EP0607446A1 - Agent generateur de gaz pour sacs gonflables - Google Patents
Agent generateur de gaz pour sacs gonflables Download PDFInfo
- Publication number
- EP0607446A1 EP0607446A1 EP93910338A EP93910338A EP0607446A1 EP 0607446 A1 EP0607446 A1 EP 0607446A1 EP 93910338 A EP93910338 A EP 93910338A EP 93910338 A EP93910338 A EP 93910338A EP 0607446 A1 EP0607446 A1 EP 0607446A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas generating
- generating composition
- composition
- nitrogen
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B29/00—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
- C06B29/02—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate of an alkali metal
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B29/00—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
- C06B29/22—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate
Definitions
- This invention relates to an air bag gas generating composition.
- a gas generating composition is ignited, either electrically or mechanically, in an instant on sensing a car crash to thereby inflate the bag with the gas so generated.
- the gas generating composition is generally supplied as molded into a pellet or disk form. It is essential that such a gas generating composition insures an appropriate burning velocity. If the burning velocity is too low, the bag cannot be inflated in an instant so that the system fails to achieve its object.
- the gas generating composition is a powdery composition having the property to get ignited by a shock. Shock ignitability is the sensitivity of a powder to shock ignition and an excessively high shock sensitivity is undesirable from the standpoint of safety because it represents a high risk of explosion in the course of production, e.g. in the mixing stage or in the molding stage. Therefore, shock sensitivity is preferably as low as possible.
- the combustion temperature of the gas generating composition be not too high. This is because, to absorb the shock of a car crash to the driver or passenger and help him to escape, generally the inflated air bag then releases the internal gas to shrink but if the combustion temperature is too high, the released gas is also hot enough to cause the passenger to sustain a burn, perforate the bag to detract from its function, or burn the bag to induce a car fire.
- the known air bag gas generating compositions comprise sodium azide as the gas generating base and certain additives such as an oxidizing agent [e.g. metal oxides such as TiO2, MnO2, Fe2O3, CuO, etc., nitrates such as NaNO3, KNO3, Cu(NO3)2, etc., perchlorates such as KClO4, NaClO4, etc.
- an oxidizing agent e.g. metal oxides such as TiO2, MnO2, Fe2O3, CuO, etc., nitrates such as NaNO3, KNO3, Cu(NO3)2, etc., perchlorates such as KClO4, NaClO4, etc.
- chlorates such as KClO3, NaClO3, etc.], a reducing metal [Zr, Mg, Al, Ti, etc.], a cooling agent [Na2CO3, K2CO3, CaCO3, FeSO4, etc.], a pH control agent [iron sulfate etc.), a mechanical performance agent [MoS2, KBr, graphite, etc.] and so on.
- sodium azide-based gas generating compositions are in common use today partly because the generated gas is nitrogen gas for the most part and partly because they have adequate burning velocities and relatively low combustion temperatures.
- sodium azide has the following disadvantages.
- a nitrogen-containing compound as the base of a gas generating composition.
- a reducing metal such as Zr or Mg
- an oxidizing compound such as potassium perchlorate or potassium chlorate
- the gas generating base smokeless powder, nitrocellulose, azodicarbonamide, aminoguanidine and thiourea
- the burning velocity that can be obtained by the above method is insufficient for practical application to the air bag.
- the mixture of reducing metal and oxidising compound has a very high shock sensitivity, the risk of handling hazards is high. Furthermore, the combustion temperature is also suspected to be too high.
- Japanese Unexamined Patent Publication No. 118979/75 discloses an air bag gas generating composition
- a nitrogen-containing compound such as azodicarbonamide, trihydrazinotriazine or the like and an oxidizing agent such as potassium permanganate, manganese dioxide, barium dichromate, barium peroxide or the like.
- an oxidizing agent such as potassium permanganate, manganese dioxide, barium dichromate, barium peroxide or the like.
- Another object of this invention is to provide an air bag gas generating composition which is either equivalent to or even higher than the sodium azide-based gas generating composition in burning velocity and gas output.
- a still further object of this invention is to provide an air bag gas generating composition which is free from the above-mentioned disadvantages (1) through (6) of the azide compound.
