EP0606433B1 - Procede pour la determination de la consistance d'un sous-sol - Google Patents

Procede pour la determination de la consistance d'un sous-sol Download PDF

Info

Publication number
EP0606433B1
EP0606433B1 EP93915615A EP93915615A EP0606433B1 EP 0606433 B1 EP0606433 B1 EP 0606433B1 EP 93915615 A EP93915615 A EP 93915615A EP 93915615 A EP93915615 A EP 93915615A EP 0606433 B1 EP0606433 B1 EP 0606433B1
Authority
EP
European Patent Office
Prior art keywords
sound
penetration
probe
measuring
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93915615A
Other languages
German (de)
English (en)
Other versions
EP0606433A1 (fr
Inventor
Raymond Andina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0606433A1 publication Critical patent/EP0606433A1/fr
Application granted granted Critical
Publication of EP0606433B1 publication Critical patent/EP0606433B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/027Investigation of foundation soil in situ before construction work by investigating properties relating to fluids in the soil, e.g. pore-water pressure, permeability

Definitions

  • the present invention relates to a method for determining the consistency or the nature of a substrate or soil or for classifying the same, and to a penetration device for determining the consistency or nature of a substrate or soil or for classifying the same.
  • Swiss Patent 466 154 describes a penetration or drilling or probing device and a method for measuring and determining the above-mentioned factors from a subsoil or a soil.
  • Swiss Patent 679 887 A further development of the device mentioned is described in Swiss Patent 679 887.
  • the methods known according to these patents as well as penetration devices and measuring probes work on the principle that the material to be assessed or the corresponding layer is penetrated by means of a conically shaped probe tip, the resistance on the probe tip being measured on the one hand, and the friction or the resistance on the other Resistance at an edge or jacket area surrounding the probe tip, and ultimately the friction or resistance at the probe behind the tip enveloping casing pipe.
  • the friction or resistance at the edge area of the tip and on the casing tube arises primarily through lateral displacement of the material to be penetrated, which results in a strongly compressed zone in the layer to be assessed, both in the edge area of the tip and immediately behind it.
  • the nature or consistency of the subsoil can be inferred, the accuracy of the determined values being limited, in particular because the latter two resistance or friction measured values are relatively imprecise, since the material is hardly displaced evenly and is also strong is influenced by the moisture present in the underground. In addition, it is a variable that is influenced by artificially briefly created tension in the soil. In addition, the measurement of the latter resistances or the friction on the probe ring or on the jacket tube is complex and complicated, since the probe must be constructed in such a way that independent measurement of at least two or three measured values is possible.
  • No. 4,554,819 proposes a method and a device for classifying the substrate, the classifying being carried out by measuring the so-called pore water pressure.
  • a penetration device is driven into the ground, stopped and pulled back until the measured pore pressure is equal to the hydrostatic pressure at this level.
  • the suggested measurement method is Particularly suitable for the determination of the consistency on the basis of a pre-drilled borehole and less for the classification of the underground exclusively by means of a penetration device.
  • this object is achieved by means of a method according to the wording according to claim 1.
  • the substrate material it is proposed to determine the nature or consistency of the substrate by measuring the so-called consolidation (also called consolidation) of the substrate material.
  • consolidation also called consolidation
  • the tip-shaped measuring probe used, as is generally customary, but preferably a measuring probe with a blunt "tip", or the probe tip is cylindrical with a flat tip or front surface.
