EP0605046B1 - Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde - Google Patents

Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde Download PDF

Info

Publication number
EP0605046B1
EP0605046B1 EP93203621A EP93203621A EP0605046B1 EP 0605046 B1 EP0605046 B1 EP 0605046B1 EP 93203621 A EP93203621 A EP 93203621A EP 93203621 A EP93203621 A EP 93203621A EP 0605046 B1 EP0605046 B1 EP 0605046B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
cavity
line
substrate
undersized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93203621A
Other languages
German (de)
English (en)
Other versions
EP0605046A1 (fr
Inventor
Patrice Gamand
Christophe Cordier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0605046A1 publication Critical patent/EP0605046A1/fr
Application granted granted Critical
Publication of EP0605046B1 publication Critical patent/EP0605046B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • the invention relates to a microwave device comprising at least one transition between a line of transmission integrated on a substrate, arranged in a said first microwave cavity, and a waveguide formed of this second microwave cavity, this transition comprising an open end of the integrated line forming probe inserted into the guide cavity, at a distance of one short circuit closing the end of the guide, this transition further comprising an impedance adapter system.
  • the invention finds its application in microwave devices which include on the one hand integrated circuits and secondly waveguides, which must be connected to each other.
  • the invention finds therefore its application in the field of antennas television, and in the field of radars for automobiles, among others.
  • This publication describes a transition between a microwave line of the microstrip type, disposed in a first microwave cavity, and a waveguide formed of a second microwave cavity.
  • This transition includes an open end of the integrated line which is introduced into the waveguide, perpendicular to its axis of propagation, through an opening made in a wall of the waveguide. In this way, the electric field propagation plans E of the probe and the guide coincide.
  • This transition further comprises an impedance adapter system applied to the integrated line which consists of a narrowing over a certain length of the microstrip at the surface of the substrate. This length is intended to form a quarter-wave adapter so as to tune the input impedance of the probe to 50 ⁇ .
  • the end of the short-circuit waveguide is located at a distance L from the microstrip conductor and the probe-forming end of the latter enters the guide to a depth D.
  • the known device can be broadband in the K frequency band (18-26 GHz).
  • planar integrated operating at very high frequencies between 40 GHz and 100 GHz.
  • These integrated circuits include general of planar transmission lines, for example from type called microstrip, and are connected to each other, or connected to antenna elements, by means of waveguides.
  • planar integrated circuits operating at these frequencies so high, require appropriate boxes able to preserve their performance. They require plus devices capable of transitioning between their input / output pads and the waveguides of connection.
  • the boxes they must have very high microwave qualities, which are specific to the working frequency of the circuits. Focus must be put particularly on the perfection of the contacts of mass, and on that of the microwave links between the I / O pads for integrated circuits and components external, connections which must be carried out by means of wires conductors, for example in gold, very short and very thin, subject to the various studs by means of micro-welds, performed for example by thermocompression. The focus should be also put on the mechanical resistance and the tightness of boxes which must preserve the integrated circuits of dust and corrosion liable to deteriorate their electrical qualities; indeed, many circuits microwave frequencies used in telecommunications are positioned on antenna mounts or on vehicles and undergo therefore bad weather.
  • the devices carrying out a waveguide / transmission line transition they must be both compatible with standard waveguides, and with the integrated circuit microwave inputs / outputs. In in addition, these devices must have all the qualities mechanical and electrical defined above for enclosures. In particular, these devices must be waterproof and not not cause leaks between the guides wave and integrated circuits. Electrical connections between this kind of transition device and a circuit integrated given must meet more defined conditions high relative to perfection of microwave contacts and ground contacts.
  • transitional arrangements must show good adaptation, in a wide band of frequencies, and at frequencies as high as 40 GHz at 100 GHz.
  • the known device of waveguide / transmission line transition does not allow to obtain the non-rupture of the seal which is required for the microstrip line.
  • the latter is carried out on a substrate by an integrated circuit technique.
  • the cavity which receives must therefore, for the reasons explained above, be waterproof against the waveguide.
  • the planar substrate which supports the probe end inserted in the guide wave does not close the guide cavity, since the dimension transverse of the substrate is less than the magnitude "a" of the straight section of the guide.
  • the substrate used to achieve the known device is made of a flexible material (Duroid) which has several special features.
  • this flexible substrate is used for two reasons: the first reason is that the transverse dimensions of the substrate are necessarily, for reasons of adaptation, very small, and that only a flexible substrate can support such small dimensions: the second reason is that flexible substrates have a low permeability of the order of 2, while the hard substrates, such as alumina, have good permeability higher, of the order of 8 to 10, much further from the air permeability (1). It turns out that this flexible substrate is a disadvantage for making electrical connections microwave using very fine gold wires because of its flexibility, the technology of fixing the wires by thermocompression cannot be used.
  • the large dimension "a" of the guide is 3.8 mm.
  • the substrate that is introduced into the guide is much less wide: its width is approximately half of "a” or 1.9 mm.
  • the distance between the two waveguides in the double assembly transition, also described in the cited publication, is 18 mm.
  • the dimensions of the substrate are so finally 1.9 mm x 18 mm. These dimensions make the very fragile substrate. This is why, in the known assembly, the substrate cannot be made of a material other than flexible.
  • An object of the invention is therefore to avoid these disadvantages, and in particular to provide a device for transition between a guide and a transmission line, capable to house an integrated circuit with the required performance for a box: able to allow a connection between the line of transmission and the microwave pad of the case which is easy to carry out industrially, and reliable; and who ensures tightness of both the transmission line and the circuit integrated and the connection between these two elements.
  • the defined device in the preamble and further characterized in that, first, the substrate is made of a permeability material of the order of 8 to 10, and in this that, next, the impedance adapter system includes apart from a restriction of the dimension of said first cavity microwave perpendicular to the direction of propagation, over a length parallel to the direction of propagation in the integrated line, and also includes a restriction on dimensions of the cross section of the waveguide in the region between the plane of the probe and the short-circuit plane.
  • this device is characterized in that in the region of the probe, this substrate covers the entire cross section of the waveguide, to produce the sealing of the line cavity.
  • FIG.1C shows in section a waveguide / transmission line transition device.
  • the waveguide itself is constituted by the hollow metallic piece 100 which has a rectangular cross section: the short side of dimension b1 is in the plane of FIG.1C, and the long side of dimension a1 is perpendicular in the plan of FIG.1C.
