EP0610693A1 - Schraubendrehereinsatz - Google Patents

Schraubendrehereinsatz Download PDF

Info

Publication number
EP0610693A1
EP0610693A1 EP94100775A EP94100775A EP0610693A1 EP 0610693 A1 EP0610693 A1 EP 0610693A1 EP 94100775 A EP94100775 A EP 94100775A EP 94100775 A EP94100775 A EP 94100775A EP 0610693 A1 EP0610693 A1 EP 0610693A1
Authority
EP
European Patent Office
Prior art keywords
area
torsion
screwdriver bit
bit according
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94100775A
Other languages
English (en)
French (fr)
Other versions
EP0610693B1 (de
Inventor
Wilfried Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Willi Hahn GmbH and Co KG
Original Assignee
Willi Hahn GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Willi Hahn GmbH and Co KG filed Critical Willi Hahn GmbH and Co KG
Publication of EP0610693A1 publication Critical patent/EP0610693A1/de
Application granted granted Critical
Publication of EP0610693B1 publication Critical patent/EP0610693B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/0007Connections or joints between tool parts
    • B25B23/0035Connection means between socket or screwdriver bit and tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B15/00Screwdrivers
    • B25B15/001Screwdrivers characterised by material or shape of the tool bit

Definitions

  • the invention relates to a screwdriver bit according to the preamble of claim 1.
  • Screwdriver bits of the type mentioned here are used in connection with tools having a drive device, the drive area of the screwdriver bit being insertable into a suitable holder of the tool, for example into a machine chuck.
  • Different screw tool inserts can be used for different areas of application.
  • Inserts of the type mentioned here are characterized by a twistable zone which serves to elastically absorb the torque peaks occurring when using the screwing tool insert. This means that in the event of a sudden increase in the drive torque or a more or less abrupt braking of the screw, torque peaks are absorbed by a correspondingly strong torsion of the twistable zone, so that damage to the screw is avoided on the one hand so that it can be unscrewed later without any problems. On the other hand, damage in the output area or at the point of action of the screwdriver bit is avoided. Finally, disadvantageous ones are reduced due to the elastic torsion Effects on the drive device or the connection between it and the drive area of the tool insert.
  • Screwdriver bits are known (DE-OS 22 31 949) in which the twistable zone is designed as a predetermined breaking point, which is sheared off when a predetermined target torque is reached. Such inserts are only designed as disposable items and cannot be used universally.
  • a further known screwdriver insert (DE 39 07 567 C2), the disadvantages described above are to be avoided by providing a torsion section between the output and drive area of a screwdriver insert, which can be twisted elastically when subjected to torque and thus acts as a damping element. Torque peaks that occur when using this insert do not lead to any deformation of the output area, but rather cause an elastic twist or torsion.
  • the torsion section is characterized by a circular cross section which is constant over its entire length. The ratio of the diameter to the length of the torsion section is specifically defined and is between 0.2 and 0.5.
  • the output area of this known screwdriver insert is specially designed for engagement with a screw.
  • ribs arranged in a cross shape are provided, which engage with a Phillips screw to step. These ribs result in a much higher torsional strength in the output area than in the area of the twistable zone.
  • Torque peaks therefore only cause torsion of the twistable zone with a circular cross section, while the transition zone remains practically undeformed.
  • the length of the transition zone depends on the dimensions of the screwdriver bit, the axial dimension of which is defined by standards.
  • the axial length of the transition zone becomes greater the smaller the diameter of the circular cross section of the torsion section which influences the torsional behavior.
  • the elastic return angle of the screwdriver insert which is characteristic of the torsional behavior, is proportional to the length of the torsional section and inversely proportional to the polar moment of inertia. The latter depends on the fourth power of the diameter of the torsion area. Because of these relationships, it can be seen that a favorable torsional behavior of the screwdriver insert can only be set to a limited extent.
  • the diameter of the torsion section In order to achieve a larger elastic return angle, the diameter of the torsion section must be reduced, which, as shown above, enlarges the transition zone adjoining the output region, that is to say it experiences a greater axial expansion. However, this shortens the torsion cut. To at To allow this known screwdriver insert the elastic absorption of higher torques, the diameter of the torsion section must be reduced. This increases the risk that the screwdriver bit will no longer have the necessary shear strength against torque peaks. The maximum achievable return angle of the tool insert can therefore only be varied within a narrow range.
  • An embodiment of the screwdriver insert is preferred in which the maximum diameter of the profile of the torsion area increases from the driven area to a vertex and then decreases in the direction of the driven area. In the vicinity of the screw, this results in a high strength of the screwdriver insert, so that damage to the output area can be reliably avoided even with torque peaks.
  • a section of the torsion area then adjoins this relatively torsionally rigid area, the torsibility of which increases more and more with decreasing maximum diameter.
  • the torsion behavior of the screwdriver insert can be influenced directly by the choice of the profile, so that the desired damping properties and a predetermined return angle can be specified.
  • screwdriver insert which is characterized in that the maximum diameter of the torsion area changes continuously. In this way, the loads on the screwdriver bit occurring at torque peaks can be distributed over its length in such a way that shearing off can be avoided with a high degree of certainty.
  • an embodiment of the screwdriver insert is preferred which is provided with a profiling for use in connection with Phillips screws, which profile comprises ribs arranged in a cross shape. This profiling is continued starting from the output region of the insert in the direction of its drive region, so that the torsion region of the insert adjoining the output region is provided with an identical profile as in the output region.
  • a screwdriver insert is therefore relatively easy to manufacture.
  • the design of the screwdriver bit is basically freely selectable, in particular the output area can be adapted to different screw types.