  • pore water overpressure i.e. the hydrostatic pressure prevailing in the pores of the material, which arises due to the effective or imaginary moisture in the subsoil when the probe penetrates. Due to the capillary effect in the subsurface, there is practically always a certain water saturation in our latitudes, with which the associated so-called pore water overpressure represents a representative measure of the permeability or consolidation and, associated with this, of the consistency of the subsurface material.
  • a soil whose voids are filled with water can only be compressed if the pore water can escape.
  • the pores are very narrow and therefore offer great resistance to the flow of water. The pore water can therefore only escape slowly when subjected to a load, the resulting pressure in the water being referred to as the pore water overpressure.
  • This apparently essential size for the classification of the subsurface or for the determination of the consistency or nature of the subsurface is achieved according to the invention by using a flat probe tip in addition to a conical one. Measuring this characteristic degree of consolidation or excess pore water pressure is difficult with the conventional measuring methods, such as, for example, with the conical probe tips commonly used.
  • a penetration device which has a probe at its end to be driven into the ground or at its tip, preferably with a flattened surface or in the tip of the probe.
  • the probe is now driven into the ground or underground at a certain propulsion speed in a known manner, as is known, for example, from the two aforementioned Swiss patents.
  • the penetration device is stopped, depending on the consistency and permeability of the material to be penetrated, the counterpressure relaxes immediately, since the moisture prevailing in the subsurface is displaced depending on the permeability of the material and pressure is therefore relieved. Due to the very precise measuring devices, it is now possible to choose the staggered time between the two or more staggered measurements in such a way that a certain relaxation of the back pressure due to the moisture in the subsurface can occur and which can be determined based on the degree of consolidation. After measuring the two back pressures mentioned on the drilling probe tip, the penetration device is driven further into the subsurface at the predetermined speed specified above.
  • the degree of consolidation at the corresponding point can now be determined by the respective measured values at the respective measuring points in the subsurface and by the geometry of the drilling probe tip.
  • the excess pore water pressure is proportional to the difference between the back pressure (breaking resistance) prevailing at the specific speed of the penetration device and the back pressure when the measuring device is stopped (bottom resistance) as well as proportional to the cross section of the probe and inversely proportional to the volume of the probe tip, with reference to the calculation of the probe tip volume the figures attached below are to be discussed in more detail.
  • a classification of the soil is possible by comparing the determined values for the excess pore water pressure with a calibrated comparison scale.
  • the advantage of this measuring method is that, on the one hand, guiding the penetration device with its probe into the ground becomes easier, since the lateral deflection that occurs with pointed measuring probes, which often occurs with penetration devices, is eliminated.
  • the measurement method is clear, because when using a flat tip, there is always a tip angle of 180 ° and not, as with the use of a conical tip, once an angle of 60 °, once an angle of 90 ° and ultimately another Angle of 130 °.
  • it is not possible to compare measured values with different conical peaks since conversion using the correction factor is not possible. It is therefore not surprising that values of the nature of a substrate determined internationally by means of commonly used penetration devices cannot be compared with one another, since different probe tip angles are used in each case. Also based these values on determining the cohesion of the substrate material.
  • the penetration or drilling probes can largely be dispensed with considering the lateral friction.
  • this method also makes it possible to use, for example, a casing tube which surrounds the penetration or drilling probes, on which casing pipe the so-called lateral friction when driving the drilling probe into the ground can be measured separately, if desired or necessary.
  • a penetration device is further proposed according to the wording of claim 6.