- the inventor of this invention made an extensive exploration to accomplish the above objects with his attention focused on nitrogen-containing compounds which by themselves have very low risks of fire or intoxication hazards due to decomposition or combustion and found that by causing a nitrogen-containing compound to react directly with a defined oxidizing agent, that is a halogen oxo acid salt, taking advantage of the reducing property of the former instead of combusting the nitrogen-containing compound with the heat of a redox reaction, there can be realized not only a shock sensitivity either equivalent to or lower than that of the sodium azide-based gas generating composition but also a burning velocity and a gas output, both of which are either equivalent to or higher than those of said sodium azide-based composition, as well as a practically useful, low combustion temperature.
- a defined oxidizing agent that is a halogen oxo acid salt
- This invention is, therefore, directed to an air bag gas generating composition comprising a nitrogen-containing organic compound and a halogen oxo acid salt.
- a nitrogen-containing compound is used as the gas generation base.
- the nitrogen-containing compound there is no particular limitation on the nitrogen-containing compound only if it is an organic compound containing at least one nitrogen atom within its molecule.
- amino-containing compounds, nitramine-containing compounds and nitrosoamine-containing compounds can be mentioned.
- the amino-containing compounds that can be used are virtually unlimited, thus including azodicarbonamide, urea, aminoguanidine bicarbonate, biuret, dicyandiamide, hydrazides (e.g.
- acetohydrazide 1,2-diacetylhydrazine, laurohydrazide, salicylohydrazide, oxalodihydrazide, carbohydrazide, adipodihydrazide, sebacodihydrazide, dodecanediohydrazide, isophthalohydrazide, methyl carbazate, semicarbazide, formhydrazide, 1,2-diformylhydrazine) and so on.
- nitramine-containing compounds that can be used are also virtually unlimited and include aliphatic and alicyclic compounds containing one or more nitramine groups as substituents, such as dinitropentamethylenetetramine, trimethylenetrinitramine (RDX), tetramethylenetetranitramine (HMX) and so on.
- the nitroamine-containing organic compounds that can be used are also virtually unlimited and include aliphatic and alicyclic compounds containing one or more nitrosoamine groups as substituents, such as dinitrosopentamethylenetetramine (DPT).
- nitrogen-containing compounds azodicarbonamide has been used widely as a resin blowing agent, and being of low fire-causing potential and low toxicity and, hence, least likely to be hazardous, this compound is particularly suitable.
- These nitrogen-containing compounds can be used either alone or in combination.
- commercially available nitrogen-containing compounds can liberally selected form a broad range. Generally, it can be used as they are. There is no limitation on the form or grain size of the nitrogen-containing compound and a suitable one can be selectively employed.
- the oxidizing agent to be used in this invention is a halogen oxo acid salt.
- the halogen oxo acid salt any of the known species can be employed. Preferred are halogenates and perhalogenates and particularly preferred are the corresponding alkali metal salts.
- the alkali metal halogenates include chlorates and bromates such as potassium chlorate, sodium chlorate, potassium bromate and sodium bromate, among others.
- the alkali metal perhalogenates include perchlorates and perbromates such as potassium perchlorate, sodium perchlorate, potassium perbromate and sodium perbromate, among others. These halogen oxo acid salts may be used alone or in combination.
- the amount of the halogen oxo acid salt is generally stoichiometric, that is to say the amount necessary for complete oxidation and combustion of the nitrogen-containing compound based on its oxygen content, but since the burning velocity, combustion temperature and combustion product composition can be freely controlled by varying the ratio of halogen oxo acid salt to nitrogen-containing compound, its amount can be liberally selected from a broad range.
- about 20 - 200 parts by weight, preferably 30 - 200 parts by weight, of the halogen oxo acid salt can be used for each 100 parts by weight of the nitrogen-containing compound.
- the form and grain size of the halogen oxo acid are not particularly critical and can be selected in each case.
- composition of this invention may contain, within the range not affecting its performance characteristics, at least one additive selected from the group consisting of burning control catalysts, antidetonation agents and oxygen donor compounds in addition to said two essential components.
- the combustion control catalyst is a catalyst for adjusting the burning velocity, which is one of the basic performance parameters, according to conditions of the intended application, with safety parameters such as low shock ignition and non-detonation properties and other basic performance parameters such as the gas output being fully retained.
- Such combustion control catalyst includes, among others, the oxides, chlorides, carbonates and sulfates of Group IV or Group VI elements of the periodic table of the elements, cellulosic compounds and organic polymers.