  • the electric field E symbolized by an arrow, is parallel to the short side b1 and propagates in the rectangular cavity 102a.
  • the transition includes a blade-shaped part said base, or lower blade 1, metallic, attached by fixing means, not shown, for example screws, of a part to guide 100, and secondly to support 2 of substrate 23 of the transmission line.
  • the lower blade 1 has a opening 12a in the extension of opening 102a of the guide wave; and the metal support 2 has an opening 22a in the extension of the opening 12a in the lower part.
  • the transition includes a shaped part metal blade 3 called upper intermediate which is positioned and fixed above the support 2, the substrate 23 being itself disposed in its support with the conductor 24 of the transmission line on its upper face.
  • This blade upper intermediate 3 includes an opening 32a in the extension of the openings 102a, 12a, 22a of the underlying parts.
  • the transition adapter system includes a narrowing of the waveguide dimensions in the section located between the transmission line and the short circuit plane.
  • the opening 22a of the support blade 2, and the opening 32a of the upper intermediate blade 3 are rectangular, with the short side of the dimension rectangle b2 ⁇ b1 and parallel to b1 and the short side of the opening 102a of the guide: and with the long side of the dimension rectangle a2 ⁇ a1, and parallel to a1 the long side of the opening 102a of the guide.
  • the transition between the guide itself 102a, from dimensions a1 x b1, and the narrowed upper part formed by openings 22a, 32a, of dimensions a2 x b2 is made by the opening 12a of the lower blade 1, this opening 12a having a funnel shape, with a smaller dimension of opening equal to a1 x b1 of the guide, and a dimension upper opening equal to a2 x b2 of the upper part shrinking.
  • the narrowed parts 22a, 32a undersized guide parts we will call hereafter the narrowed parts 22a, 32a undersized guide parts.
  • FIG. 1A and 1B represent the substrate 23 seen from face.
  • the transmission line is made using so-called technology microstrip which comprises a substrate 23, a line conductor formed of the microstrip 24 deposited on the upper face of the substrate 23 and a ground plane formed on the opposite face.
  • the waveguide / transmission line transition is done by introducing the end 25a of the conductor 24, of a length l in the cavity of the guide formed by the openings 102a, 12a, 22a, 32a. In this cavity, the maximum power is transmitted between the guide and the line, because the short circuit 42a is arranged at a distance D from the end 25a of the probe line. This distance D is created by the thickness of the upper intermediate piece 3.
  • the dotted line shows the projection of the cavity 32a, 33a and 41 made in the blade intermediate 3 for the microwave line formed from the substrate 23 and conductor 24.
  • the narrowed cavity 32a is rectangular or nearly rectangular so that produce the desired adaptation
  • the cavity 31 of the line has a narrowing 33a over a certain length L parallel to the line conductor 24.
  • the dimension L on which is practiced the narrowing, and the dimension of the narrowing itself in part 33a is not critical.
  • the substrate 23 is arranged in a groove 26 practiced in the support 2, to its dimensions. As shown on FIG. 1A and 1B, this substrate is rectangular, and its width is roughly equal to the large dimension a1 of the waveguide himself.
  • the dotted line shows the projection of the cavities 22a and 32a of dimensions a2 x b2 and the projection of cavity 102a from the guide dimension a1 x b1.
  • the substrate 23 for making the line of microstrip transmission is chosen from a hard material, by example of quartz or alumina or a ceramic.
  • a hard material by example of quartz or alumina or a ceramic.
  • the permissiveness of hard materials for microwave substrates is in the range of 8 to 10, i.e. much larger than that of flexible materials which is around 2: the air permissiveness being 1.
  • the substrate hard 23 is chosen of appropriate dimensions to close the cavity 102a, 12a, 22a of the waveguide in the upper part of opening 22a. This is possible because the dimensions of this substrate are greater than those of this opening.
  • this problem is solved by practicing the narrowing of the upper part of the guide materialized by parts 22a, 32a. At the same time, this solution allows obtain a frequency band widened towards the frequencies high.
  • this new means of adaptation makes it possible to obtain a better adaptation of the order of 22 dB at 70 GHz instead of the known 15 dB, the possibility of working up to frequencies of the order of 100 GHz, and further better sealing the transition.
  • the person skilled in the art will choose to carry out with the parts 22a, 32a, an undersized guide which allows to reject the appearance of modes higher than frequencies very high, much higher than the frequencies at which currently wish to work in the field of telecommunications: for example higher than 110 GHz.
  • an undersized guide structure 22a, 32a having a fair cutoff frequency higher than the frequency at which he wishes to work, then it will adjust the distance D from the short circuit plane to optimize the coupling between probe 25a at the end of the microstrip line, and the waveguide.
  • FIG. 2 represent in plan view the different parts of the transition as shown in section in FIG. 1C.
  • the elements represented in FIGS. 2A to 2A also allow for a double transition, that is to say a transition per transmission line of the type microstrip between two waveguides having cavities respectively 102a, 102b of dimensions a1 x a2.
  • the different parts 1, 2, 3, 4 are metal blades or metallic.
  • FIG.2D represents the lower blade 1 of the device, or base, which shows the trace of two openings in shape of truncated pyramids 12a, 12b respectively corresponding to the funnel-shaped transition between the waveguide cavities having the dimensions a1 x b1, and those of undersized guides in the region included between probe ends 25a, 25b and short circuits 42a, 42b.
  • FIG. 2C represents the support plate 2 of the substrate 23.
  • This support blade has a groove 26 of just dimensions higher than those of the substrate, rectangular, with enlargements 21 on the long sides of the substrate, the small ones sides of the substrate being substantially equal to the large dimension a1 of the guides, and the large dimension of the substrate being suitable for receiving a connection line between two waveguides, that is to say at least 18 mm; the substrate is intended to be glued in the bottom 27 of the groove 26, which must therefore have a depth at least equal or substantially equal to the thickness of the substrate.
  • the back side of the substrate is applied by gluing in the bottom 27 of the groove 26 and the excess glue comes out through the enlargements 21.
  • the substrate 23 may have a ground plane on its rear face, in the part in contact with the bottom of the groove, or we use the bottom of this groove as ground plane, the glue being chosen to be conductive.
  • a ground plane on its rear face, in the part in contact with the bottom of the groove, or we use the bottom of this groove as ground plane, the glue being chosen to be conductive.
  • transmission line called coplanar, where the ground plane is made on the same face of the substrate as the Line driver.
  • FIG. 2B represents the intermediate blade upper 3 with cutouts 32a, 32b to form the guides narrowed (or undersized) narrowing 33a, 33b forming the microwave cavities of the line of transmission, and the cavity 31 to receive an integrated circuit to connect with the transmission line.
  • the trace of the substrate 23 is shown in dotted lines in this FIG. 2B. Thickness of this blade 3 is D.
  • FIG. 2A represents the upper blade 4 called cover that closes the microwave cavity of the line and constitutes the short-circuit plans 42a, 42b.
  • This blade upper 4 is also thick enough to present a recess 41 suitable for containing the integrated circuit at connect to the transmission line.
  • the different blades 1, 2, 3, 4 and the waveguides 100 are subject to each other for example by screws, after mounting of the substrate 23 and connections with the integrated circuit (which is also not shown), which is positioned in cavity 41.