  • a penetration device 1 is shown schematically in longitudinal section, essentially comprising drilling or penetration probe 2 and, arranged on the front, a measuring probe 16 which is connected to the penetration or drilling probe 2 via a dowel pin 17.
  • Both the penetration or drilling probe 2 and the probe 16 are cylindrical.
  • the probe 16 has a flat surface 22 at its front end or at its tip 21.
  • the front part 21 has a larger diameter than the region of the probe located behind it.
  • the zone with an enlarged diameter has a height h.
  • both the probe and the penetration and drill rods are encased in a casing tube 9.
  • the flat drill probe tip 22 is driven into the subsurface, whereby the material to be assessed or classified by the probe is pushed in front of the probe in the direction of the arrow or, if necessary, laterally is ousted. It is essential that the real or imaginary moisture in the water, which arises from the groundwater as a result of the capillary action, is displaced downwards and sideways. This water pressure or the excess pore water pressure is a measure of the consistency or composition or the permeability of the material to be assessed.
  • FIG. 2 A conventional penetration device or a drill probe tip is shown in longitudinal section in FIG. 2 for comparison, the same parts being provided with the same reference numbers in comparison to FIG. 1 for better understanding.
  • the drilling or penetration or measuring probe 16 has a conically shaped tip, as a result of which the material to be assessed is laterally displaced when the penetration device is driven into the ground.
  • this does not mean that the permeability or permeability of the material can be measured alone, because the measurement result is furthermore essentially determined by the cohesion or. Friction affects.
  • the laterally displaced material accumulates laterally behind the drill probe tip on the casing tube, as a result of which compression occurs in this zone.
  • the lateral friction on the casing tube becomes essential, which is why this size must also be taken into account when assessing or classifying the material.
  • FIG. 3 shows a preferred universal embodiment variant of a penetration device 1 according to the invention in longitudinal section.
  • a measuring probe 16 is arranged on the front on penetration or drilling probes 2 and 10, connected via a dowel pin 17 to the central probing or penetration rod 10 arranged directly behind the probe.
  • the probe 16 is formed in two parts, comprising two parts arranged coaxially to one another, namely a central probe part 16a and an outer annular part 16b.
  • both parts have a cylindrical portion 21a or 21b formed on the front, which preferably has a diameter which is widened compared to the portion of the probe lying behind it.
  • the front parts or front surfaces 22a and 22b of the two probe parts 16a and 16b are aligned with one another and thus form a single flat surface 22 in the embodiment shown in FIG. 3.
  • the central probing or penetration probe 2 or 10 are enveloped by a central probe jacket tube 9, which also envelops the central part 16a of the probe.
  • the outer part 16b of the probe is carried or held by a cladding tube or shaft 11, which in turn envelops the jacket tube 9. Enveloping this shaft 11 and enveloping the annular probe section 16b on the front side, a further shaft or jacket tube 14 is arranged, in which the outer probe section 16b is slidably arranged.
  • dowel pin 17 can be broken through after completion of the drilling if it is no longer possible to withdraw the probe 16. By destroying this dowel pin connection, all shells and penetration or boring bars can be pulled back to the surface of the earth.
  • the penetration device 1 according to FIG. 3 is driven into the substrate by suitable drive means.
  • drive means can be omitted and described, since they are already well known from the two Swiss patents mentioned above.
  • the penetration device 1 comprising the two-part probe tip, is driven into the ground at a certain constant rate of advance, with subsequent measuring points the counter pressure or the counterforce on the flat surface 22 of the probe tip 21 is measured.
  • These counterforces are measured on the surface of the earth and result from the force transmission from the probe via the probe or penetration rods behind it, with which this counterforce can be measured on the surface of the earth.
