogen generator with auxiliary reboiler drive |
JPS61190277A (ja) * | 1985-02-16 | 1986-08-23 | 大同酸素株式会社 | 高純度窒素および酸素ガス製造装置 |
US4662916A (en) * | 1986-05-30 | 1987-05-05 | Air Products And Chemicals, Inc. | Process for the separation of air |
US4662917A (en) * | 1986-05-30 | 1987-05-05 | Air Products And Chemicals, Inc. | Process for the separation of air |
US4662918A (en) * | 1986-05-30 | 1987-05-05 | Air Products And Chemicals, Inc. | Air separation process |
US4834785A (en) * | 1988-06-20 | 1989-05-30 | Air Products And Chemicals, Inc. | Cryogenic nitrogen generator with nitrogen expander |
GB8820582D0 (en) * | 1988-08-31 | 1988-09-28 | Boc Group Plc | Air separation |
US4947649A (en) * | 1989-04-13 | 1990-08-14 | Air Products And Chemicals, Inc. | Cryogenic process for producing low-purity oxygen |
-
1989
- 1989-08-18 FR FR8911009A patent/FR2651035A1/fr active Granted
-
1990
- 1990-08-13 DE DE69015504T patent/DE69015504T2/de not_active Expired - Fee Related
- 1990-08-13 DE DE69030327T patent/DE69030327T2/de not_active Expired - Fee Related
- 1990-08-13 EP EP94106964A patent/EP0610972B1/fr not_active Expired - Lifetime
- 1990-08-13 EP EP90402289A patent/EP0413631B1/fr not_active Expired - Lifetime
- 1990-08-16 JP JP21507890A patent/JP3162361B2/ja not_active Expired - Fee Related
- 1990-08-17 CA CA002023503A patent/CA2023503C/fr not_active Expired - Fee Related
-
1992
- 1992-02-18 US US07/843,940 patent/US5325674A/en not_active Expired - Fee Related
-
1993
- 1993-10-08 US US08/133,292 patent/US5373699A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69030327T2 (de) | 1997-10-30 |
EP0413631B1 (fr) | 1994-12-28 |
EP0610972A2 (fr) | 1994-08-17 |
US5325674A (en) | 1994-07-05 |
DE69030327D1 (de) | 1997-04-30 |
JP3162361B2 (ja) | 2001-04-25 |
CA2023503C (fr) | 2000-06-27 |
US5373699A (en) | 1994-12-20 |
DE69015504T2 (de) | 1995-06-01 |
JPH03186183A (ja) | 1991-08-14 |
EP0610972A3 (en) | 1994-09-28 |
DE69015504D1 (de) | 1995-02-09 |
FR2651035A1 (fr) | 1991-02-22 |
CA2023503A1 (fr) | 1991-02-19 |
EP0413631A1 (fr) | 1991-02-20 |
FR2651035B1 (enrdf_load_stackoverflow) | 1994-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0610972B1 (fr) | Procédé de production d'azote | |
EP0547946B1 (fr) | Procédé et installation de production d'oxygène impur | |
EP0689019B1 (fr) | Procédé et installation de production d'oxygène gazeux sous pression | |
EP2122282B1 (fr) | Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique | |
EP0937679B1 (fr) | Procédé et installation de production de monoxyde de carbone et d'hydrogène | |
EP0379435A1 (fr) | Procédé et installation de séparation d'air et de production d'oxygène ultra-pur | |
EP0611936B1 (fr) | Procédé et installation de production d'azote ultra-pur par distillation d'air | |
JP2886740B2 (ja) | 超高純度窒素製品を製造するための集成多塔式蒸留装置 | |
EP1189003B1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
EP1711765B1 (fr) | Procédé et installationde de séparation d'air par distillation cryogénique | |
EP3058297B1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
EP0595673B1 (fr) | Procédé et installation de production d'azote et d'oxygène | |
WO2024105022A1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
EP1682836B1 (fr) | Procede et installation de production de monoxyde de carbone par distillation cryogenique | |
FR3150578A3 (fr) | Procédé et appareil de séparation d’air par distillation cryogénique | |
FR2724011A1 (fr) | Procede et installation de production d'oxygene par distillation cryogenique | |
EP1132700B1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
FR2787559A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
FR3141995A3 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
FR2819046A1 (fr) | Procede et appareil de separation d'air par distillation cryogenique | |
FR2837564A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur | |
FR2862004A1 (fr) | Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants | |
FR2795496A1 (fr) | Appareil et procede de separation d'air par distillation cryogenique | |
FR2787561A1 (fr) | Procede de separation d'air par distillation cryogenique | |
EP3913310A1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
17P | Request for examination filed |
Effective date: 19940504 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 413631 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19960109 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 413631 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69030327 Country of ref document: DE Date of ref document: 19970430 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: TEISAN KABUSHIKI KAISHA Owner name: LIQUID AIR ENGINEERING CORPORATION Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: TEISAN KABUSHIKI KAISHA Owner name: AIR LIQUIDE PROCESS & CONSTRUCTION, INC. Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970702 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010705 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010713 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010718 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010719 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20020813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030430 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050813 |