Description

L'invention concerne un dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat, disposée dans unedite première cavité hyperfréquences, et un guide d'onde formé d'unedite deuxième cavité hyperfréquences, cette transition comprenant une extrémité ouverte de la ligne intégrée formant sonde introduite dans la cavité du guide, à une distance d'un court-circuit fermant l'extrémité du guide, cette transition comprenant en outre un système adaptateur d'impédance.
L'invention trouve son application dans les dispositifs hyperfréquences qui comprennent d'une part des circuits intégrés et d'autre part des guides d'onde, qui doivent être connectés les uns aux autres. L'invention trouve donc son application dans le domaine des antennes de télévision, et dans le domaine des radars pour automobiles, entre autres.
Une transition entre un guide d'onde et une ligne microruban est déjà connue de la publication dans "1988 IEEE MTT-S Digest, P.4, pp.473-474", intitulée "Waveguide-To-Microstrip Transitions FOR MILLIMETER-WAVE Applications" par Yi-Chi SHIH, Thuy-Nhung TON, et Long Q.BUI, appartenant à Hughes Aircraft Company, Microwave Products Division, TORRANCE, California, USA.
Cette publication décrit une transition entre une ligne hyperfréquences du type microruban, disposée dans une première cavité hyperfréquences, et un guide d'onde formé d'une deuxième cavité hyperfréquences. Cette transition comprend une extrémité ouverte de la ligne intégrée qui est introduite dans le guide d'onde, perpendiculairement à son axe de propagation, par une ouverture pratiquée dans une paroi du guide d'onde. De cette manière, les plans de propagation du champ électrique E de la sonde et du guide coïncident. Cette transition comprend en outre un système adaptateur d'impédance appliqué à la ligne intégrée qui consiste en un rétrécissement sur une certaine longueur du microruban en surface du substrat. Cette longueur est prévue pour former un adaptateur quart-d'onde de manière à accorder l'impédance d'entrée de la sonde sur 50 Ω. L'extrémité du guide d'onde formant court-circuit est située à une distance L du conducteur microruban et l'extrémité formant sonde de ce dernier pénètre dans le guide sur une profondeur D. En ajustant minutieusement ces dimensions, le dispositif connu peut être large bande dans la bande de fréquences K (18-26 GHz).
Or, à ce jour, dans le domaine des télécommunications, on utilise de plus en plus de circuits intégrés planaires fonctionnant à des fréquences très élevées entre 40 GHz et 100 GHz. Ces circuits intégrés incluent en général des lignes de transmission planaires, par exemple du type dit microruban, et sont connectés entre eux, ou bien connectés à des éléments d'antennes, au moyen de guides d'onde.
Ces circuits intégrés planaires, fonctionnant à ces fréquences si élevées, requièrent des boítiers appropriés capables de préserver leurs performances. Ils requièrent de plus des dispositifs capables de réaliser une transition entre leurs plots d'entrées/sorties et les guides d'onde de connexion.
En ce qui concerne les boítiers, ils doivent présenter des qualités hyperfréquences très élevées, qui sont spécifiques de la fréquence de travail des circuits. L'accent doit être mis particulièrement sur la perfection des contacts de masse, et sur celle des liaisons hyperfréquences entre les plots d'entrées/sorties des circuits intégrés et les éléments externes, liaisons qui doivent être réalisées au moyen de fils conducteurs, par exemple en or, très courts et très fins, assujettis aux différents plots au moyen de micro-soudures, réalisées par exemple par thermocompression. L'accent doit être mis aussi sur la résistance mécanique et l'étanchéité des boítiers qui doivent préserver les circuits intégrés des poussières et de la corrosion susceptibles de détériorer leurs qualités électriques ; en effet, de nombreux circuits hyperfréquences utilisés en télécommunication sont positionnés sur des montures d'antennes ou sur des véhicules et subissent donc les intempéries.
En ce qui concerne les dispositifs réalisant une transition guide d'onde/ligne de transmission, ils doivent être à la fois compatibles avec les guides d'onde standards, et avec les entrées/sorties hyperfréquences des circuits intégrés. En outre, ces dispositifs doivent présenter toutes les qualités mécaniques et électriques définies plus haut pour les boítiers. En particulier, ces dispositifs doivent être étanches, et ne pas engendrer de discontinuité d'étanchéité entre les guides d'onde et les circuits intégrés. Les connexions électriques entre ce genre de dispositif de transition et un circuit intégré donné doivent répondre aux conditions définies plus haut relativement à la perfection des contacts hyperfréquences et des contacts de masse.
De plus, ces dispositifs de transition doivent montrer une bonne adaptation, dans une large bande de fréquences, et aux fréquences aussi élevées que 40 GHz à 100 GHz.
Le dispositif connu du document cité ne fournit pas une transition guide d'onde/ligne de transmission :
  • qui permette de raccorder un guide d'onde à un circuit intégré d'une manière étanche,
  • qui permette de réaliser industriellement des connexions hyperfréquences avec un circuit intégré avec la perfection requise,
  • qui présente une adaptation facile à réaliser industriellement, aux hyperfréquences envisagées.
En effet, tout d'abord, le dispositif connu de transition guide d'onde/ligne de transmission ne permet pas d'obtenir la non rupture de l'étanchéité qui est requise pour la ligne microruban. Cette dernière est réalisée sur un substrat par une technique de circuit intégré. La cavité qui la reçoit doit donc, pour les raisons exposées plus haut, être étanche vis-à-vis du guide d'onde. Or, le substrat plan qui supporte l'extrémité formant sonde introduite dans le guide d'onde ne ferme pas la cavité du guide, puisque la dimension transversale du substrat est inférieure à la grandeur "a" de la section droite du guide.
Ensuite la réalisation de l'adaptation électrique est délicate. Pour réaliser la transition, il faut faire pénétrer la ligne d'une distance D, inférieure à la dimension "b" du guide, dans la cavité du guide. L'extrémité de la ligne forme donc un circuit ouvert qui rayonne. Il faut alors placer judicieusement à une distance L = λ/4 de ladite ligne, un plan métallique formant court-circuit pour le guide, qui ferme ce guide perpendiculairement à la direction de propagation, de manière à assurer un maximum de propagation de la puissance rayonnée dans cette transition. Le rayonnement est donc accordable par la distance L du court-circuit qui est fixe. Cette transition nécessite alors un transformateur d'impédance qui consiste en un rétrécissement du conducteur microruban à proximité de la sonde. Ce genre de technologie est difficile à mettre en oeuvre sur le plan industriel quand le concepteur de dispositifs hyperfréquences est confronté au problème de réaliser des dispositifs grand public tel que c'est le cas dans les domaines de la télévision ou de l'automobile. Il faut alors que les performances obtenues ne soient pas sensibles aux tolérances de fabrication ; or, dans le cas de ce rétrécissement du conducteur, elles le sont.
En outre, le substrat utilisé pour réaliser le dispositif connu, est fait en un matériau souple (Duroïd) qui présente plusieurs particularités. Dans le dispositif connu ce substrat souple est utilisé pour deux raisons : la première raison est que les dimensions transversales du substrat sont obligatoirement, pour des raisons d'adaptation, très petites, et que seul un substrat souple peut supporter de si petites dimensions : la seconde raison est que les substrats souples ont une faible permitivité de l'ordre de 2, alors que les substrats durs, tels que l'alumine ont une permitivité bien plus élevée, de l'ordre de 8 à 10, bien plus éloignée de la permitivité de l'air (1). Il se trouve que ce substrat souple est un inconvénient pour réaliser des connexions électriques hyperfréquences au moyen de fils d'or très fins car du fait de sa souplesse, la technologie de fixation des fils par thermocompression ne peut pas être employée. La réalisation des interconnexions entre un substrat souple et "une puce" ou substrat dur de circuit intégré est un problème que l'homme du métier ne sait pas bien résoudre à ce jour. Donc ce genre d'interconnexion doit être évité, pour que le concepteur de dispositifs hyperfréquences puisse compter sur un bon rendement industriel de fabrication.