  • the penetration process is interrupted for a short time, with a further measurement of the counterpressure taking place shortly after the measurement in the moving state immediately when the penetration device is stopped.
  • the condition or consistency of the substrate is now determined by this so-called permeability or permeability measurement, in that the difference between the two back pressure measurements mentioned is formed.
  • the excess pore water pressure results from the following equation: (Rpv -Rp0) ⁇ Probe cross section: probe tip volume
  • Rpv is the measurement of the so-called breaking resistance in the moving state, for example at a speed of 2cm / s.
  • Rp0 is the back pressure, the so-called ground resistance, at standstill, and the probe cross-section is the distance x according to FIG. 3.
  • the probe tip volume results from the area 22, multiplied by the height h according to FIG. 3 .
  • the further propulsion can only be undertaken Use of the central probe 16a continues. This significantly reduces the front probe surface, which naturally also results in a reduced resistance to the front part 22a of the central probe 16a.
  • further penetration takes place only by driving the central probe 16a, possibly together with the jacket tube 9 enveloping the central probe section 16a, which furthermore gives the possibility of measuring the lateral friction on the jacket tube 9 in addition to the resistance on the front section 22a .
  • the values for the pore water overpressure determined in the respective measurements are now compared with corresponding calibration curves, in which the pore water overpressure is recorded or listed as a function of different propulsion speeds for certain properties or consistencies of substrates or soil. Based on the values determined by means of the measurement and the rate of advance, the consistency or nature of the substrate can be inferred immediately from the calibration curves.
  • the assessment of the nature or consistency of the substrate is not based on the cohesion of the substrate material, but rather on the basis of the permeability or permeability of the material or on the basis of the excess pore water pressure in this material. If the penetration device is blocked due to a layer that is difficult to penetrate, the propulsion can also take place dynamically, instead of statically at a constant speed, as described, for example, in Swiss Patent No. 679,887.
  • a central total load 31 acts to drive the penetration device into the ground.
  • This total load 31 acts primarily on a crossmember 33, the load being transmitted to the central probe or to the probe 2 and the jacket tube 9 surrounding the central probe by means of longitudinal rods 35 and a further crossmember 37.
  • the transmission takes place via a central head part 39 of the probe.
  • a measuring box 43 between the mentioned cross member 37 and a further cross member 36, the resistance or counterforce on the probe can be measured in the subsurface.
  • the load is transferred to a head part 41 and thus to the jacket 14 via a further cross member 43 and longitudinal bars 38.
  • the friction occurring on the outer casing tube 14 is measured by means of a further measuring box 45, which is arranged between the two cross members 33 and 34.
  • the two measuring boxes 43 and 45 can be connected to electronic measuring and evaluation devices in such a way that two measured values are automatically recorded and registered at certain points in the driving of the penetration device into the ground, just before and precisely when the penetration device is stopped.
  • the values measured in this way are, according to the invention, as described above evaluated.
  • the measuring method is largely reduced to measuring a single measured value, namely to the resistance on the probe surface. Lateral friction and resistance forces can often be neglected, as they are often of little importance.
  • the volume "shifted" by means of a flat tip is considerably less than that when using a conical or conical tip. This results in particular from the surface of the probe tip, which is much smaller than the surface of a cone shell when a flat tip is selected. This means that any correction factors due to the choice of a different cone tip angle are also eliminated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Exchange Systems With Centralized Control (AREA)