- the oxides, chlorides, carbonates and sulfates of Group IV or VI elements include ZnO, ZnCO3, MnO2, FeCl3, CuO, Pb3O4, PbO2, PbO, Pb2O3, S, TiO2, V2O5, CeO2, Ho2O3, CaO2, Yb2O3, Al2(SO4)3, ZnSO4, MnSO4, FeSO4, etc.
- the cellulosic compounds mentioned above may be reckoned carboxymethylcellulose and its ether, hydroxymethylcellulose and so on.
- the organic polymers mentioned above include, among others, soluble starch, polyvinyl alcohol and its partial saponification product, and so on. These combustion control catalysts can be used alone or in combination.
- the amount of the combustion control catalyst is not critical and can be liberally selected from a broad range. Generally, however, this catalyst is used in a proportion of about 0.1 - 50 parts by weight, preferably about 0.2 - 10 parts by weight, based on 100 parts by weight of the nitrogen-containing compound and halogen oxo acid salt combined.
- the grain size of the combustion control catalyst is not critical and can be appropriately selected.
- the antidetonation agent is added for preventing the detonation which may occur when the gas generating composition is involved in a fire in the course of production, handling or transportation or subjected to an extraordinary impact.
- antidetonation agent eliminates the risk of detonation, the safety of the gas-generating composition in various stages of production, handling and transportation can be further enhanced.
- the antidetonation agent a variety of known substances can be utilized. Thus, for example, oxides such as bentonite, alumina, diatomaceous earth, etc. and carbonates and bicarbonates of metals such as Na, K, Ca, Mg, Zn, Cu, Al, etc. can be mentioned.
- the amount of such antidetonation agent is not critical and can be liberally selected from a broad range. Generally, it can be used in a proportion of about 5 - 30 parts by weight relative to 100 parts by weight of the nitrogen-containing compound and halogen oxo acid salt combined.
- the oxygen donor compound is effective in augmenting the O2 concentration of the combustion product gas liberated from the composition of this invention.
- the oxygen donor compound is not critical in kind and a variety of known substances can be employed. For example, CuO2, K2O4, etc. can be mentioned.
- the amount of the oxygen donor compound is not so critical and can be liberally selected. Generally, however, this donor can be used in a proportion of about 10 - 100 parts by weight based on 100 parts by weight of the nitrogen-containing compound and halogen oxo acid salt combined.
- the composition of this invention may further contain, within the range not affecting its performance characteristics, a combustion temperature control agent and/or a burning velocity control agent.
- the combustion temperature control agent includes the carbonates and bicarbonates of metals such as Na, K, Ca, Mg, etc., among others.
- the burning velocity control agent includes the sulfates of Al, Zn, Mn, Fe, etc., among others.
- the proportion of such combustion temperature control agent and/or burning velocity control agent may generally be about 10 parts by weight, preferably about 5 parts by weight or less, based on 100 parts by weight of the nitrogen-containing compound and halogen oxo acid salt combined.
- composition of this invention may further contain a variety of additives which are commonly used in the conventional air bag gas generating compositions.
- the composition of this invention can be manufactured by blending the above-mentioned components. While the resulting mixture as such can be used as the gas generating composition, it may be provided in the form of aolded composition.
- a molded composition can be manufactured by the conventional procedure.
- the composition of this invention may be mixed with a binder in a suitable ratio and the mixture be molded.
- the binder may be any binder that is routinely employed.
- the form of such molded composition is not critical. Thus, it may be a pellet, disk, ball, bar, hollow cylinder, confetti or tetrapod, for instance. It may be solid or porous (e.g. honeycomb-shaped). It is also possible to process each component into a discrete preparation and mix them in use.
- composition of this invention has the following advantages.
- the nitrogen-containing compound and halogen oxo acid salt, with or without a combustion control catalyst, were blended according to the formulas shown below in Table 1 to provide compositions (No. 1 - No. 17) of this invention.
- each of the above compositions of this invention was compressed at 60 kg/cm2 to prepare pellets (5 mm in diameter and 5.0 mm high) and each pellet sample was subjected to the 7.5-liter bomb test. The results are shown in Table 2.
- CP max represents the maximum pressure (kg/cm2) in the reaction chamber
- W 1/2 represents the time (msec) in which the internal pressure of the chamber travels 1/2 of the maximum pressure
- BP max represents the maximum pressure (kg/cm2) within the bomb
- T90 represents the time (msec) in which the internal pressure of the bomb reaches 90% of the maximum pressure
- BT max represents the maximum temperature (°C) within the bomb.