  • the screwdriver insert is only explained by way of example using an insert which is specially designed for Phillips screws.
  • FIG. 1 shows a screwdriver insert 1, one end of which is referred to as the output region 3 can be brought into engagement with a screw, here with a Phillips screw. Its opposite end, referred to as drive area 5, is assigned to a drive device (not shown here) of a screw machine and is designed as an external hexagon in accordance with the DIN standard applicable to screwdriver bits of the type described here. In the front section of the drive area 5, conventional notches 7 are provided, which are used to fasten the screwdriver bit 1 in the drive device or in a tool holder.
  • the drive area 5 merges via a conical step 9 into an intermediate area which serves as the torsion area 11 of the screwdriver bit 1.
  • the output area 3 of the screwdriver bit 1 is provided with a profile, the shape of which is adapted to the screw assigned to the screwdriver bit.
  • Four cross-shaped ribs 13 are provided here, which in the driven area, or are designed and arranged in the engagement area with the screw in accordance with the associated DIN standard.
  • the profiling provided in the output region 3 extends over practically the entire axial extent of the torsion region 11. This means that the torsion area of the screwdriver bit 1 is profiled up to the immediate vicinity of step 9.
  • the fact that the profiling is continued from the driven area 3 to the torsion area 11 means that the screwdriver bit 1 can be produced relatively easily.
  • the shape of the torsion area can be selected independently of the shape of the output area 3.
  • FIG. 1 shows that the maximum diameter of the torsion region 11 or its outer diameter increases up to an apex 15 and then decreases in the direction of the drive region 5. Accordingly, the height of the ribs 13 increases not only in the output region 3 but also in the section of the torsion region 11 immediately adjoining it, until a maximum height is reached in the apex 15 in the vicinity of the apex 15. Then the height of the ribs 13 decreases towards the drive area 5. Finally, the ribs run out in the vicinity of step 9, so that a circular cross section of the torsion region 11 results in the immediate vicinity of this step.
  • the width of the ribs in the output area is designed in accordance with the DIN standard. It increases in the torsion area 11. The maximum width is reached where the ribs merge with the surface of the circular-cylindrical torsion area.
  • the length of the torsion area 11 and output area 3, measured from step 9, is designated with L, the length of the output area 3 alone with A and that of the profiled torsion area 11 with B.
  • the last, not profiled here Section of the torsion area 11 is marked with C, the outer diameter measured here with D.
  • the shape of the ribs 13 forming the profile and that of the grooves 17 lying in between result from the cross section shown in FIG. 2 through the screwdriver insert 1.
  • the illustration shows particularly clearly that the ribs 13 are arranged in a cross shape, with their imaginary central axes connect an angle of 90 ° to each other.
  • the cross-sectional shape or the profile of the screwdriver bit 1 results from an imaginary circle K1 with a diameter da, which is shown in broken lines in FIG.
  • the grooves 17 are made so deep in the screwdriver insert that an inner non-profiled area with an imaginary circle K2 results, which is also shown in broken lines in FIG. 2 and has a diameter di.
  • the sole of the grooves is V-shaped in accordance with the DIN standard, the two side regions of the sole enclosing an angle that is greater than the angle that the side flanks 19 of the ribs 13 adjoining the sole enclose. It can thus be seen that the width of the ribs decreases from the sole to its outer end region enclosed by the imaginary circle K1.
  • the screwdriver bit 1 is usually made of tough, hard tool steel.
  • the profiling is preferably produced by cold working, the grooves 17 being pressed into a cylindrical blank, the ribs 13 being formed. Cold forming thus results in a practically constant cross-sectional area in the torsion region 11 of the screwdriver insert 1, while the profile or the maximum outer diameter of the insert changes in accordance with the explanations for FIG. 1: the diameter increases, seen from the tip of the tool, to Crest 15 to lose weight from there.
  • the profiling extends practically over the entire length of the torsional region 11.
  • the height of the ribs 13 and the depth of the grooves 17 change continuously, the ribs and grooves ending in a cylindrical section in the end section of the torsion region 11.
  • the polar torsional moment of the screwdriver insert is increased by the special shape of the torsion area, i.e. by the choice of a cross-sectional shape deviating from a circle.
  • the continuously changing profile prevents sudden changes in the polar moment of inertia and thus the torsional behavior of the screwdriver bit. Rather, practically the entire length of the torsion region 11 between the output region 3 and the drive region 5 is used for the elastic interception of torque peaks, a defined torsional behavior being adjustable in all axial sections of the torsion region due to the special shape.
  • the dimensions measured in the axial direction are substantially extended Torsional range, the torsional behavior of which can be predetermined by the choice of the cross-sectional shape.
  • the entire torsion area 11 lying between the output area 3 and the drive area 5 is twisted or twisted.
  • the torsion occurring at a given torque and, on the other hand, the resetting behavior of the screwdriver insert, that is to say, for example its reversing angle of rotation can be predetermined.
  • the back rotation angle of the insert can be adjusted by the choice of the profile of the torsion area. In particular, it is achieved that when a growing torque is applied, the resulting torsion angle, as in conventional screwdriver bits, initially increases more or less linearly, but then - before reaching the shear point - an essentially continuous or constant return angle of rotation is set.
  • Screwdriver bits of the type described here are manufactured in three standard sizes in accordance with the DIN standard, the following length dimensions being shown in FIG. 1 (the values given here were chosen as examples).
  • the ratio of the length A of the output region 3 measured in the axial direction to the remaining length of the profiled section of the torsion region 11, which is calculated from the difference B minus C, is approximately 0.36 to 0.8; however, ratio values in a range from approximately 0.28 to 0.9 can be achieved. It can be seen from this that the profiling extends practically over the entire axial length B of the torsion area 11, starting from the driven area 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Transplanting Machines (AREA)
  • Inorganic Insulating Materials (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