Claims (11)

  1. Procédé de pénétration pour déterminer la consistance ou la nature d'un sous-sol ou d'un terrain ou pour classifier ceux-ci, caractérisé en ce qu'on mesure la perméabilité ou la surpression interstitielle dans les couches à évaluer du sous-sol ou du sol.
  2. Procédé de pénétration selon la revendication 1, caractérisé en ce que la surpression interstitielle déterminante pour la classification du sol ou du sous-sol est définie par la mesure de la perméabilité à l'aide d'une sonde pourvue d'une surface de sonde plate.
  3. Procédé de pénétration selon la revendication 1 ou 2, caractérisé en ce que pour mesurer la perméabilité, on enfonce à une vitesse définie dans le sous-sol une sonde globalement cylindrique à surface plate et on mesure à des points qui se suivent périodiquement la pression ou la force de résistance opposée à la tête de sonde ; on interrompt l'enfoncement au niveau des points de mesure successifs afin de mesurer une nouvelle fois, directement lors de l'arrêt de la pénétration, la pression ou la force de résistance opposée à la surface de sonde, et à partir de ces deux valeurs mesurées, on obtient au niveau d'un point la consolidation ou la "détente" relative du sol qui est déterminante pour la recherche de la surpression interstitielle, après quoi on poursuit jusqu'au point suivant la pénétration ou le sondage à la vitesse de pénétration définie.
  4. Procédé de pénétration selon la revendication 2 ou 3, caractérisé en ce que le degré de consolidation est déterminé à partir de la relation : (Rpv - Rp0) · q : Vol, dans laquelle Rpv = pression antagoniste ou résistance opposée à la surface de sonde plate à une vitesse de pénétration v définie ; Rp0 = pression antagoniste ou résistance lorsque v = 0 ; q = section transversale de la sonde et Vol = volume de l'extrémité de la sonde, qui présente un diamètre plus grand que celui des parties de sonde disposées juste derrière la surface de sonde ou que celui de la tige de pénétration qui s'enfonce dans le sous-sol.
  5. Procédé de pénétration selon l'une des revendications 2 à 4, caractérisé en ce que la surface de sonde est au moins en deux parties, se compose au moins de deux parties coaxiales et comprend une surface de sonde centrale à section transversale réduite, étant précisé que les deux surfaces des parties de sonde, en étant alignées et en formant une seule surface, sont enfoncées en même temps jusqu'à une profondeur de pénétration en vue de mesurer la perméabilité, jusqu'à ce qu'un enfoncement de la sonde à la vitesse définie soit rendu très difficile, après quoi seule la partie de sonde centrale est davantage enfoncée par pénétration pour poursuivre les mesures.
  6. Dispositif de pénétration pour déterminer la consistance ou la nature d'un sous-sol ou d'un sol ou pour classifier ceux-ci, caractérisé en ce que la sonde de mesure (16) présente une surface de sonde (22) au moins approximativement plate et en ce que la sonde (16) a une forme cylindrique et un diamètre (x, y) plus grand dans la zone frontale (21) de la sonde.
  7. Dispositif de pénétration selon la revendication 6, caractérisé en ce que la sonde (16) et les tiges de pénétration (2, 10) nécessaires à l'enfoncement de la sonde sont guidées dans une enveloppe tubulaire (9, 14).
  8. Dispositif de pénétration selon la revendication 6 ou 7, caractérisé en ce que la sonde (16) comprend deux parties (16a, 16b) globalement coaxiales, la sonde centrale (16a) étant mobile pour pouvoir être déviée dans le sens longitudinal du dispositif de pénétration par rapport à l'enveloppe de sonde annulaire (16b) qui l'entoure, afin d'être enfoncée davantage dans le sous-sol avec une section transversale réduite (y), en cas de blocage de la sonde.
  9. Dispositif de pénétration selon la revendication 8, caractérisé en ce que les deux parties de sonde ou plus exactement la sonde centrale et l'enveloppe de sonde (16a, 16b) sont appliquées l'une contre l'autre dans la zone de leur surface (21a, 21b) en formant une seule surface (22a, 22b, 22), tandis qu'elles sont espacées l'une de l'autre dans la zone éloignée de la surface (21a, 21b), de telle sorte que la sonde centrale (16a) est guidée, dans l'espace intermédiaire formé par l'écartement, par une enveloppe tubulaire (9) qui peut être enfoncée davantage, elle aussi, au cas où la partie centrale (16a) de la sonde est déviée ou est seule à être enfoncée davantage.
  10. Dispositif de pénétration selon l'une des revendications 6 à 9, caractérisé en ce qu'il est prévu sur la surface du sol des dispositifs de mesure (43, 45) afin de mesurer la pression antagoniste exercée sur la surface de sonde (22) ou la force de résistance.
  11. Dispositif de pénétration selon l'une des revendications 6 à 10, caractérisé en ce qu'il est prévu au moins deux dispositifs de mesure (43, 45) afin qu'on puisse mesurer, en plus de la pression antagoniste ou de la force de résistance opposée à la surface de sonde (22), le frottement latéral exercé sur l'enveloppe tubulaire (9, 14).
EP93915615A 1992-07-31 1993-07-23 Procede pour la determination de la consistance d'un sous-sol Expired - Lifetime EP0606433B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH02429/92A CH689561A5 (de) 1992-07-31 1992-07-31 Penetrations-Verfahren zum Ermitteln der Konsistenz eines Untergrundes.
CH2429/92 1992-07-31
PCT/CH1993/000185 WO1994003682A1 (fr) 1992-07-31 1993-07-23 Procede pour la determination de la consistance d'un sous-sol