Il faut bien considéré les dimensions en jeu dans cet état de la technique. En référence avec la FIG.1a du document cité, la grande dimension "a" du guide est de 3,8 mm. Le substrat qui est introduit dans le guide est bien moins large : sa largeur est environ moitié de "a" soit 1,9 mm. La distance entre les deux guides d'onde dans le montage à double transition, également décrit dans la publication citée, est de 18 mm. Dans ce dispositif connu les dimensions du substrat sont donc finalement de 1,9 mm x 18 mm. Ces dimensions rendent le substrat très fragile. c'est pourquoi, dans le montage connu, le substrat ne peut pas être fabriqué en un matériau autre que souple.
Un but de l'invention est donc d'éviter ces inconvénients, et en particulier de fournir un dispositif de transition entre un guide et une ligne de transmission, capable d'abriter un circuit intégré avec les performances requises pour un boítier : apte à permettre une connexion entre la ligne de transmission et le plot hyperfréquences du boítier qui soit facile à réaliser industriellement, et fiable ; et qui assure l'étanchéité à la fois de la ligne de transmission, du circuit intégré et de la connexion entre ces deux éléments.
Ce but est atteint au moyen du dispositif défini dans le préambule et en outre caractérisé en ce que, d'abord, le substrat est en un matériau de permitivité de l'ordre de 8 à 10, et en ce que, ensuite, le système adaptateur d'impédance comprend d'une part une restriction de la dimension de ladite première cavité hyperfréquences perpendiculaire à la direction de propagation, sur une longueur parallèle à la direction de propagation dans la ligne intégrée, et comprend d'autre part une restriction des dimensions de la section droite du guide d'onde dans la région entre le plan de la sonde et le plan de court-circuit.
Ce dispositif montre plusieurs avantages qui interagissent les uns sur les autres :
  • les moyens d'adaptation qui sont appliqués à la fois à la cavité du guide et à la cavité de la ligne permettent d'utiliser un substrat de dimension transversale environ double de celui de l'état de la technique, d'où il résulte que ce substrat peut être dur ;
  • le substrat de permitivité élevée pourra être un matériau dur qui permet d'effectuer des soudures par thermocompression sur le conducteur de la ligne et donc d'obtenir de bons contacts hyperfréquences ;
  • le substrat étant à la fois dur et plus large que le substrat connu est apte à s'étendre transversalement sur toute la section droite du guide pour la fermer et ainsi rendre étanche la cavité de la ligne, cette fermeture étant d'autant plus facile que la cavité du guide à des dimensions restreintes dans cette région.
Dans une mise en oeuvre, ce dispositif est caractérisé en ce que dans la région de la sonde, ce substrat recouvre toute la section droite du guide d'onde, pour produire l'étanchéité de la cavité de la ligne.
Les avantages qui en découlent sont que :
  • la cavité de la ligne étant étanche peut recevoir un circuit intégré ;
  • ce circuit intégré aura une liaison hyperfréquences de très bonne qualité avec la ligne, du fait du substrat dur ;
  • le système d'adaptation de ce dispositif de transition est meilleur que l'adaptateur connu ;
  • la bande de fréquence de fonctionnement de ce dispositif de transition peut aussi être notablement étendue.
L'invention est décrite ci-après en détail, en référence avec les figures schématiques annexées dont :
  • la FIG.1A représente le substrat avec le conducteur de la ligne de transmission, et en pointillé la projection de la partie de cavité hyperfréquences, côté conducteur de la ligne, vu du dessus ;
  • la FIG.1B représente le substrat avec le conducteur de la ligne de transmission, et en pointillé la projection de la cavité du guide d'onde, côté face du substrat opposée à celle qui reçoit le conducteur vu du dessus ;
  • la FIG.1C représente en coupe le dispositif de transition entre un guide d'onde et une ligne de transmission du type microruban selon les FIG.1A et 1B ;
  • la FIG.2A représente en vue plane, la lame métallique supérieure avec le court-circuit du guide et le logement pour un circuit intégré ;
  • la FIG.2B représente en vue plane, une lame métallique intermédiaire entre le substrat côté conducteur de la ligne, et la lame métallique supérieure, cette lame intermédiaire ayant les découpes pour les systèmes adaptateurs et la découpe pour le logement d'un circuit intégré ;
  • la FIG.2C représente en vue plane, une lame métallique qui support directement le substrat côté plan de masse ;
  • la FIG.2D représente en vue plane une lame métallique dite inférieure avec un entonnoir entre la partie adaptateur du guide d'onde et le guide d'onde lui-même ;
d'une manière générale les FIG.2 représentent des lames métalliques assemblables pour réaliser une double transition ligne de transmission/guide d'onde.
La FIG.1C représente en coupe un dispositif de transition guide d'onde/ligne de transmission. Le guide d'onde lui-même est constitué par la pièce métallique creuse 100 qui a une section droite rectangulaire : le petit côté de dimension b1, est dans le plan de la FIG.1C, et le grand côté, de dimension a1 est perpendiculaire au plan de la FIG.1C. Le champ électrique E symbolisé par une flèche, est parallèle au petit côté b1 et se propage dans la cavité rectangulaire 102a.
La transition comprend une partie en forme de lame dite base, ou lame inférieure 1, métallique, rattachée par des moyens de fixation non représentés, par exemple des vis, d'une part au guide 100, et d'autre part au support 2 du substrat 23 de la ligne de transmission. La lame inférieure 1 a une ouverture 12a dans le prolongement de l'ouverture 102a du guide d'onde ; et le support métallique 2 a une ouverture 22a dans le prolongement de l'ouverture 12a de la partie inférieure.
En outre la transition comprend une partie en forme de lame métallique 3 dite intermédiaire supérieure qui est positionnée et fixée au-dessus du support 2, le substrat 23 étant lui-même disposé dans son support avec le conducteur 24 de la ligne de transmission sur sa face supérieure. Cette lame intermédiaire supérieure 3 comprend une ouverture 32a dans le prolongement des ouvertures 102a, 12a, 22a des pièces sous-jacentes.
Le système adaptateur de la transition inclut un rétrécissement des dimensions du guide d'onde dans la partie située entre la ligne de transmission et le plan court-circuit. A cet effet l'ouverture 22a de la lame support 2, et l'ouverture 32a de la lame intermédiaire supérieure 3, sont rectangulaires, avec le petit côté du rectangle de dimension b2 < b1 et parallèle à b1 et le petit côté de l'ouverture 102a du guide : et avec le grand côté du rectangle de dimension a2 < a1, et parallèle à a1 le grand côté de l'ouverture 102a du guide. La transition entre le guide lui-même 102a, de dimensions a1 x b1, et la partie supérieure étrécie formée des ouvertures 22a, 32a, de dimensions a2 x b2 est effectuée par l'ouverture 12a de la lame inférieure 1, cette ouverture 12a ayant une forme d'entonnoir, avec une dimension inférieure d'ouverture égale à a1 x b1 du guide, et une dimension supérieure d'ouverture égale à a2 x b2 de la partie supérieure étrécie. On appellera ci-après les parties étrécies 22a, 32a parties de guide sous-dimensionnée.
Les FIG.1A et 1B représentent le substrat 23 vu de face. La ligne de transmission est réalisée en technologie dite microruban qui comprend un substrat 23, un conducteur de ligne formé du microruban 24 déposé sur la face supérieure du substrat 23 et un plan de masse formé sur la face opposée.
La transition guide d'onde/ligne de transmission se fait en introduisant l'extrémité 25a du conducteur 24, d'une longueur ℓ dans la cavité du guide formé des ouvertures 102a, 12a, 22a, 32a. Dans cette cavité, le maximum de puissance est transmise entre le guide et la ligne, du fait que le court-circuit 42a est disposé à une distance D de l'extrémité 25a de la ligne formant sonde. Cette distance D est créée par l'épaisseur de la pièce intermédiaire supérieure 3.
Sur la FIG.1A, on a représenté en pointillé la projection de la cavité 32a, 33a et 41 pratiquée dans la lame intermédiaire 3 pour la ligne hyperfréquence formée du substrat 23 et du conducteur 24. Pour que la cavité étrécie 32a soit rectangulaire ou pratiquement rectangulaire de manière à produire l'adaptation recherchée, la cavité 31 de la ligne a un rétrécissement 33a sur une certaine longueur L parallèlement au conducteur 24 de la ligne. La dimension L sur laquelle est pratiqué le rétrécissement, et la dimension du rétrécissement lui-même dans la partie 33a ne sont pas critiques.
Le substrat 23 est disposé dans une rainure 26 pratiquée dans le support 2, à ses dimensions. Comme montré sur les FIG.1A et 1B, ce substrat est rectangulaire, et sa largeur est à peu près égale à la grande dimension a1 du guide d'onde lui-même.
Sur la FIG.1B, on a représenté en pointillé la projection des cavités 22a et 32a de dimensions a2 x b2 étrécies, et la projection de la cavité 102a du guide de dimension a1 x b1.