- T90 is a value simulating the inflation time of the air bag.
- CP max is an index, the values of which indicate that the compositions of this invention retain a satisfactory performance as gas generating compositions.
- W 1/2 is a parameter simulating the burning velocity of the gas generating composition within the chamber.
- BP max is a parameter indicating the gas generating capacity per unit mass of the gas generating composition.
- BT max is a parameter simulating the temperature of the gas in the fully inflated air bag.
- the nitrogen-containing compound and halogen oxo acid salt, with or without the combustion control catalyst, were blended according to the formulas (wt. %) shown below in Table 3 to provide compositions of this invention.
- compositions of this invention were subjected to the following shock ignitability (sensitivity) test.
- prior art gas generating compositions NaN3-KClO4-Fe3O4 and NaN3-CuO were also subjected to the shock ignitiability test.
- Table 3 shows the ignition limit gap length (ignitable up to that gap length) and the non-ignition limit gap length (not ignitable beyond that gap length).
- a greater critical gap length value represents a higher shock ignition sensitivity.
- the greater the critical ignition gap length the higher is the shock ignition sensitivity and, hence, the risk of hazards.
- ADCA Azodicarbonamide
- a halogen oxo acid salt with or without a combustion control catalyst, were blended according to the formulas (wt. %) shown in Table 4 to provide compositions of this invention.
- An air bag inflator reactor was loaded with 20 g of pellets (12.3 mm dia. x 3 mm thick) of the composition of this invention comprising 45 parts by weight of azodicarbonamide, 55 parts by weight of sodium chlorate and 2.75 parts by weight of MnO2 and the loaded inflator was connected to a 28.6-liter tank equipped with a pressure sensor. Using 1 g of B-KNO3, the pellets were ignited for combustion. The maximum pressure within the tank was 4.3 kgf/cm2 gauge and the tank internal pressure rise time associated with combustion of this composition was 50 msec.
- ADCA azodicarbonamide
- a control gas generating composition was prepared according to the suggestion made in Japanese Examined Patent Publication No. 21171/74. Thus, 200 parts by weight of azodicarbonamide was blended with 90 parts by weight of sodium chlorate and 10 parts by weight of Zr powder to provide a control composition.
- composition of this invention was subjected to the strand burner test (cf. "Combustion characteristics of sodium azide gas generating systems", the Proceedings of the 1992 Annual Meeting of the Industrial Explosives Association, Pages 98-99).
- the measured burning velocities were 28.3 mm/sec. at 10 kgf/cm2, 37.9 mm/sec. at 20 kgf/cm2, and 46.0 mm/sec. at 40 kgf/cm2.
- the burning velocity (mm/sec.) was measured as in Example 8. No ignition occurred at 10 kgf/cm2. At 40 kgf/cm2, the burning velocity was 48.3 mm/sec.
- An air bag inflator reactor was loaded with 40 g of pellets (12.3 mm in diameter x 3 mm thick) of the composition of this invention as obtained by blending 45 parts by weight of azodicarbonamide with 55 parts by weight of potassium perchlorate and 10 parts by weight of copper oxide and this inflator was connected to a 28.6-liter tank equipped with a pressure sensor.
- the pellets were ignited with 1 g of B-KNO3 for combustion of the composition of this invention.
- Fig. 1 is a longitudinal section view showing the gas trapping bomb used in the bomb test.
- Figs. 2 and 3 are diagrammatic illustrations showing the chamber mounted in the gas trapping bomb on exaggerated scale.