Publications (2)

Publication Number Publication Date
EP0606433A1 EP0606433A1 (fr) 1994-07-20
EP0606433B1 true EP0606433B1 (fr) 1997-07-09

Family

ID=4233602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93915615A Expired - Lifetime EP0606433B1 (fr) 1992-07-31 1993-07-23 Procede pour la determination de la consistance d'un sous-sol

Country Status (5)

Country Link
EP (1) EP0606433B1 (fr)
AT (1) ATE155186T1 (fr)
CH (1) CH689561A5 (fr)
DE (1) DE59306879D1 (fr)
WO (1) WO1994003682A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1009313C2 (nl) * 1998-06-04 1999-12-07 Stichting Grondmechanica Delft Buissysteem voor het in de grond brengen van meetapparatuur.
EP1728063A4 (fr) * 2004-03-23 2013-04-03 Benthic Geotech Pty Ltd Penetrometre a boule ameliore pour tester des sols mous
CN102830215B (zh) * 2012-09-03 2014-10-29 中国矿业大学 一种用于黏土的高压固结仪
CN110044673B (zh) * 2019-05-17 2021-10-08 安徽理工大学 土样制备和固结装置以及土样制备和固结方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6611541A (fr) * 1966-08-17 1968-02-19
JPS57123319A (en) * 1981-01-22 1982-07-31 Kiso Jiban Consultant Kk Method and apparatus for subsurface exploration
US4554819A (en) * 1983-09-28 1985-11-26 Ali Muhammad A Method of and apparatus for measuring in situ, the subsurface bearing strength, the skin friction, and other subsurface characteristics of the soil
GB2165051B (en) * 1984-09-28 1989-01-11 Pm Insitu Tech Limited Improved pressure meter

Also Published As

Publication number Publication date
CH689561A5 (de) 1999-06-15
DE59306879D1 (de) 1997-08-14
WO1994003682A1 (fr) 1994-02-17
ATE155186T1 (de) 1997-07-15
EP0606433A1 (fr) 1994-07-20

Similar Documents

Publication Publication Date Title
DE19828355C2 (de) Pneumatisch-Dynamische-Sonde und Verfahren zur Erkundung und Beurteilung kollabiler, nichtbindiger Böden
DE2349181A1 (de) Verfahren und einrichtung zum analysieren von spannungs- und belastungszustaenden
DE2229282B2 (de) Verfahren zum Herstellen von Säulen aus verdichtetem Sand im Baugrund
DE19521639C2 (de) Verfahren zur Überwachung eines HDI-Verfahrens
EP0606433B1 (fr) Procede pour la determination de la consistance d'un sous-sol
EP0394617B1 (fr) Dispositif pour mesurer la pression de béton
DE102017122414B4 (de) Bodenpenetrometer und Verfahren zur Bestimmung von Bodenparametern
CH657704A5 (de) Messkopf zur durchfuehrung von mikromechanischen messungen an oberflaechen von pruefobjekten.
EP1942247A1 (fr) Méthode et dispositif pour forer dans le sol par refoulement
EP3626890B1 (fr) Procédé d'essai de portance d'une fondation
DE4215383C2 (de) Probebelastungspfahl zur Messung der Tragfähigkeit von Pfahlgründungen
DE4411829A1 (de) Verfahren zur Ermittlung von bodenmechanischen Kennwerten und Sonde zur Durchführung der Messung
DE2941776C2 (de) Meßeinrichtung für Längen- und Querschnittsveränderungen von Bohrlöchern
DE19648547A1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund
DE19919351C1 (de) Verfahren zur Messung des Sackungsverhaltens vorzugsweise kohäsionsloser Lockergesteine
DE1698521B1 (de) Verfahren und Vorrichtung zur Messung der Wasserdurchlaessigkeit eines gewachsenen Bodens
DE2346377A1 (de) Verfahren zum einsetzen von bodenmessgeraeten
DE4328540C2 (de) Vorrichtung zur Bestimmung von Verformungskennziffern von Bau- und Deponiestoffen
DE2402058B1 (fr)
DE935398C (de) Vorrichtung zur Verbindung eines zur seismischen Lagerstaettenforschung dienenden Geophons mit dem Erdreich
DD300334A7 (de) Einrichtung zur radiometrischen dichtebestimmung mittels druck- und rammsonden
CH389513A (de) Hand-Rammgerät für die Prüfung des Baugrundes
CH716566B1 (de) Selbstbohrpfahl.
DE682351C (de) Verfahren zum Bestimmen der Tragfaehigkeit eines Baugrundes
CH492833A (de) Sondierverfahren und Vorrichtung zu dessen Ausführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR IT LI

17Q First examination report despatched

Effective date: 19951222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19970709

REF Corresponds to:

Ref document number: 155186

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

REF Corresponds to:

Ref document number: 59306879

Country of ref document: DE

Date of ref document: 19970814

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040708

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331