Es wird ein Schraubendrehereinsatz (1) vorgeschlagen, der an seinem einem Ende einen mit einer Schraube in Eingriff bringbaren Abtriebsbereich (3) aufweist, an seinem gegenüberliegenden Ende einem eine Antriebseinrichtung einer Werkzeugmaschine zuordenbaren Antriebsbereich (5) und einen zwischen diesen Enden angeordneten, eine tordierbare Zone umfassenden Zwischenbereich aufweist. Der Schraubendrehereinsatz (1) zeichnet sich dadurch aus, daß der Zwischenbereich von dem Abtriebsbereich (3) bis zum Antriebsbereich (5) als Torsionsbereich (11) ausgebildet ist und daß sich das Profil des Torsionsbereichs praktisch über dessen gesamte Länge vorzugsweise kontinuierlich ändert. <IMAGE>

Description

  • Die Erfindung betrifft einen Schraubendrehereinsatz gemäß Oberbegriff des Anspruchs 1.
  • Schraubendrehereinsätze der hier angesprochnen Art werden in Verbindung mit eine Antriebseinrichtung aufweisenden Werkzeugen verwendet, wobei der Antriebsbereich des Schraubendrehereinsatzes in eine geeignete Aufnahme des Werkzeugs, beispielsweise in ein Maschinenfutter, einsteckbar ist. Für verschiedene Anwendungsbereiche können unterschiedliche Schraubwerkzeugeinsätze verwendet werden. Einsätze der hier angesprochenen Art zeichnen sich durch eine tordierbare Zone aus, die dazu dient, bei der Verwendung des Schraubwerkzeugeinsatzes auftretende Drehmomentspitzen elastisch federnd abzufangen. Das heißt, bei einem plötzlichen Anstieg des Antriebsmoments oder bei einem mehr oder weniger abrupten Abbremsen der Schraube auftretende Drehmomentspitzen werden durch eine entsprechend starke Torsion der tordierbaren Zone abgefangen, so daß einerseits Beschädigungen der Schraube vermieden werden, so daß diese problemlos später herausgeschraubt werden kann. Andererseits werden Schäden im Abtriebsbereich, beziehungsweise am Wirkstelleneingriff des Schraubendreheinsatzes vermieden. Schließlich reduzieren sich aufgrund der elastischen Torsion nachteilige Wirkungen auf die Antriebseinrichtung beziehungsweise die Verbindung zwischen dieser und dem Antriebsbereich des Werkzeugeinsatzes.
  • Es sind Schraubendrehereinsätze bekannt (DE-OS 22 31 949) bei denen die tordierbare Zone als Sollbruchstelle ausgelegt ist, die bei Erreichen eines vorgebbaren Soll-Drehmoments abgeschert wird. Derartige Einsätze sind lediglich als Einwegartikel ausgelegt und nicht universell einsetzbar. Bei einem weiteren bekannten Schraubendrehereinsatz (DE 39 07 567 C2) sollen die oben beschriebenen Nachteile dadurch vermieden werden, daß zwischen Abtriebs- und Antriebsbereich eines Schraubendreheinsatzes ein Torsionsabschnitt vorgesehen ist, der bei Drehmomentbelastung elastisch tordierbar ist und damit als Dämpfungselement wirkt. Bei Verwendung dieses Einsatzes auftretende Drehmomentspitzen führen zu keiner Verformung des Abtriebsbereichs, sondern bewirken eine elastische Verdrillung beziehungsweise Torsion. Bei diesem bekannten Schraubendrehereinsatz zeichnet sich der Torsionsabschnitt durch einen über dessen gesamte Länge konstanten kreisförmigen Querschnitt aus. Das Verhältnis von Durchmesser zu Länge des Torsionsabschnitts ist speziell definiert und liegt zwischen 0,2 und 0,5.
  • Der Abtriebsbereich dieses bekannten Schraubendrehereinsatzes ist für den Eingriff in eine Schraube speziell ausgebildet. Beispielsweise sind am Ende des Werkzeugeinsatzes kreuzförmig angeordnete Rippen vorgesehen, die in Eingriff mit einer Kreuzschlitzschraube treten. Aufgrund dieser Rippen ergibt sich im Abtriebsbereich eine wesentlich höhere Torsionsfestigkeit als im Bereich der tordierbaren Zone. Dies gilt auch für einen sich an den Abtriebsbereich anschließenden Übergangsbereich, in dem die im Abtriebsbereich vorgesehenen Rippen auslaufen. Drehmomentspitzen bewirken daher ausschließlich eine Torsion der tordierbaren Zone mit kreisförmigen Querschnitt, während die Übergangszone praktisch unverformt bleibt. Die Länge der Übergangszone hängt von den Dimensionen des Schraubendreheinsatzes ab, dessen axiale Abmessung durch Normen festgelegt ist. Die axiale Länge der Übergangszone wird um so größer, je kleiner der das Torsionsverhalten beeinflussende Durchmesser des kreisförmigen Querschnitts des Torsionsabschnitts ist. Es ist bekannt, daß der für das Torsionsverhalten charakteristische elastische Rückstellwinkel des Schraubendrehereinsatzes proportional zur Länge des Torsionsabschnitts und umgekehrt proportional zu dem polaren Trägheitsmoment ist. Letztes hängt von der vierten Potenz des Durchmessers des Torsionsbereichs ab. Aufgrund dieser Zusammenhänge ergibt sich, daß ein günstiges Torsionsverhalten des Schraubendrehereinsatzes nur bedingt einstellbar ist. Um einen größeren elastischen Rückstellwinkel zu erreichen, muß der Durchmesser des Torsionsabschnitts verkleinert werden, wodurch, wie oben dargestellt, sich die an den Abtriebsbereich anschließende Übergangszone vergrößert, das heißt, eine größere axiale Ausdehnung erfährt. Dadurch verkürzt sich jedoch der Torsionsanschnitt. Um bei diesem bekannten Schraubendrehereinsatz die elastische Aufnahme höherer Drehmomente zu ermöglichen, muß also der Durchmesser des Torsionsabschnitts verkleinert werden. Dies erhöht die Gefahr, daß der Schraubendrehereinsatz schließlich nicht mehr die notwendige Abscherfestigkeit gegen Drehmomentspitzen aufweist. Der maximal erreichbare Rückstellwinkel des Werkzeugeinsatzes kann daher nur in einem engen Rahmen variiert werden.