- Figs. 4-7 are diagrammatic representations of the procedure of the shock sensitivity test.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Air Bags (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP185251/92 | 1992-07-13 | ||
JP4185251A JPH0632689A (ja) | 1992-07-13 | 1992-07-13 | エアバッグ用ガス発生剤 |
JP185253/92 | 1992-07-13 | ||
JP4185253A JPH0632690A (ja) | 1992-07-13 | 1992-07-13 | エアバッグ用ガス発生剤 |
PCT/JP1993/000634 WO1994001381A1 (fr) | 1992-07-13 | 1993-05-13 | Agent generateur de gaz pour sacs gonflables |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0607446A1 true EP0607446A1 (fr) | 1994-07-27 |
EP0607446A4 EP0607446A4 (fr) | 1995-03-29 |
EP0607446B1 EP0607446B1 (fr) | 1999-02-03 |
Family
ID=26502995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93910338A Expired - Lifetime EP0607446B1 (fr) | 1992-07-13 | 1993-05-13 | Agent generateur de gaz pour sacs gonflables |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0607446B1 (fr) |
KR (1) | KR100242401B1 (fr) |
CA (1) | CA2115557C (fr) |
DE (1) | DE69323410T2 (fr) |
WO (1) | WO1994001381A1 (fr) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2719578A1 (fr) * | 1994-05-09 | 1995-11-10 | Nof Corp | Compositions de générateur de gaz comprenant un agent désoxydé et un agent oxydant. |
EP0694511A1 (fr) * | 1994-02-15 | 1996-01-31 | Nippon Koki Co., Ltd. | Composition gazogene, procede de fabrication de comprimes de ladite composition et procede de transport associe |
WO1996025375A1 (fr) * | 1995-02-16 | 1996-08-22 | Royal Ordnance Plc | Systemes automatiques de retenue d'un occupant de vehicule, actionnes par des compositions produisant du gaz |
WO1996026169A1 (fr) * | 1995-02-18 | 1996-08-29 | Dynamit Nobel Gmbh | Melanges generateurs de gaz |
US5557062A (en) * | 1994-12-13 | 1996-09-17 | United Technologies Corporation | Breathable gas generators |
EP0750599A1 (fr) * | 1994-03-18 | 1997-01-02 | Olin Corporation | Melange propulsif pour generer un gaz |
EP0763512A1 (fr) * | 1995-02-03 | 1997-03-19 | Otsuka Kagaku Kabushiki Kaisha | Agent generateur de gaz pour air-bag |
US5656793A (en) * | 1994-05-09 | 1997-08-12 | Eiwa Chemical Ind. Co., Ltd. | Gas generator compositions |
EP0801045A1 (fr) * | 1995-09-29 | 1997-10-15 | Otsuka Kagaku Kabushiki Kaisha | Generateur de gaz pour airbag |
WO1997042142A1 (fr) * | 1996-05-02 | 1997-11-13 | Trw Airbag Systems Gmbh & Co. Kg | Melange de substances exempt d'azide, produisant du gaz |
EP0820971A2 (fr) * | 1996-07-22 | 1998-01-28 | Daicel Chemical Industries, Ltd. | Générateur de gaz pour un coussin gonflable |
WO1998017607A1 (fr) * | 1996-10-22 | 1998-04-30 | Trw Airbag Systems Gmbh & Co. Kg | Melange de substances solides generateur de gaz et exempt d'acide |
WO1998055428A1 (fr) * | 1997-05-21 | 1998-12-10 | Försvarets Forskningsanstalt | Nouveau compose chimique, explosif contenant ce compose et utilisation de ce compose dans des generateurs de gaz |
EP0950647A1 (fr) * | 1998-04-15 | 1999-10-20 | Daicel Chemical Industries, Ltd. | Composition génératrice de gaz pour airbag |
US6190474B1 (en) | 1995-11-14 | 2001-02-20 | Daicel Chemical Industries, Ltd. | Gas generating composition |
US6302979B1 (en) | 1994-12-21 | 2001-10-16 | Daicel Chemical Industries, Ltd. | Gas generant composition |
US6497774B2 (en) | 1996-07-22 | 2002-12-24 | Daicel Chemical Industries, Ltd. | Gas generant for air bag |
US6651565B1 (en) | 1998-04-20 | 2003-11-25 | Daicel Chemical Industries, Ltd. | Method of reducing NOx |
FR2883868A1 (fr) * | 2005-03-30 | 2006-10-06 | Davey Bickford Snc | Compositions auto-initiatrices, initiateurs electriques utilisant de telles compositions et generateurs de gaz comportant de tels initiateurs |