Le substrat 23 pour réaliser la ligne de transmission microruban est choisi en un matériau dur, par exemple du quartz ou de l'alumine ou une céramique. D'une manière générale la permitivité des matériaux durs pour substrats hyperfréquences est de l'ordre de 8 à 10, c'est-à-dire beaucoup plus grande que celle des matériaux souples qui est de l'ordre de 2 : la permitivité de l'air étant 1.
Il en résulte un grand changement du fonctionnement en hyperfréquences.
Dans le mode de réalisation de la transition guide d'onde/ligne décrit en référence avec les FIG.1, le substrat dur 23 est choisi de dimensions appropriées à fermer la cavité 102a, 12a, 22a du guide d'onde dans la partie supérieure de l'ouverture 22a. Cela est possible du fait que les dimensions de ce substrat sont supérieures à celles de cette ouverture.
Il apparaít que le choix d'un substrat dur produit un changement du fonctionnement hyperfréquences favorable pour plusieurs raisons :
  • l'adaptation peut être obtenue avec un substrat dur de grande dimension a1, à peu près double de ce qui était connu de l'état de la technique, donc suffisamment grande pour que ce substrat soit réalisable industriellement ;
  • ce substrat dur a alors les dimensions nécessaires à la fermeture du guide, c'est-à-dire à la création d'une étanchéité pour la ligne ;
  • l'adaptation est obtenue par la réalisation d'un étrécissement de la partie supérieure du guide, facile à réaliser, et favorable à l'étanchéité ; l'autre rétrécissement 33a n'étant pas critique du fait qu'il ne sert qu'à permettre à la cavité 32a d'être rectangulaire ;
  • l'utilisation du substrat dur permet non seulement l'étanchéité de la cavité de ligne, mais encore de pouvoir réaliser de bons contacts par thermo-compression, sur le conducteur de ligne ;
  • enfin la partie 41 de la partie supérieure 1, qui se trouve dans la zone étanche de la cavité 31 de ligne, peut recevoir sans encombre un circuit intégré bien protégé. La partie 41 est un agrandissement vers le haut de la cavité hyperfréquences 31 de la ligne.
Le problème qui se pose lorsque l'on adopte un substrat ayant une permitivité aussi élevée que celle d'un substrat dur (environ 8 à 10) est que la cavité de la ligne, et la cavité à la transition ligne/guide doivent être très bien étudiées, car il s'y produit l'excitation de modes supérieurs qui sont centrés sur des fréquences relativements proches de celles de la bande de fonctionnement et qui constituent un phénomène qui rend inefficace l'action du système d'adaptation connu. Le problème est donc d'éloigner les fréquences de ces modes supérieurs.
Ce problème est résolu en pratiquant le rétrécissement de la partie supérieure du guide concrétisé par les parties 22a, 32a. En même temps, cette solution permet d'obtenir une bande de fréquence élargie vers les fréquences élevées. Ainsi, ce nouveau moyen d'adaptation permet d'obtenir une meilleure adaptation de l'ordre de 22 dB à 70 GHz au lieu des 15 dB connus, la possibilité de travailler jusqu'à des fréquences de l'ordre de 100 GHz, et en outre une meilleure étanchéité de la transition.
En effet, l'homme du métier choisira de réaliser avec les parties 22a, 32a, un guide sous-dimensionné qui permet de rejeter l'apparition de modes supérieurs à des fréquences très hautes, bien supérieures aux fréquences auxquelles on souhaite travailler actuellement dans le domaine des télécommunications : par exemple supérieures à 110 GHz. A cet effet l'homme du métier choisira une structure de guide sous-dimensionné 22a, 32a ayant une fréquence de coupure juste supérieure à la fréquence à laquelle il souhaite travailler, puis il ajustera la distance D du plan du court-circuit pour optimiser le couplage entre la sonde 25a à l'extrémité de la ligne microruban, et le guide d'onde.
Ainsi, dans le présent dispositif, au lieu de sur-dimensionner le guide d'onde vis-à-vis de la ligne comme cela était connu de l'état de la technique, le problème est résolu en sous-dimensionnant le guide vis-à-vis de la ligne. L'adoption d'un substrat dur dans le présent dispositif crée une perturbation qui est utilisée pour réaliser l'adaptation du guide à la ligne. Le sous-dimensionnement du guide permet de positionner la bande de fréquence utile. Plus la fréquence recherchée est élevée, plus le guide sera sous-dimensionné.
On donnera plus loin des exemples de dimensions appropriées à réaliser les différentes parties de la transition, en fonction de la fréquence recherchée.
Les FIG.2 représentent en vue plane les différentes parties composant la transition telle que représentée en coupe sur la FIG.1C. Les éléments représentés sur les FIG.2A à 2A permettent en outre de réaliser une transition double, c'est-à-dire une transition par ligne de transmission du type microruban entre deux guides d'onde ayant des cavités respectivement 102a, 102b de dimensions a1 x a2. Les différentes pièces 1, 2, 3, 4 sont des lames métalliques ou métallisées.
La FIG.2D représente la lame inférieure 1 du dispositif, ou base, qui montre la trace de deux ouvertures en forme de pyramides tronquées 12a, 12b respectivement correspondant à la transition en forme d'entonnoir entre les cavités des guides d'onde ayant les dimensions a1 x b1, et celles des guides sous-dimensionnés dans la région comprise entre les extrémités de sondes 25a, 25b et les courts-circuits 42a, 42b.
La FIG.2C représente la lame support 2 du substrat 23. Cette lame support a une rainure 26 de dimensions justes supérieures à celles du substrat, rectangulaire, avec des élargissements 21 sur les grands côtés du substrat, les petits côtés du substrat étant sensiblement égaux à la grande dimension a1 des guides, et la grande dimension du substrat étant appropriée à recevoir une ligne de connexion entre deux guides d'onde, c'est-à-dire au moins 18 mm ; le substrat est destiné à être collé dans le fond 27 de la rainure 26, qui doit donc avoir une profondeur au moins égale ou sensiblement égale à l'épaisseur du substrat. Lors du collage, la face arrière du substrat est appliquée par collage dans le fond 27 de la rainure 26 et l'excès de colle sort par les élargissements 21. Le substrat 23 peut avoir un plan de masse sur sa face arrière, dans la partie en contact avec le fond de la rainure, ou bien on utilise le fond de cette rainure comme plan de masse, la colle étant choisie conductrice. Il existe aussi une réalisation de ligne de transmission, dite coplanaire, où le plan de masse est fait sur la même face du substrat que le conducteur de ligne.
Les extrémités du conducteur 24, réalisé à la partie supérieure du substrat, arrivent sensiblement au centre des ouvertures 22a, 32a dont la trace est représentée en pointillés sur la FIG.2C.
La FIG.2B représente la lame intermédiaire supérieure 3 avec les découpes 32a, 32b pour former les guides étrécis (ou sous-dimensionnés) les rétrécissements 33a, 33b formant les cavités hyperfréquences de la ligne de transmission, et la cavité 31 pour recevoir un circuit intégré à connecter avec la ligne de transmission. La trace du substrat 23 est représentée en pointillés sur cette FIG.2B. L'épaisseur de cette lame 3 est D.
La FIG.2A rerpésente la lame supérieure 4 dite couvercle qu ferme la cavité hyperfréquences de la ligne et constitue les plans de courts-circuitts 42a, 42b. Cette lame supérieure 4 est en outre suffisamment épaisse pour présenter un évidement 41 approprié à contenir le circuit intégré à connecter à la ligne de transmission.
Les différentes lames 1, 2, 3, 4 ainsi que les guides d'onde 100 (non représentés sur la FIG.2) sont assujettis les uns aux autres par exemple par des vis, après montage du substrat 23 et connexions avec le circuit intégré (qui n'est pas non plus représenté), lequel est positionné dans la cavité 41.
Exemple de réalisation
On donne ci-après à titre d'exemple non limitatif des dimensions des parties du dispositif de transition précédemment décrites, pour obtenir un fonctionnement dans la bande de fréquences
   50 à 90 GHz.
Ces dimensions sont données pour une transition double, du type représenté sur les FIG.2 :
   a1 = 3,8 mm   b1 = 1,9 mm
   a2 = 3,1 mm   b2 = 1,5 mm
   L = 4 mm
   ℓ = (b2/2) + (b2/10)
   D = 1,8 à 2,4 mm pour une fréquence 55 GHZ.
Matériau du substrat = Alumine (Al2O3)
Permitivité du matériau alumine ε = 9,6
Epaisseur du substrat alumine = 0,127 mm
Largeur du conducteur microruban = 0,127 mm
Longueur totale du substrat = 18 mm
Largeur totale du substrat = 4 mm
Dimension transversale de la restriction de la cavité de ligne (33a,33b) = 1 mm
Pertes par désaptation pour les 2 transitions et les 18 mm de ligne : 20 à 25 dB (meilleures que l'état de la technique qui obtient 15 dB)
Pertes d'insertion ≃ 2,3 dB équivalent à l'état de la technique.