  • Es ist daher Aufgabe der Erfindung, einen Schraubendrehereinsatz zu schaffen, der bei einer hohen Abscherfestigkeit gegen Drehmomentspitzen ein in einem weiten Bereich einstellbares Torsionsverhalten zeigt.
  • Diese Aufgabe wird bei einem Schraubendrehereinsatz der eingangs genannten Art mit Hilfe der in Anspruch 1 aufgeführten Merkmale gelöst. Dadurch, daß der zwischen Abtriebsbereich und Antriebsbereich des Schraubendrehereinsatzes liegende Zwischenbereich als Torsionsbereich ausgebildet ist, dessen Profil sich praktisch über die gesamte Länge ändert, kann das Torsionsverhalten des Schraubendreheinsatzes auch bei einer aufgrund von DIN-Normen festgelegten Länge in einem weiten Rahmen verändert werden. Durch das variable Profil des Torsionsbereichs und des sich daraufhin ändernden polaren Trägheitsmoments kann die elastische Verdrillung beziehungsweise Torsion des Schraubendrehereinsatzes zwischen dem mit einer Schraube in Eingriff stehenden Abtriebsbereich und dem mit einer Antriebseinrichtung einer Werkzeugmaschine zusammenwirkenden Antriebsbereich eingestellt werden.
  • Bevorzugt wird eine Ausführungsform des Schraubendrehereinsatzes, bei dem sich der maximale Durchmesser des Profils des Torsionsbereichs ausgehend vom Abtriebsbereich bis zu einem Scheitel vergrößert und anschließend in Richtung auf den Abtriebsbereich abnimmt. In der Nähe zur Schraube ergibt sich dadurch eine hohe Festigkeit des Schraubendrehereinsatzes, so daß Beschädigungen des Abtriebbereichs auch bei Drehmomentspitzen sicher vermieden werden. An diesen relativ drehstarren Bereich schließt sich dann ein Abschnitt des Torsionsbereichs an, dessen Tordierbarkeit mit abnehmendem maximalem Durchmesser mehr und mehr zunimmt. Das Torsionsverhalten des Schraubendrehereinsatzes kann unmittelbar durch die Wahl des Profils beeinflußt werden, so daß die gewünschten Dämpfungseigenschaften und ein vorgegebener Rückstellwinkel vorgebbar sind.
  • Bevorzugt wird weiterhin eine Ausführungsform des Schraubendrehereinsatzes, der sich dadurch auszeichnet, daß sich der maximale Durchmesser des Torsionsbereichs stetig ändert. Auf diese Weise lassen sich die bei Drehmomentspitzen auftretenden Belastungen des Schraubendrehereinsatzes über dessen Länge so verteilen, daß ein Abscheren mit hoher Sicherheit vermieden werden kann.
  • Bevorzugt wird weiterhin eine Ausführungsform des Schraubendrehereinsatzes, die sich dadurch auszeichnet, daß der Torsionsbereich durch Kaltverformung hergestellt ist. Dadurch läßt sich einerseits eine sehr hohe Festigkeit des Werkzeugeinsatzes bei einer optimalen Zähigkeit erreichen, so daß Schäden an dem Einsatz mit hoher Warscheinlichkeit ausgeschlossen sind.
  • Insbesondere wird ein Ausführungsbeispiel des Schraubendrehereinsatzes bevorzugt, der für die Verwendung im Zusammenhang mit Kreuzschlitzschrauben mit einer Profilierung versehen ist, die kreuzförmig angeordnet Rippen umfaßt. Diese Profilierung wird ausgehend von den Abtriebsbereich des Einsatzes in Richtung zu dessen Antriebsbereich fortgesetzt, so daß der sich an den Abtriebsbereich anschließende Torsionsbereich des Einsatzes mit einer identischen Profilierung wie im Abtriebsbereich versehen ist. Ein derartig ausgestalteter Schraubendrehereinsatz ist daher relativ einfach herstellbar.
  • Weitere Ausgestaltungen des Einsatzes ergeben sich aus den übrigen Unteransprüchen.
  • Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Es zeigen:
  • Figur 1
    eine Seitenansicht eines Schraubendrehereinsatzes und
    Figur 2
    einen Querschnitt durch den Schraubendrehereinsatz.
  • Die Ausgestaltung des Schraubendrehereinsatzes ist grundsätzlich frei wählbar, insbesondere kann der Abtriebsbereich an verschiedene Schraubentypen angepaßt werden. Im nachfolgenden wird der Schraubendrehereinsatz lediglich beispielhaft anhand eines Einsatzes erläutert, der für Kreuzschlitzschrauben speziell ausgebildet ist.
  • Figur 1 zeigt einen Schraubendrehereinsatz 1, dessen eines als Abtriebsbereich 3 bezeichnetes Ende mit einer Schraube, hier mit einer Kreuzschlitzschraube, in Eingriff bringbar ist. Sein gegenüberliegendes als Antriebsbereich 5 bezeichnetes Ende ist einer hier nicht dargestellten Antriebseinrichtung einer Schraubenmaschine zugeordnet und entsprechend der für Schraubendrehereinsätze der hier beschriebenen Art geltenden DIN-Norm als Außensechskant ausgebildet. Im vorderen Abschnitt des Antriebsbereichs 5 sind übliche Kerben 7 vorgesehen, die der Befestigung des Schraubendrehereinsatzes 1 in der Antriebseinrichtung beziehungsweise in einer Werkzeugaufnahme dienen.
  • Der Antriebsbereich 5 geht über eine hier konisch ausgebildete Stufe 9 in einen Zwischenbereich über, der als Torsionsbereich 11 des Schraubendrehereinsatzes 1 dient.