EP1275629A3 (fr) * | 2001-07-10 | 2010-09-22 | TRW Airbag Systems GmbH & Co. KG | Composition génératrice de gaz exempt de nitrocellulose |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107192631B (zh) * | 2017-05-08 | 2019-12-27 | 浙江物产汽车安全科技有限公司 | 一种安全气囊用产气药的性能测试方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1063438A (fr) * | 1952-09-18 | 1954-05-03 | France Etat | Charges productrices de gaz par combustion |
US3214304A (en) * | 1963-03-20 | 1965-10-26 | Thiokol Chemical Corp | Gas-generating compositions containing coolants and methods for their use |
DE2063586A1 (de) * | 1969-12-26 | 1971-07-22 | Asahi Kasei Kogyo K.K., Osaka (Japan) | Gasbildende Masse |
DE2351401A1 (de) * | 1972-10-17 | 1974-05-09 | Poudres & Explosifs Ste Nale | Praktisch nicht-toxische gase erzeugende stickstoffhaltige pyrotechnische zusammensetzung mit reduziertem sauerstoffgehalt |
US4358327A (en) * | 1980-10-14 | 1982-11-09 | The United States Of America As Represented By The Secretary Of The Navy | Gas generant propellants |
US4386979A (en) * | 1979-07-19 | 1983-06-07 | Jackson Jr Charles H | Gas generating compositions |
EP0482852A1 (fr) * | 1990-10-25 | 1992-04-29 | Automotive Systems Laboratory Inc. | Composition génératrice de gaz exempt d'azoture produisant des produits de combustion facilement filtrables |
US5125684A (en) * | 1991-10-15 | 1992-06-30 | Hercules Incorporated | Extrudable gas generating propellants, method and apparatus |
EP0607450A1 (fr) * | 1992-07-10 | 1994-07-27 | Nippon Kayaku Kabushiki Kaisha | Agent generateur de gaz et generateur de gaz pour airbag de voiture |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5522359B2 (fr) * | 1972-05-30 | 1980-06-16 | ||
JPS4921171A (fr) * | 1972-06-15 | 1974-02-25 | ||
JPS572679B2 (fr) * | 1973-11-29 | 1982-01-18 | ||
US4084992A (en) * | 1976-04-22 | 1978-04-18 | Thiokol Corporation | Solid propellant with alumina burning rate catalyst |
JPH02221179A (ja) * | 1989-02-22 | 1990-09-04 | Daicel Chem Ind Ltd | 清浄空気組成ガス発生剤 |
US4931111A (en) * | 1989-11-06 | 1990-06-05 | Automotive Systems Laboratory, Inc. | Azide gas generating composition for inflatable devices |
JP2945077B2 (ja) * | 1990-05-21 | 1999-09-06 | ダイセル化学工業株式会社 | ガス発生組成物 |
-
1993
- 1993-05-13 KR KR1019940700396A patent/KR100242401B1/ko not_active IP Right Cessation
- 1993-05-13 DE DE69323410T patent/DE69323410T2/de not_active Expired - Fee Related
- 1993-05-13 WO PCT/JP1993/000634 patent/WO1994001381A1/fr active IP Right Grant
- 1993-05-13 CA CA002115557A patent/CA2115557C/fr not_active Expired - Fee Related
- 1993-05-13 EP EP93910338A patent/EP0607446B1/fr not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1063438A (fr) * | 1952-09-18 | 1954-05-03 | France Etat | Charges productrices de gaz par combustion |
US3214304A (en) * | 1963-03-20 | 1965-10-26 | Thiokol Chemical Corp | Gas-generating compositions containing coolants and methods for their use |
DE2063586A1 (de) * | 1969-12-26 | 1971-07-22 | Asahi Kasei Kogyo K.K., Osaka (Japan) | Gasbildende Masse |
DE2351401A1 (de) * | 1972-10-17 | 1974-05-09 | Poudres & Explosifs Ste Nale | Praktisch nicht-toxische gase erzeugende stickstoffhaltige pyrotechnische zusammensetzung mit reduziertem sauerstoffgehalt |
US4386979A (en) * | 1979-07-19 | 1983-06-07 | Jackson Jr Charles H | Gas generating compositions |
US4358327A (en) * | 1980-10-14 | 1982-11-09 | The United States Of America As Represented By The Secretary Of The Navy | Gas generant propellants |
EP0482852A1 (fr) * | 1990-10-25 | 1992-04-29 | Automotive Systems Laboratory Inc. | Composition génératrice de gaz exempt d'azoture produisant des produits de combustion facilement filtrables |
US5125684A (en) * | 1991-10-15 | 1992-06-30 | Hercules Incorporated | Extrudable gas generating propellants, method and apparatus |
EP0607450A1 (fr) * | 1992-07-10 | 1994-07-27 | Nippon Kayaku Kabushiki Kaisha | Agent generateur de gaz et generateur de gaz pour airbag de voiture |