Claims (11)

  1. Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission (24) intégrée sur un substrat (23), disposée dans unedite première cavité hyperfréquences (31), et un guide d'onde (100) formé d'unedite deuxième cavité hyperfréquences (102a, 102b), cette transition comprenant une extrémité ouverte (25a, 25b) de la ligne intégrée formant sonde introduite dans la cavité du guide, a une distance d'un court-circuit (42a, 42b) fermant l'extrémité du guide, cette transition comprenant en outre un système adaptateur d'impédance, caractérisé en ce que d'abord le substrat (23) est en un matériau de permitivité de l'ordre de 8 à 10, et en ce que, ensuite, le système adaptateur d'impédance comprend d'une part une restriction (33a, 33b) de la dimension de ladite première cavité hyperfréquences (31) perpendiculaire à la direction de propagation, sur une longueur parallèle à la direction de propagation dans la ligne intégrée (24), et comprend d'autre part une restriction des dimensions de la section droite du guide d'onde dans la région (22a, 32a : 22b, 32b) entre la sonde (25a, 25b) et le plan du court-circuit (32a, 42b), formant dans cette région une partie de guide dite sous-dimensionnée.
  2. Dispositif selon la revendication 1, caractérisé en ce que, dans la région de la sonde, le substrat (23) recouvre toute la section droite du guide d'onde, pour produire l'étanchéité de la ligne.
  3. Dispositif selon la revendication 2, caractérisé en ce que la ligne intégrée (24) est du type microruban formée par un conducteur hyperfréquences en forme de ruban réalisé sur une face du substrat dur (23), dont l'autre face porte un plan de masse disposé en contact avec une paroi (27) de ladite première cavité (31) hyperfréquence, ou formé par ladite paroi (27).
  4. Dispositif selon la revendication 3, caractérisé en ce que la cavité (31) de la ligne de transmission (23, 24) comprend un logement (41) étanche pour un circuit intégré à raccorder avec cette ligne.
  5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce qu'il est composé de plusieurs partie 1,2,3,4 métalliques ou métallisées en forme de lames, ayant des évidements pour former des cavités pour le(s) guide(s) et une cavité pour la ligne hyperfréquences, ces lames (1, 2, 3, 4) étant superposées avec leurs parties creuses en regard, et leurs parois raccordées pour former la continuité des cavités hyperfréquences.
  6. Dispositif selon la revendication 5, caractérisé en ce que, lesdites lames métalliques ou métallisées, réalisent une première partie dite inférieure (1, 2) qui reçoit le substrat (23) de la ligne intégrée dans une rainure (26) dont le fond (27) est en contact avec ou forme le plan de masse de la ligne, qui a une cavité (22a, 22b) de guide sous-dimensionné disposée dans le prolongement d'un guide d'onde (102a, 102b), et qui a une transition (12a, 12b) de guide pour passer des dimensions du guide d'onde aux dimensions du guide sous-dimensionné (22a,22b), les dimensions du substrat (28) dans la région de la sonde étant prévues pour couvrir la totalité de la section droite du guide sous-dimensionné (22a,22b) de manière à obturer la cavité (31) de la ligne vis-à-vis du guide d'onde, et en ce que, lesdites lames métalliques ou métallisées réalisent une seconde partie dite supérieure (3, 4) pur fermer hermétiquement la cavité de ligne (31), qui comporte une cavité (32a, 32b) de guide sous-dimensionné disposée dans le prolongement du guide sous-dimensionné de la partie inférieure (1, 2), fermée par un plan (42a, 42b) formant le court-circuit du guide d'onde, qui comporte une cavité (31) pour la ligne de transmission, et qui comporte une restriction (33a, 33b) de cette cavité, pour former, avec le guide sous-dimensionné (22a,32a ; 22b, 32b) l'adaptateur d'impédance.
  7. Dispositif selon la revendication 6, caractérisé en ce que, la seconde partie dite supérieure est elle-même formée de deux lames (3 et 4), une dite lame intermédiaire supérieure (3) métallique ou métallisée, incluant une partie creuse (31) pour former la cavité de la ligne, débouchant de part et d'autre de la lame (3), cette cavité (31) étant munie de la restriction (33a, 33b) et cette lame (3) incluant la cavité de guide sous-dimensionnée (32a, 32b) prévue entre la sonde et le court-circuit du guide, pour réaliser l'adaptateur d'impédance, et une lame dite couvercle (4) pour fermer ladite première cavité hyperfréquence (31), et pour constituer un (des) plan(s) de courts-circuit (42a, 42b) pour le(s) guide(s) d'onde.
  8. Dispositif selon la revendication 7, caractérisé en ce que la lame dite couvercle (4) a une cavité (41) dans la région qui ne coïncide pas avec la restriction (33a, 33b) pour recevoir des dispositif hyperfréquences annexes.
  9. Dispositif selon l'une des revendications 7 ou 8, caractérisé en ce que la lame intermédiaire supérieure (3) définit par son épaisseur (D) la distance entre la sonde (25a, 25b) et les plans de courts-circuits respectifs (42a, 42b) des guides d'onde.
  10. Dispositif selon l'une des revendications 7 ou 8, caractérisé en ce que la première partie dite inférieure est formée elle-même de deux lames (1 et 2), une lame dite base (1) ayant une ouverture (12a, 12b) en forme d'entonnoir pour former la transition entre guide d'onde (102a, 102b) et guide sous-dimensionné (22a, 22b), et une lame dite support (2) pour être disposée entre la base (1) et la lame intermédiaire supérieure (3), munie d'une partie de guide sous-dimensionnée (22a, 22b), et ayant une rainure (26) pour recevoir le substrat (23) s'étendant à travers l'ouverture (22a, 22b) sous-dimensionnée, le substrat (23) étant muni du conducteur microruban (24) sur sa face opposée à la face en contact avec le fond (27) plan de la rainure (26).
  11. Dispositif selon l'une des revendications 1 à 10, caractérisé en ce qu'il comprend deux transitions disposées chacune à une des extrémités de la ligne de transmission intégrée, avec un adaptateur d'impédance associé à chacune de ces transitions, en ce qu'un circuit intégré est monté dans une cavité (41) et connecté à la ligne de transmission, et en ce que les guides d'onde (102a, 102b), les parties de guides sous-dimensionnées (22a, 32a ; 22b, 32b) et les transitions entre guides et guides sous-dimensionnés (12a, 12b) ont des sections droites rectangulaires.
EP93203621A 1992-12-29 1993-12-22 Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde Expired - Lifetime EP0605046B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9215837A FR2700066A1 (fr) 1992-12-29 1992-12-29 Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde.
FR9215837 1992-12-29

Publications (2)

Publication Number Publication Date
EP0605046A1 EP0605046A1 (fr) 1994-07-06
EP0605046B1 true EP0605046B1 (fr) 1998-03-11

Family

ID=9437208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93203621A Expired - Lifetime EP0605046B1 (fr) 1992-12-29 1993-12-22 Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d'onde

Country Status (5)

Country Link
US (1) US5414394A (fr)
EP (1) EP0605046B1 (fr)
JP (1) JPH06283914A (fr)
DE (1) DE69317390T2 (fr)
FR (1) FR2700066A1 (fr)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726664A (en) * 1994-05-23 1998-03-10 Hughes Electronics End launched microstrip or stripline to waveguide transition with cavity backed slot fed by T-shaped microstrip line or stripline usable in a missile
US5724049A (en) * 1994-05-23 1998-03-03 Hughes Electronics End launched microstrip or stripline to waveguide transition with cavity backed slot fed by offset microstrip line usable in a missile
DE19505860A1 (de) * 1995-02-21 1996-08-22 Philips Patentverwaltung Konverter
US5539361A (en) * 1995-05-31 1996-07-23 The United States Of America As Represented By The Secretary Of The Air Force Electromagnetic wave transfer
JPH1065038A (ja) * 1996-08-22 1998-03-06 Mitsubishi Electric Corp ミリ波デバイス用パッケージ
EP0874415B1 (fr) * 1997-04-25 2006-08-23 Kyocera Corporation Module à haute fréquence
EP0985243B1 (fr) * 1997-05-26 2009-03-11 Telefonaktiebolaget LM Ericsson (publ) Dispositif de transmission hyperfrequence
US5929728A (en) * 1997-06-25 1999-07-27 Hewlett-Packard Company Imbedded waveguide structures for a microwave circuit package
US5912598A (en) * 1997-07-01 1999-06-15 Trw Inc. Waveguide-to-microstrip transition for mmwave and MMIC applications
US6100853A (en) * 1997-09-10 2000-08-08 Hughes Electronics Corporation Receiver/transmitter system including a planar waveguide-to-stripline adapter
US5982250A (en) * 1997-11-26 1999-11-09 Twr Inc. Millimeter-wave LTCC package
JP3129288B2 (ja) * 1998-05-28 2001-01-29 日本電気株式会社 マイクロ波集積回路マルチチップモジュール、マイクロ波集積回路マルチチップモジュールの実装構造
US6040739A (en) * 1998-09-02 2000-03-21 Trw Inc. Waveguide to microstrip backshort with external spring compression
US6486748B1 (en) 1999-02-24 2002-11-26 Trw Inc. Side entry E-plane probe waveguide to microstrip transition
EP1052726B1 (fr) * 1999-05-05 2008-02-20 Interuniversitair Micro-Elektronica Centrum Vzw Procédé de fabrication d'une antenne à guide d'onde micro-usiné à couplage à fente
EP1063723A1 (fr) * 1999-06-22 2000-12-27 Interuniversitair Micro-Elektronica Centrum Vzw Antenne à guide d'onde micro-usiné à couplage à fente
KR20010091158A (ko) * 2000-03-13 2001-10-23 서평원 마이크로스트립 대 도파관 천이 구조 및 이 천이 구조를이용한 로컬 다중점 분산 서비스 장치
DE60009962T2 (de) * 2000-10-18 2004-09-02 Nokia Corp. Hohlleiter-streifenleiter-übergang
WO2002052674A1 (fr) 2000-12-21 2002-07-04 Paratek Microwave, Inc. Transition entre un guide d'ondes et un microruban
KR100692624B1 (ko) * 2001-04-18 2007-03-13 넥스원퓨처 주식회사 도파관과 마이크로스트립 라인간의 결합 구조
US6518853B1 (en) 2001-09-06 2003-02-11 The Boeing Company Wideband compact large step circular waveguide transition apparatus
EP1367668A1 (fr) * 2002-05-30 2003-12-03 Siemens Information and Communication Networks S.p.A. Système de transition entre microruban et guide d'ondes à large bande sur une carte de circuits imprimés multicouche
KR100472681B1 (ko) * 2002-10-21 2005-03-10 한국전자통신연구원 도파관 구조의 패키지 및 그 제조 방법
FR2850793A1 (fr) * 2003-01-31 2004-08-06 Thomson Licensing Sa Transition entre un circuit micro-ruban et un guide d'onde et unite exterieure d'emission reception incorporant la transition
US20050151695A1 (en) * 2004-01-14 2005-07-14 Ming Chen Waveguide apparatus and method
US7276988B2 (en) * 2004-06-30 2007-10-02 Endwave Corporation Multi-substrate microstrip to waveguide transition
US7603097B2 (en) * 2004-12-30 2009-10-13 Valeo Radar Systems, Inc. Vehicle radar sensor assembly
US7680464B2 (en) * 2004-12-30 2010-03-16 Valeo Radar Systems, Inc. Waveguide—printed wiring board (PWB) interconnection
US7411553B2 (en) * 2005-03-16 2008-08-12 Hitachi Chemical Co., Ltd. Planar antenna module, triple plate planar, array antenna, and triple plate feeder-waveguide converter
JP4511406B2 (ja) * 2005-03-31 2010-07-28 株式会社デンソー 空中線装置
JP4395103B2 (ja) * 2005-06-06 2010-01-06 富士通株式会社 導波路基板および高周波回路モジュール
US7420436B2 (en) * 2006-03-14 2008-09-02 Northrop Grumman Corporation Transmission line to waveguide transition having a widened transmission with a window at the widened end
JP4365852B2 (ja) * 2006-11-30 2009-11-18 株式会社日立製作所 導波管構造
JP4648292B2 (ja) * 2006-11-30 2011-03-09 日立オートモティブシステムズ株式会社 ミリ波帯送受信機及びそれを用いた車載レーダ
WO2008068825A1 (fr) * 2006-12-01 2008-06-12 Mitsubishi Electric Corporation Antenne de réseau à fente de ligne coaxiale et son procédé de fabrication
JP5653741B2 (ja) 2010-12-15 2015-01-14 タカタ株式会社 バックルおよびこれを備えたシートベルト装置
US9270005B2 (en) 2011-02-21 2016-02-23 Siklu Communication ltd. Laminate structures having a hole surrounding a probe for propagating millimeter waves
US8680936B2 (en) * 2011-11-18 2014-03-25 Delphi Technologies, Inc. Surface mountable microwave signal transition block for microstrip to perpendicular waveguide transition
WO2013190437A1 (fr) * 2012-06-20 2013-12-27 Siklu Communication ltd. Systèmes et procédés pour structures stratifiées à ondes de l'ordre du millimètre
US9653796B2 (en) 2013-12-16 2017-05-16 Valeo Radar Systems, Inc. Structure and technique for antenna decoupling in a vehicle mounted sensor
JP6219156B2 (ja) * 2013-12-18 2017-10-25 日本ピラー工業株式会社 アンテナ用ユニット
JP6105496B2 (ja) * 2014-01-21 2017-03-29 株式会社デンソー 一括積層基板
US9488719B2 (en) * 2014-05-30 2016-11-08 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar sub-system packaging for robustness
US9553057B1 (en) * 2014-09-30 2017-01-24 Hrl Laboratories, Llc E-plane probe with stepped surface profile for high-frequency
JP6369394B2 (ja) * 2015-06-08 2018-08-08 住友電気工業株式会社 伝送線路−導波管変換器
WO2017167916A1 (fr) * 2016-03-31 2017-10-05 Huber+Suhner Ag Plaque d'adaptateur et ensemble antenne
US10468736B2 (en) * 2017-02-08 2019-11-05 Aptiv Technologies Limited Radar assembly with ultra wide band waveguide to substrate integrated waveguide transition
US10469589B2 (en) 2017-11-14 2019-11-05 Ford Global Technologies, Llc Vehicle cabin mobile device sensor system
US10476967B2 (en) 2017-11-14 2019-11-12 Ford Global Technologies, Llc Vehicle cabin mobile device detection system
ES2792043T3 (es) * 2017-12-04 2020-11-06 Grieshaber Vega Kg Placa de circuitos impresos para un aparato de medición de nivel de llenado por radar con un acoplamiento de guía de ondas
US11404758B2 (en) * 2018-05-04 2022-08-02 Whirlpool Corporation In line e-probe waveguide transition
CN113169434B (zh) * 2018-12-04 2022-07-01 三菱电机株式会社 波导管平面线路转换器和高频模块
CN112397865B (zh) * 2020-10-23 2022-05-10 中国电子科技集团公司第二十九研究所 一种实现3mm波导端口气密的微带探针过渡结构
US11757166B2 (en) 2020-11-10 2023-09-12 Aptiv Technologies Limited Surface-mount waveguide for vertical transitions of a printed circuit board
US11616306B2 (en) 2021-03-22 2023-03-28 Aptiv Technologies Limited Apparatus, method and system comprising an air waveguide antenna having a single layer material with air channels therein which is interfaced with a circuit board
CN115395196B (zh) * 2022-07-04 2023-06-23 电子科技大学 一种基于悬置微带线的改进匹配结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030123B2 (ja) * 1980-12-26 1985-07-15 富士通株式会社 導波管とマイクロストリップ線路との変換器
US4409566A (en) * 1981-10-21 1983-10-11 Rca Corporation Coaxial line to waveguide coupler
US4453142A (en) * 1981-11-02 1984-06-05 Motorola Inc. Microstrip to waveguide transition
JPS60247302A (ja) * 1984-05-22 1985-12-07 Shimada Phys & Chem Ind Co Ltd 高電力形同軸導波管変換器
US4716386A (en) * 1986-06-10 1987-12-29 Canadian Marconi Company Waveguide to stripline transition
US5235300A (en) * 1992-03-16 1993-08-10 Trw Inc. Millimeter module package