  • Der Abtriebsbereich 3 des Schraubendrehereinsatzes 1 ist mit einer Profilierung versehen, deren Form an die dem Schraubendrehereinsatz zugeordnete Schraube angepaßt ist. Hier sind vier kreuzförmig angeordnete Rippen 13 vorgesehen, die im Abtriebsbereich, beziehungsweise im Eingriffsbereich mit der Schraube entsprechend der zugehörigen DIN-Norm ausgebildet und angeordnet sind.
  • Aus Figur 1 ist ersichtlich, daß sich hier die im Abtriebsbereich 3 vorgesehene Profilierung bis über praktisch die gesamte axiale Ausdehnung des Torsionsbereichs 11 erstreckt. Das heißt, auch der Torsionsbereich des Schraubendrehereinsatzes 1 ist bis in die unmittelbare Nähe der Stufe 9 profiliert.
  • Dadurch, daß die Profilierung vom Abtriebsbereich 3 bis in den Torsionsbereich 11 fortgesetzt wird, ist der Schraubendrehereinsatz 1 relativ einfach herstellbar. Es ist jedoch festzuhalten, daß die Formgebung des Torsionsbereichs unabhängig von der Form des Abtriebsbereichs 3 gewählt werden kann.
  • Figur 1 läßt erkennen, daß der maximale Durchmesser des Torsionsbereichs 11 beziehungsweise dessen Außendurchmesser bis zu einem Scheitel 15 zunimmt und von da an in Richtung auf den Antriebsbereich 5 abnimmt. Entsprechend nimmt die Höhe der Rippen 13 nicht nur im Abtriebsbereich 3 sondern auch in dem sich unmittelbar daran anschließenden Abschnitt des Torsionsbereichs 11 zu, bis im Scheitel 15 in der Nähe des Scheitels 15 eine Maximalhöhe erreicht ist. Anschließend nimmt die Höhe der Rippen 13 zum Antriebsbereich 5 hin ab. Schließlich laufen die Rippen in der Nähe der Stufe 9 aus, so daß sich hier in unmittelbarer Nähe dieser Stufe ein kreisförmiger Querschnitt des Torsionsbereichs 11 ergibt.
  • Die Breite der Rippen ist im Abtriebsbereich entsprechend der DIN-Norm ausgebildet. Sie nimmt im Torsionsbereich 11 zu. Dort, wo die Rippen in die Oberfläche des kreiszylindrisch ausgebildeten Torsionsbereichs übergehen, ist die maximale Breite erreicht.
  • Entsprechend ergibt sich für die Tiefe der zwischen den Rippen 13 vorgesehenen -aus Figur 2 deutlich ersichtlichen- Nuten 17 folgendes: Sie nimmt ausgehend von der Spitze des Schraubendrehereinsatzes bis zum Scheitel 15 zu, um von da aus in Richtung zum Antriebsbereich 5 abzunehmen. Auch die Höhe der Rippen verhält sich entsprechend, sie ist also im Bereich des Scheitels 15 am größten und nimmt sowohl in Richtung zum Antriebsbereich 5 als auch in Richtung zum Abtriebsbereich 3.
  • Bei dem in Figur 1 dargestellten Ausführungsbeispiel ist die Länge von Torsionsbereich 11 und Abtriebsbereich 3, gemessen ab der Stufe 9, mit L bezeichnet, die Länge des Abtriebsbereichs 3 allein mit A und die des profilierten Torsionsbereichs 11 mit B. Der letzte, hier nicht profilierte Abschnitt des Torsionsbereichs 11 ist mit C gekennzeichnet, der hier gemessene Außen-Durchmesser mit D.
  • Die Form der die Profilierung bildenden Rippen 13 und die der dazwischen liegenden Nuten 17 ergibt sich aus dem in Figur 2 wiedergegebenen Querschnitt durch den Schraubendrehereinsatz 1. Die Darstellung zeigt besonders deutlich, daß die Rippen 13 kreuzförmig angeordnet sind, wobei ihre gedachten Mittelachsen jeweils einen Winkel von 90° zueinander anschließen. Der Querschnittsform beziehungsweise das Profil des Schraubendrehereinsatzes 1 ergibt sich durch einen gedachten Kreis K1 mit einem Durchmesser da, der in Figur 2 gestrichelt eingezeichnet ist. Die Nuten 17 sind so tief in den Schraubendrehereinsatz eingebracht, daß sich ein innerer nicht profilierter Bereich mit einem gedachten Kreis K2 ergibt, der in Figur 2 ebenfalls gestrichelt eingezeichnet ist und einen Durchmesser di aufweist. Die Sohle der Nuten ist -entsprechend der DIN-Norm- V-förmig ausgebildet, wobei die beiden Seitenbereiche der Sohle einen Winkel einschließen, der größer ist, als der Winkel, den die sich an die Sohle anschließenden Seitenflanken 19 der Rippen 13 einschließen. Es zeigt sich also, daß die Breite der Rippen von der Sohle zu deren äußerem vom gedachten Kreis K1 umschlossenen Endbereich abnimmt.
  • Der Schraubendrehereinsatz 1 wird üblicherweise aus zäh-hartem Werkzeug-Stahl hergestellt. Die Profilierung wird vorzugsweise durch Kaltverformung hergestellt, wobei in einen zylindrischen Rohling die Nuten 17 eingepreßt werden, wobei die Rippen 13 entstehen. Bei der Kaltverformung ergibt sich somit eine praktisch gleichbleibende Querschnittsfläche im Torsionsbereich 11 des Schraubendrehereinsatzes 1, während sich das Profil beziehungsweise der maximale Außen-Durchmesser des Einsatzes entsprechend den Erläuterungen zu Figur 1 ändert: Der Durchmesser nimmt, von der Spitze des Werkzeugs gesehen, bis zum Scheitel 15 zu, um von da abzunehmen.
  • Schließlich ergibt sich ein Durchmesser D im letzten Abschnitt C des Torsionsbereichs 1, der unmittelbar an den Antriebsbereich 5 angrenzt.
  • Für das gewünschte Torsionsverhalten des Schraubendrehereinsatzes 1 ist es wesentlich, daß die Profilierung sich praktisch über die gesamte Länge des Torsionsbereichs 11 erstreckt. Dabei ändert sich die Höhe der Rippen 13 beziehungsweise die Tiefe der Nuten 17 kontinuierlich, wobei die Rippen und Nuten im Endabschnitt des Torsionsbereichs 11 in einem zylindrischen Abschnitt auslaufen.