Non-Patent Citations (1)
Title |
---|
See also references of WO9401381A1 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0694511A1 (fr) * | 1994-02-15 | 1996-01-31 | Nippon Koki Co., Ltd. | Composition gazogene, procede de fabrication de comprimes de ladite composition et procede de transport associe |
EP0694511A4 (fr) * | 1994-02-15 | 1997-02-26 | Nippon Koki Kk | Composition gazogene, procede de fabrication de comprimes de ladite composition et procede de transport associe |
EP0750599A1 (fr) * | 1994-03-18 | 1997-01-02 | Olin Corporation | Melange propulsif pour generer un gaz |
EP0750599A4 (fr) * | 1994-03-18 | 1999-03-10 | Olin Corp | Melange propulsif pour generer un gaz |
US5656793A (en) * | 1994-05-09 | 1997-08-12 | Eiwa Chemical Ind. Co., Ltd. | Gas generator compositions |
FR2719578A1 (fr) * | 1994-05-09 | 1995-11-10 | Nof Corp | Compositions de générateur de gaz comprenant un agent désoxydé et un agent oxydant. |
WO1998003450A1 (fr) * | 1994-12-13 | 1998-01-29 | United Technologies Corporation | Generateurs de gaz respirable |
US5557062A (en) * | 1994-12-13 | 1996-09-17 | United Technologies Corporation | Breathable gas generators |
US6302979B1 (en) | 1994-12-21 | 2001-10-16 | Daicel Chemical Industries, Ltd. | Gas generant composition |
EP0763512A4 (fr) * | 1995-02-03 | 2001-02-21 | Otsuka Kagaku Kk | Agent generateur de gaz pour air-bag |
EP0763512A1 (fr) * | 1995-02-03 | 1997-03-19 | Otsuka Kagaku Kabushiki Kaisha | Agent generateur de gaz pour air-bag |
WO1996025375A1 (fr) * | 1995-02-16 | 1996-08-22 | Royal Ordnance Plc | Systemes automatiques de retenue d'un occupant de vehicule, actionnes par des compositions produisant du gaz |
CZ298208B6 (cs) * | 1995-02-18 | 2007-07-25 | Delphi Technologies, Inc. | Látka produkující plyn z dusíkatých sloucenin, zpusob výroby této látky, systém záchrany zivota tvorený plynovým generátorem s látkou produkující plyn a pouzití látky produkující plyn |
WO1996026169A1 (fr) * | 1995-02-18 | 1996-08-29 | Dynamit Nobel Gmbh | Melanges generateurs de gaz |
EP0801045A1 (fr) * | 1995-09-29 | 1997-10-15 | Otsuka Kagaku Kabushiki Kaisha | Generateur de gaz pour airbag |
EP0801045A4 (fr) * | 1995-09-29 | 2000-11-02 | Otsuka Kagaku Kk | Generateur de gaz pour airbag |
US6190474B1 (en) | 1995-11-14 | 2001-02-20 | Daicel Chemical Industries, Ltd. | Gas generating composition |
WO1997042142A1 (fr) * | 1996-05-02 | 1997-11-13 | Trw Airbag Systems Gmbh & Co. Kg | Melange de substances exempt d'azide, produisant du gaz |
EP0992473A3 (fr) * | 1996-07-22 | 2000-04-26 | Daicel Chemical Industries, Ltd. | Générateur de gaz pour un coussin gonflable |
US6527886B1 (en) | 1996-07-22 | 2003-03-04 | Daicel Chemical Industries, Ltd. | Gas generant for air bag |
EP0820971A2 (fr) * | 1996-07-22 | 1998-01-28 | Daicel Chemical Industries, Ltd. | Générateur de gaz pour un coussin gonflable |
EP0992473A2 (fr) * | 1996-07-22 | 2000-04-12 | Daicel Chemical Industries, Ltd. | Générateur de gaz pour un coussin gonflable |
US6497774B2 (en) | 1996-07-22 | 2002-12-24 | Daicel Chemical Industries, Ltd. | Gas generant for air bag |
US6454887B1 (en) | 1996-07-22 | 2002-09-24 | Daicel Chemical Industries, Ltd. | Gas generant for air bag |
EP0820971A3 (fr) * | 1996-07-22 | 1998-02-25 | Daicel Chemical Industries, Ltd. | Générateur de gaz pour un coussin gonflable |
WO1998017607A1 (fr) * | 1996-10-22 | 1998-04-30 | Trw Airbag Systems Gmbh & Co. Kg | Melange de substances solides generateur de gaz et exempt d'acide |
US6291711B2 (en) | 1997-05-21 | 2001-09-18 | Totalforsvarets Forskningsinstitut (Foi) | Guanylurea dinitramide, an explosive, propellant, rocket motor charge and gas generator |
WO1998055428A1 (fr) * | 1997-05-21 | 1998-12-10 | Försvarets Forskningsanstalt | Nouveau compose chimique, explosif contenant ce compose et utilisation de ce compose dans des generateurs de gaz |