Also Published As

Publication number Publication date
DE69317390D1 (de) 1998-04-16
DE69317390T2 (de) 1998-09-03
FR2700066A1 (fr) 1994-07-01
US5414394A (en) 1995-05-09
EP0605046A1 (fr) 1994-07-06
JPH06283914A (ja) 1994-10-07

Similar Documents

Publication Publication Date Title
EP0605046B1 (fr) Dispositif hyperfréquences comprenant au moins une transition entre une ligne de transmission intégrée sur un substrat et un guide d&#39;onde
EP0210903B1 (fr) Dispositif de couplage entre un guide d&#39;onde métallique, un guide d&#39;onde diélectrique et un composant semiconducteur, et mélangeur utilisant ce dispositif de couplage
EP0013222B1 (fr) Déphaseur hyperfréquence à diodes et antenne à balayage électronique comportant un tel déphaseur
EP0113273B1 (fr) Boîtier d&#39;encapsulation pour semiconducteur de puissance, à isolement entrée-sortie amélioré
WO2000041299A1 (fr) Dispositif a ondes acoustiques guidees dans une fine couche de materiau piezo-electrique collee par une colle moleculaire sur un substrat porteur et procede de fabrication
FR2652197A1 (fr) Transformateurs du type symetrique-dissymetrique perfectionnes.
FR2778025A1 (fr) Appareil resonant a dielectrique
EP0017530B1 (fr) Source rayonnante constituée par un dipole excité par un guide d&#39;onde extra-plat, et son utilisation dans une antenne à balayage électronique
EP1573809A1 (fr) Boitier hyperfrequence a montage de surface et montage correspondant avec un circuit multicouche
EP0387955A1 (fr) Boîtier pour circuit intégré hyperfréquences
EP0834954A1 (fr) Transition entre un guide d&#39;ondes à crête et un circuit planaire
FR2764738A1 (fr) Dispostif d&#39;emission ou de reception integre
EP0230819A1 (fr) Dispositif gyromagnétique miniaturisé et procédé d&#39;assemblage de ce dispositif
EP0023873B1 (fr) Limiteur passif de puissance à semi-conducteurs réalisé sur des lignes à structure plane, et circuit hyperfréquence utilisant un tel limiteur
EP0044758B1 (fr) Dispositif de terminaison d&#39;une ligne de transmission, en hyperfréquence, à taux d&#39;ondes stationnaires minimal
FR2462787A1 (fr) Dispositif de transition entre une ligne hyperfrequence et un guide d&#39;onde et source hyperfrequence comprenant une telle transition
EP0015838B1 (fr) Mélangeur hyperfréquence à large bande
EP0335788B1 (fr) Circuit déphaseur hyperfréquence
EP0334747A1 (fr) Dispositif d&#39;interconnexion et de protection d&#39;une pastille nue de composant hyperfréquence
EP1157444B1 (fr) Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif
EP0983616B1 (fr) Procede et dispositif pour connecter deux elements millimetriques
EP0102888B1 (fr) Mélangeur d&#39;ondes électromagnétiques hyperfréquences à récupération de la fréquence somme
FR2689327A1 (fr) Connexion hyperfréquence entre un connecteur coaxial et des éléments disposés sur un substrat diélectrique.
FR2729472A1 (fr) Dispositif de controle de l&#39;influence electromagnetique d&#39;appareils electroniques, comportant un guide d&#39;ondes tem
FR2662308A1 (fr) Dispositif de transition entre deux lignes hyperfrequence realisees en technologie planaire.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS

17P Request for examination filed

Effective date: 19950109

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS ELECTRONICS N.V.

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS S.A.S.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970421

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69317390

Country of ref document: DE

Date of ref document: 19980416

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980331

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: LABORATOIRES D'ELECTRONIQUE PHILIPS S.A.S.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010214

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011222

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051222