  • Durch die spezielle Formgebung des Torsionsbereichs, also durch die Wahl einer von einem Kreis abweichenden Querschnittsform wird das polare Trägheitsmoment des Schraubendrehereinsatzes erhöht. Durch das sich kontinuierlich ändernde Profil werden sprunghafte Änderungen des polaren Trägheitsmoments und damit des Torsionsverhaltens des Schraubendrehereinsatzes vermieden. Vielmehr wird praktisch die gesamte Länge des Torsionsbereichs 11 zwischen dem Abtriebsbereich 3 und dem Antriebsbereich 5 für das elastische Abfangen von Drehmomentspitzen ausgenutzt, wobei in allen axialen Abschnitten des Torsionsbereichs aufgrund der speziellen Formgebung ein definiertes Torsionsverhalten einstellbar ist.
  • Gegenüber herkömmlichen Schraubendrehereinsätzen, deren Länge durch DIN-Normen festgelegt ist, ergibt sich bei gleichen in axialer Richtung gemessenen Abmessungen eine wesentliche Verlängerung des Torsionsbereichs, dessen Torsionsverhalten durch die Wahl der Querschnittsform vorgebbar ist.
  • Bei der Verwendung des hier beschriebenen Schraubendrehereinsatzes findet eine elastische Verdrillung beziehungsweise Torsion des gesamten zwischen dem Abtriebsbereich 3 und dem Antriebsbereich 5 liegenden Torsionsbereichs 11 statt. Dabei sind einerseits die bei einem gegebenen Drehmoment auftretende Torsion und andererseits das Rückstellverhalten des Schraubendrehereinsatzes, das heißt, zum Beispiel dessen Rück-Drehwinkel, vorherbestimmbar. Insbesondere kann der Rück-Drehwinkel des Einsatzes durch die Wahl des Profils des Torsionsbereichs eingestellt werden. Dabei wird insbesondere erreicht, daß bei Anlegen eines wachsenden Drehmoments der sich einstellende Torsionswinkel, wie bei herkömmlichen Schraubendrehereinsätzen, zunächst mehr oder weniger linear zunimmt,jedoch dann -vor Erreichen des Abscherpunktes- ein im wesentlichen kontinuierlicher beziehungweise gleichbleibender Rück-Drehwinkel einstellt.
  • Gleichzeitig mit dem verbesserten Torsionsverhalten wird eine erhöhte Widerstandsfähigkeit gegen Abscheren erreicht.
  • Aus dem oben Gesagten ergibt sich, daß es besonders vorteilhaft ist, wenn die im Abtriebsbereich 3 vorgesehene Form beziehungsweise das Profil sich bis in den Torsionsbereich 11 erstreckt, da auf diese Weise eine relativ einfache Herstellung möglich ist. Anhand der Figuren 1 und 2 wurde erläutert, daß die kreuzweise angeordneten Rippen beziehungsweise Nuten ausgehend vom Abtriebsbereich 3 sich bis praktisch über den gesamten Torsionsbereich 11 erstrecken. Das heißt, die ohnehin zwingend erforderliche Formgebung im Abtriebsbereich kann bis in den Torsionsbereich fortgesetzt werden, so daß die Herstellung relativ einfach ist. Überdies ergibt sich durch die kontinuierliche Profilierung ein besonders guter Kraftfluß innerhalb des Schraubendrehereinsatzes. Bei der oben erwähnten Herstellung durch Kaltverformung bleibt der Flächeninhalt des Querschnitts über den gesamten Torsionsbereich 11 konstant, so daß das Torsionsverhalten beziehungsweise der sich ergebende Rück-Drehwinkel besonders exakt vorherbestimmbar sind.
  • Schraubendrehereinsätze der hier beschriebenen Art werden entsprechend der DIN-Norm in drei Standardgrößen hergestellt, wobei sich die folgenden Längenabmessungen gemäß Figur 1 ergeben (die hier angegebenen Werte wurden beispielhaft gewählt). Für die Größe PH1: L = 15mm; A = 3,55mm; C = 1,5mm; D = 3,6mm; für die Größe PH2: L = 15,3mm; A = 4,5mm; B = 10,8mm; C = 1,5mm; D = 4,5mm; für die Größe PH3: L = 14,8mm; A = 6,0mm; B = 8,8mm; C = 1,3mm; D = 5,7mm.
  • Aus diesen Angaben ist ohne weiteres ersichtlich, daß sich für das Verhältnis der in axialer Richtung gemessenen Länge A des Abtriebsbereichs 3 zur übrigen Länge des profilierten Teilstücks des Torsionsbereichs 11, die sich aus der Differenz B minus C errechnet, ein Wert von etwa 0,36 bis 0,8 ergibt; es sind jedoch Verhältniswerte in einem Bereich von etwa 0,28 bis 0,9 realisierbar. Daraus ist erkennbar, daß sich die Profilierung ausgehend vom Abtriebsbereich 3 praktisch über die gesamte axiale Länge B des Torsionsbereichs 11 erstreckt.
  • Insgesamt ist festzuhalten, daß bei dem hier beschriebenen Schraubendrehereinsatz die bislang vom Abtriebsbereich durch einen Übergangsbereich abgegrenzte tordierbare Zone aufgegeben wurde zu Gunsten eines Torsionsbereichs, der sich unmittelbar an den Abtriebsbereich beziehungsweise an den als Wirkstellenbereich bezeichneten Eingriffsabschnitt mit einer Schraube anschließt. Dabei wird eine im Abtriebsbereich vorgesehene Profilierung praktisch über den gesamten Torsionsbereich fortgesetzt, wodurch -entgegen herkömmlichen Erwartungen- das Torsionsverhalten dieses Bereichs keinesfalls verschlechtert wurde. Vielmehr kann ein exaktes Torsions- beziehungweise Rückstellverhalten des Werkzeugs bei erhöhter Abscherwiderstandskraft eingestellt werden. Dabei ist es wesentlich, daß die sich durch die Profilierung des Torsionsbereichs ergebende Querschnittsform -beziehungsweise der mit da gekennzeichnete Durchmesser des in Figur 2 angesprochenen Kreises K1- dieses Werkzeugabschnitts kontinuierlich ändert, so daß eine sprunghafte Änderung des polaren Trägheitsmoments zwischen Abtriebsbereich und Antriebsbereich vermieden wird.

Claims (11)

  1. Schraubendrehereinsatz, der an seinem einen Ende einen mit einer Schraube in Eingriff bringbaren Abtriebsbereich, an seinem gegenüberliegenden Ende einen einer Antriebseinrichtung zuordenbaren Abtriebsbereich und einen zwischen den Enden angeordneten, eine tordierbare Zone umfassenden Zwischenbereich aufweist, dadurch gekennzeichnet, daß der Zwischenbereich von dem Abtriebsbereich (3) bis zum Antriebsbereich (5) als Torsionsbereich (11) ausgebildet ist und daß sich das Profil des Torsionsbereichs praktisch über dessen gesamte Länge (B) ändert.
  2. Schraubendreheinsatz nach Anspruch 1, dadurch gekennzeichnet, daß der maximale Durchmesser des Profils des Torsionsbereichs (11) ausgehend von dem Abtriebsbereich (3) bis zu einem Scheitel (15) zunimmt und von da in Richtung auf den Antriebsbereich (5) abnimmt.
  3. Schraubendrehereinsatz nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sich das Profil des Torsionsbereichs (11) stetig ändert.
  4. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Querschnittsform des Torsionsbereichs (11) mit zunehmendem maximalem Durchmesser des Profils mehr und mehr von der Kreisform abweicht.
  5. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Querschnittsfläche des Torsionsbereichs (11) über dessen Länge im wesentlichen konstant bleibt.
  6. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest der Torsionsbereich (11) durch Kaltverformung hergestellt ist.
  7. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Querschnittsform des Torsionsbereichs (11) zumindest an seinem dem Abtriebsbereich (3) zugewandten Ende der Querschnittsform des Abtriebsbereichs entspricht.
  8. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Abtriebsbereich (3) zum Eingriff in Kreuzschlitzschrauben mit einer kreuzförmig angeordnete Rippen (13) umfassenden Profilierung versehen ist.
  9. Schraubendrehereinsatz nach Anspruch 8, dadurch gekennzeichnet, daß sich die Breite und Höhe der Rippen (13) über die Länge des Torsionsbereichs (11) -vorzugsweise stetig- ändert.
  10. Schraubendrehereinsatz nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Rippen (13) durch Nuten (17) voneinander getrennt sind, deren Tiefe und Breite sich über die Länge des Torsionsbereichs (11) ändert.
  11. Schraubendrehereinsatz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Verhältnis der Länge des Abtriebsbereichs (3) zur Länge des Teilstücks, in dem sich der maximale Durchmesser des profilierten Teilstücks des Torsionsbereichs (11) vermindert, in einem Bereich von etwa 0,36 bis etwa 0,8 liegt.
EP94100775A 1993-02-10 1994-01-20 Schraubendrehereinsatz Expired - Lifetime EP0610693B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4303891A DE4303891A1 (de) 1993-02-10 1993-02-10 Schraubendrehereinsatz
DE4303891 1993-02-10

Publications (2)

Publication Number Publication Date
EP0610693A1 true EP0610693A1 (de) 1994-08-17
EP0610693B1 EP0610693B1 (de) 1996-11-13

Family

ID=6480085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94100775A Expired - Lifetime EP0610693B1 (de) 1993-02-10 1994-01-20 Schraubendrehereinsatz

Country Status (4)

Country Link
EP (1) EP0610693B1 (de)
AT (1) ATE145166T1 (de)
DE (2) DE4303891A1 (de)
ES (1) ES2095685T3 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955418B2 (en) 2013-03-08 2015-02-17 Black & Decker Inc. Threaded fastener driving tool
US9849570B2 (en) 2008-11-07 2017-12-26 Milwaukee Electric Tool Corporation Tool bit
US10022845B2 (en) 2014-01-16 2018-07-17 Milwaukee Electric Tool Corporation Tool bit
USD921468S1 (en) 2018-08-10 2021-06-08 Milwaukee Electric Tool Corporation Driver bit
US11638987B2 (en) 2017-12-01 2023-05-02 Milwaukee Electric Tool Corporation Wear resistant tool bit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4339991C2 (de) * 1993-11-24 1996-07-25 Hahn Willi Gmbh Schraubendrehereinsatz
DE29621782U1 (de) * 1996-12-16 1998-04-09 Werner Hermann Wera Werke Schraubendrehereinsatz
AU721961B2 (en) * 1998-04-14 2000-07-20 Haddon/Perceptions Pty Ltd Improved torque wrench/tension wrench
DE10349415B4 (de) * 2003-10-21 2007-09-27 Felo-Werkzeugfabrik Holland-Letz Gmbh Verfahren zur Herstellung von Schraubendreher-Einsätzen
USD623036S1 (en) 2008-11-07 2010-09-07 Milwaukee Electric Tool Corporation Insert bit
USD711719S1 (en) 2009-11-06 2014-08-26 Milwaukee Electric Tool Corporation Tool bit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2317319A (en) * 1941-11-14 1943-04-20 Champion Inc Screw driver
DE3907567C2 (de) * 1988-03-10 1991-01-31 Wera Werk Hermann Werner Gmbh & Co, 5600 Wuppertal, De
DE9211907U1 (de) * 1992-02-25 1992-11-26 Ush Schraubwerkzeugfabrik Ulrich Schmidt, 5912 Hilchenbach, De

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231949A1 (de) * 1971-07-26 1973-02-08 Xerox Corp Drehmomentwerkzeug
DE8813187U1 (de) * 1988-10-20 1988-12-08 Felo Holland-Letz Gmbh & Co Kg, 3577 Neustadt, De

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2317319A (en) * 1941-11-14 1943-04-20 Champion Inc Screw driver
DE3907567C2 (de) * 1988-03-10 1991-01-31 Wera Werk Hermann Werner Gmbh & Co, 5600 Wuppertal, De
DE9211907U1 (de) * 1992-02-25 1992-11-26 Ush Schraubwerkzeugfabrik Ulrich Schmidt, 5912 Hilchenbach, De

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849570B2 (en) 2008-11-07 2017-12-26 Milwaukee Electric Tool Corporation Tool bit
US10065294B2 (en) 2008-11-07 2018-09-04 Milwaukee Electric Tool Corporation Tool bit
US11407090B2 (en) 2008-11-07 2022-08-09 Milwaukee Electric Tool Corporation Tool bit
US8955418B2 (en) 2013-03-08 2015-02-17 Black & Decker Inc. Threaded fastener driving tool
US10022845B2 (en) 2014-01-16 2018-07-17 Milwaukee Electric Tool Corporation Tool bit
US11638987B2 (en) 2017-12-01 2023-05-02 Milwaukee Electric Tool Corporation Wear resistant tool bit
US11958168B2 (en) 2017-12-01 2024-04-16 Milwaukee Electric Tool Corporation Wear resistant tool bit
USD921468S1 (en) 2018-08-10 2021-06-08 Milwaukee Electric Tool Corporation Driver bit
USD955843S1 (en) 2018-08-10 2022-06-28 Milwaukee Electric Tool Corporation Driver bit

Also Published As

Publication number Publication date
EP0610693B1 (de) 1996-11-13
ES2095685T3 (es) 1997-02-16
ATE145166T1 (de) 1996-11-15
DE59401007D1 (de) 1996-12-19
DE4303891A1 (de) 1994-08-11

Similar Documents

Publication Publication Date Title
EP1751436B1 (de) Holz- und kunststoffschraube
DE2444899C2 (de) Bohrwerkzeug mit Bohrer und Aufnahmeteil
EP1031741B1 (de) Senkkopfschraube
EP2806174B1 (de) Schraubelement
DE2907360C2 (de) Gewindeformende Schraube und Rohling zu deren Herstellung
DE2754870B2 (de) Selbstfurchende Schraube
DE3805727C2 (de)
EP0610693B1 (de) Schraubendrehereinsatz
DE3907567C2 (de)
EP0939235B1 (de) Schraube
EP0894202B1 (de) Schraube zur befestigung von metall- und/oder kunststoffprofilen oder -platten auf einem unterbau
CH663646A5 (de) Kunststoffspreizduebel.
EP1031742B1 (de) Senkkopfschraube
DE4444467C2 (de) Gewindeschneidschraube
DE3117624A1 (de) Selbstformende universalschraube
EP1165974A1 (de) Senkkopfschraube
EP0336136B2 (de) Schraubendrehereinsatz
AT412643B (de) Hubeinrichtung
DE2365132A1 (de) Befestigungsmittel mit einem sperroder klemmgewinde
EP3477127B1 (de) Schraube zum einschrauben in ein bohrloch
EP2044341A1 (de) Sicherungsmutter
EP3380737B1 (de) Betonschraube
EP0109528B1 (de) Selbstschneidender Gewindeeinsatz
DE3337534C2 (de)
DE2644215C2 (de) Schraube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960402

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19961113

REF Corresponds to:

Ref document number: 145166

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59401007

Country of ref document: DE

Date of ref document: 19961219

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970213

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095685

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ET1 Fr: translation filed ** revision of the translation of the patent or the claims
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980106

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980108

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981211

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981222

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990109

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990112

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990131

BERE Be: lapsed

Owner name: WILLI HAHN G.M.B.H. & CO. K.G.

Effective date: 19990131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980131

Year of fee payment: 4