US6468369B1 (en) | 1998-04-15 | 2002-10-22 | Daicel Chemical Industries, Ltd. | Gas generating composition for air bag |
EP0950647A1 (fr) * | 1998-04-15 | 1999-10-20 | Daicel Chemical Industries, Ltd. | Composition génératrice de gaz pour airbag |
US6651565B1 (en) | 1998-04-20 | 2003-11-25 | Daicel Chemical Industries, Ltd. | Method of reducing NOx |
EP1275629A3 (fr) * | 2001-07-10 | 2010-09-22 | TRW Airbag Systems GmbH & Co. KG | Composition génératrice de gaz exempt de nitrocellulose |
FR2883868A1 (fr) * | 2005-03-30 | 2006-10-06 | Davey Bickford Snc | Compositions auto-initiatrices, initiateurs electriques utilisant de telles compositions et generateurs de gaz comportant de tels initiateurs |
Also Published As
Publication number | Publication date |
---|---|
EP0607446B1 (fr) | 1999-02-03 |
WO1994001381A1 (fr) | 1994-01-20 |
KR100242401B1 (ko) | 2000-02-01 |
DE69323410D1 (de) | 1999-03-18 |
EP0607446A4 (fr) | 1995-03-29 |
CA2115557C (fr) | 2000-07-25 |
DE69323410T2 (de) | 1999-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5898126A (en) | Air bag gas generating composition | |
EP0607446A1 (fr) | Agent generateur de gaz pour sacs gonflables | |
CA2079946C (fr) | Compositions produisant des gaz de type non-azide | |
US5125684A (en) | Extrudable gas generating propellants, method and apparatus | |
CA2135977C (fr) | Compositions gazogenes | |
EP0880485B1 (fr) | Compositions generatrices de gaz nonazide | |
US4370181A (en) | Pyrotechnic non-azide gas generants based on a non-hydrogen containing tetrazole compound | |
EP0902775B1 (fr) | Procede pyrotechnique pour produire un gaz inodore et incolore non toxique et depourvu de matieres particulaires | |
AU639657B2 (en) | Composition and process for inflating a safety crash bag | |
US6019861A (en) | Gas generating compositions containing phase stabilized ammonium nitrate | |
US5861571A (en) | Gas-generative composition consisting essentially of ammonium perchlorate plus a chlorine scavenger and an organic fuel | |
US5525170A (en) | Fumaric acid-based gas generating compositions for airbags | |
US5985060A (en) | Gas generant compositions containing guanidines | |
US5160386A (en) | Gas generant formulations containing poly(nitrito) metal complexes as oxidants and method | |
Aravind et al. | Thermo-kinetic studies on azodicarbonamide/potassium periodate airbag gas generants | |
US6550808B1 (en) | Guanylurea nitrate in gas generation | |
US5661261A (en) | Gas generating composition | |
JPH06239683A (ja) | エアバッグ用ガス発生剤 | |
US6156230A (en) | Metal oxide containing gas generating composition | |
JPH06227884A (ja) | エアバッグ用ガス発生剤 | |
USRE32584E (en) | Method and composition for generating nitrogen gas | |
US6361630B2 (en) | Cool burning gas generating composition | |
JPH10158086A (ja) | ガス発生調製物及びエアーバツグにおけるその使用 | |
WO1998016408A2 (fr) | Composition d'un generateur de gaz | |
US20040231770A1 (en) | Gas-generating substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940211 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT SE |
|
A4 | Supplementary search report drawn up and despatched | ||
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19950524 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990203 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19990203 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990203 |
|
REF | Corresponds to: |
Ref document number: 69323410 Country of ref document: DE Date of ref document: 19990318 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990429 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990512 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990528 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000513 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |