EP0602040B1 - Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb - Google Patents

Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb Download PDF

Info

Publication number
EP0602040B1
EP0602040B1 EP92909172A EP92909172A EP0602040B1 EP 0602040 B1 EP0602040 B1 EP 0602040B1 EP 92909172 A EP92909172 A EP 92909172A EP 92909172 A EP92909172 A EP 92909172A EP 0602040 B1 EP0602040 B1 EP 0602040B1
Authority
EP
European Patent Office
Prior art keywords
steam
condensate
turbine
pipe
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92909172A
Other languages
English (en)
French (fr)
Other versions
EP0602040A1 (de
Inventor
Herbert Keller
Dietmar Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0602040A1 publication Critical patent/EP0602040A1/de
Application granted granted Critical
Publication of EP0602040B1 publication Critical patent/EP0602040B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling

Definitions

  • the invention relates to a method for cooling a low-pressure steam turbine in ventilation mode, the rotor of the steam turbine being rotated without being subjected to steam to be expanded.
  • Such ventilation operation comes, for. B. before in a multi-housing turbo set, in which a possibility for dissipating the steam otherwise to be relaxed in the low pressure turbine into a heating heat exchanger or the like is provided in front of a low pressure steam turbine.
  • a multi-housing turbo set it is common to couple the rotors of the individual turbines to one another and to connect them rigidly to the shaft of a generator or the like. Accordingly, all turbines of the turbo set rotate synchronously, including turbines that, for example, do not operate in power mode due to a different use of the steam.
  • condensate is injected into the outlet or, if the cooling capacity to be used must be particularly high, into the inlet of the turbine with atomization.
  • the condensate evaporates with a drop in temperature and is therefore able to cool the ventilating turbine.
  • Disadvantageous is that the cooling effect of the condensate injected at the outlet of the turbine is severely limited, or that the injection of condensate at the inlet of the turbine leads to an undesirable strong cooling of the turbine shaft. On the one hand, this greatly increases the cooling capacity to be used, and on the other, the turbine shaft is subjected to undesirable stresses due to the cooling.
  • the cooling effect is also often restricted to parts of the turbine in the vicinity of the outlet; If the injection is carried out at the inlet, condensate, which agglomerates in the area of the inlet, can endanger the blading of the turbine through surge formation.
  • Thermal power plants with steam turbines are described for example in DE-OS 14 26 887 and DE 34 06 071 A1; the latter document relates specifically to cooling measures in a steam turbine, but cooling measures that aim at the power operation of the steam turbines.
  • Information on the design of multi-housing steam turbine sets can be found, for example, in EP 0 213 297 B1, relating specifically to connecting means between the housings of a turbo set.
  • General information on the implementation of steam power plants can be found in the "Handbook Series Energy", published by Thomas Bohn, Technical Publishing House Resch, Graefelfing, and Publishing House TÜV-Rhineland, Cologne - see in particular Volume 5, "Concept and Construction of Steam Power Plants", published in 1985.
  • a condenser for the water-steam cycle of a power plant is described in DE 37 17 521 A1.
  • US Pat. No. 3,173,654 shows a method for cooling a steam turbine in ventilation mode, condensate being injected into the steam turbine through a special distributor pipe arrangement for cooling.
  • the invention is based on the task of specifying the most efficient and gentle cooling of a steam turbine in ventilation mode.
  • the inventive method for cooling a low-pressure steam turbine in ventilation operation which low-pressure steam turbine has a shut-off inlet through which steam can be delivered for power operation and which is shut off in ventilation operation, an outlet which communicates with a condenser for condensing the steam to condensate, and has a tap between the inlet and the outlet, to which a tap line for discharging steam and / or condensate to a preheater is connected in power operation, is characterized in that by steam transfer of the tap line, and thus the tap, steam is delivered.
  • the steam introduced into the low-pressure steam turbine at the tap advantageously carries a certain proportion of finely divided condensate drops with it, since such condensate drops evaporate in the low-pressure steam turbine and can absorb considerable amounts of heat.
  • a steam-condensate mixture can be obtained directly by removing the steam to be fed to the low-pressure steam turbine at a suitable location in the thermal power plant, by expanding the steam on the way to the tap or by providing the steam with condensate.
  • the inlet of the low-pressure turbine to be cooled according to the invention immediately has a shut-off device - the inlet of the low-pressure turbine can also be shut off by connecting a medium-pressure turbine upstream of the low-pressure turbine and communicating with it. Turbine is shut off (and accordingly also ventilated).
  • the turbine to be cooled according to the invention can also have a plurality of taps.
  • An essential feature of the invention is that the cooling steam or the cooling steam-condensate mixture of the turbine is not supplied at the inlet or at the outlet, but at a tap.
  • the cooling in the turbine particularly benefits the radially outer ends of the blades, which are most heavily loaded by the friction on the steam in the turbine. According to the invention, the cooling effect is thus largely restricted to the areas of the turbine where it is desired; cooling of other components of the turbine, which is generally undesirable for the reasons mentioned, is avoided.
  • Another advantage of the invention results in steam turbine systems with nozzle lines which are guided vertically downwards by the tapped turbines. If a mixture of steam and condensate is added to such a tap line, only steam and sufficiently small condensate drops carried by the steam reach the turbine. Larger drops and condensate, which is deposited on the walls of the tap line, are carried downwards and do not reach the turbine. Accordingly, it is not necessary to provide special drainage devices in the turbine cooled according to the invention, with the tap line leading approximately vertically downwards, with which the condensate originating from the large drops and which hardly evaporates would have to be discharged from the turbine.
  • condensate it is always particularly favorable to additionally supply condensate to the tap line in addition to the steam, in particular by injecting condensate into the steam line and / or into the bleed line through a condensate line. It is particularly advantageous to mix the condensate with the steam in an atomizer nozzle and out of this atomizer nozzle inject into the tap line. Condensate distributed in fine droplets - a droplet diameter smaller than about 0.1 mm is desirable - has a particularly high cooling effect due to the evaporation taking place in the turbine to be cooled while absorbing heat.
  • Condensate for delivery into the tap line is advantageously branched off from the main condensate line behind a condensate pump that conveys the condensate; in this way, a special conveying device for the condensate to be used in the context of the invention can be dispensed with.
  • the method according to the invention is particularly advantageously controlled in such a way that a temperature is measured in the ventilating, low-pressure turbine cooled according to the invention between the tapping and the outlet at a measuring point and, depending on this temperature, the delivery of the steam or the delivery of the steam -Condensate mixture, is regulated to the tap.
  • the delivery of steam or steam and condensate to the tap line is limited within the scope of the invention so that a steam flow is generated in the low-pressure turbine, which corresponds to a portion of the order of about 1% of the steam flow during power operation.
  • a steam flow of this magnitude enables the turbine to be cooled to a sufficient extent according to the invention, but does not do so much work that the speed control of the turbo set, of which the cooled turbine is a component, could be impaired.
  • the steam used for cooling the low-pressure steam turbine (which advantageously contains a certain proportion of finely divided condensate drops) can be found in a condensate container, which is already provided in steam power plants and is used for collecting, heating and degassing the condensate.
  • Heating steam of this type is generally to be supplied for the purpose of degassing the condensate; As a result, the thermodynamic conditions in the condensate container are always kept very constant.
  • the condensate container is a preferred reservoir for steam that can be used according to the invention, since the steam removed from the steam chamber of the condensate container is always replaced immediately by evaporation of the condensate, with no significant changes in the thermodynamic conditions in the condensate container due to the small amounts of steam required according to the invention. Steam from the condensate container is saturated due to the coexistence of steam and condensate, possibly even with finely divided condensate, and is therefore particularly suitable for use in the context of the invention.
  • a steam discharge line through which the steam is conducted around the low-pressure turbine during ventilation operation.
  • a steam discharge leads, for example, the steam from a high-pressure steam turbine upstream of the low-pressure steam turbine or arrangement of a high-pressure steam turbine and a medium-pressure steam turbine around the low-pressure steam turbine to a heating device or the like, where the steam may be cooled and is condensed.
  • a heating device or the like, where the steam may be cooled and is condensed.
  • the steam removed from a point of the steam-condensate circuit upstream of the low-pressure steam turbine usually has a sufficiently high intrinsic pressure and can therefore be supplied to the nozzle without special pumps or the like being required for this.
  • Steam that is under sufficiently high pressure can also be converted into a steam-condensate mixture by expansion, which is particularly favorable for the cooling of the low-pressure steam turbine according to the invention.
  • the further explanation of the invention is based on the exemplary embodiment shown schematically in the drawing.
  • the only figure shows a section of a thermal power plant in which a working fluid, especially water, is guided in a closed cycle.
  • the circuit comprises a high-pressure steam turbine 17, a low-pressure steam turbine 1, a condenser 5, a preheater 7 and a condensate tank 8; other components of the circuit, for example a boiler, are not shown.
  • a single high-pressure steam turbine 17 is shown;
  • the invention can also be used in circuits in which there are three or more turbine housings, or in which a turbine is not single-flow as shown, but is double-flow.
  • the representation of a single preheater 7 is also not intended to preclude the applicability of the invention to circuits in which a plurality of preheaters 7 are provided.
  • the components of the circuit shown are interconnected by steam connecting lines 18 or main condensate lines 9.
  • a condensate pump 15 is inserted into the main condensate line 9.
  • This condensate pump 15 is also shown as representative of a possibly existing plurality of such condensate pumps 15.
  • a switch 19 which is usually formed with flaps, with the help of which the steam flowing out of the high pressure steam turbine 17 can be discharged through a steam discharge line 20 to a heating heat exchanger 21, so that depending on the setting of the Switch 19, the low-pressure steam turbine 1 is not subjected to steam.
  • the heat exchanger 21 symbolizes a multitude of possibilities for using the steam that flows out of the high-pressure steam turbine 17.
  • the steam supplied to the heat exchanger 21 is condensed therein and flows as condensate via a condensate return line 22 to the main condensate line 9 upstream of the preheater 7.
  • the low-pressure steam turbine 1 should be rigidly coupled to the high-pressure steam turbine 17, so that the rotors of both steam turbines 1 and 17 run synchronously.
  • the low-pressure steam turbine 1 rotates at idle; since there is a static pressure in this low-pressure steam turbine 1 which corresponds to the pressure of the steam in the condenser 5, friction occurs.
  • the provision of cooling may be necessary to enable ventilation operation of the low-pressure steam turbine 1.
  • the low-pressure steam turbine 1 is pressurized with steam at an inlet 2, and the expanded steam leaves the low-pressure steam turbine 1 at an outlet 3 to the condenser 5.
  • a tap 4 is provided between inlet 2 and outlet 3, where a tap 6 is connected.
  • the tap 6 leads from the tap 4 to the preheater 7, where the tapped working fluid is used to preheat the condensate from the condenser 5.
  • the condensate flows through the main condensate line 9 to a condensate container 8 (which is sometimes also referred to as a "degasser").
  • the condensate is heated by means of steam which is introduced into the condensate through a heating steam line 10 below the condensate level 26. This heating serves, among other things, from the condensate gases, such as. B. remove oxygen.
  • the condensate level 26 there is a steam space 11 filled with steam in the condensate container 8. Steam is removed from this steam space 11 and fed to the dispensing line 6 through a steam transfer line 12. Furthermore, the tap 6 flows through a condensate transfer line 13 condensate; Steam and condensate are injected together into the nozzle 6 through a schematically indicated atomizer nozzle 14. A mixture of steam and fine condensate drops is formed in the nozzle 6, which flows into the low-pressure steam turbine 1 for the purpose of cooling at the tap 4.
  • the condensate transfer line 13 opens behind the condensate pump 15 into the main condensate line 9.
  • a critical orifice may be provided in the steam transfer line 12 be provided.
  • a measuring point 16 is provided in this between the tap 4 and the outlet 3, at which a temperature measurement is carried out; this temperature measurement is evaluated by means (not shown, known per se) and fed via a control line 25 to a steam control valve 23 in the steam transfer line 12 or a condensate control valve 24 in the condensate transfer line 13.
  • the steam transfer line 12 and the condensate transfer line 13 do not necessarily have to be completely shut off during the power operation of the low-pressure steam turbine 1; Via small bypass lines with which steam control valve 23 or condensate control valve 24 are bypassed, a small flow of steam or condensate to the tap line 6 can be maintained, which leads to keeping the steam transfer line 12 and the condensate transfer line 13 and. U. can be advantageous.
  • a condensate container 8 is not available for the extraction of steam for feeding into the tap 4 of the low-pressure steam turbine 1, such steam can be supplied to a steam connecting line 18 between the high-pressure steam turbine 17 and the low-pressure steam turbine 1 or the steam discharge line 20, possibly even be removed from the heat exchanger 21; removal from a preheater (not shown) associated with the high-pressure steam turbine 17 is also conceivable. Since the high-pressure steam turbine 17 also operates in the ventilation mode of the low-pressure steam turbine 1 in the power mode, it can be assumed that the thermodynamic conditions in the high-pressure steam turbine 17 as well as in the auxiliary devices communicating directly therewith are very stable, so that they for inclusion in the invention System for cooling the ventilating low-pressure steam turbine 1 can be easily included.
  • the method according to the invention for cooling a low-pressure steam turbine in ventilation operation is particularly energy-saving, since it largely uses available resources and avoids material stresses in that the cooling effect only affects areas of the low-pressure steam turbine where it is desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Kühlung einer Niederdruck-Dampfturbine (1) im Ventilationsbetrieb. Die Niederdruck-Dampfturbine (1) hat einen absperrbaren Einlaß (2), durch den zum Leistungsbetrieb Dampf zustellbar ist und der im Ventilationsbetrieb abgesperrt ist, einen mit einem Kondensator (5) zur Kondensation des Dampfes zu Kondensat kommunizierenden Auslaß (3) sowie zwischen dem Einlaß (2) und dem Auslaß (3) eine Anzapfung (4). An der Anzapfung (4) ist eine Zapfleitung (6) zur Ableitung von Dampf und/oder Kondensat bei Leistungsbetrieb angeschlossen. Erfindungsgemäß wird zur Kühlung der Niederdruck-Dampfturbine (1) im Ventilationsbetrieb Dampf durch eine Dampf-Überleitung (12) der Zapfleitung (6) zugestellt. Vorteilhafterweise wird auch Kondensat der Zapfleitung (6) zugeführt. Erfindungsgemäß ist die Kühlwirkung in der Niederdruck-Dampfturbine (1) weitgehend auf die im Ventilationsbetrieb hoch belasteten Komponenten beschränkt, und die Mittel zur Kühlung werden Ressourcen entnommen, die ohnehin zur Verfügung stehen.

Description

  • Die Erfindung betrifft ein Verfahren zur Kühlung einer Niederdruck-Dampfturbine im Ventilationsbetrieb, wobei der Rotor der Dampfturbine ohne Beaufschlagung mit zu entspannendem Dampf gedreht wird. Ein solcher Ventilationsbetrieb kommt z. B. vor in einem mehrgehäusigen Turbosatz, in dem vor einer Niederdruck-Dampfturbine eine Möglichkeit zur Ableitung des ansonsten in der Niederdruck-Turbine zu entspannenden Dampfes in einen Heizwärmetauscher oder dergleichen vorgesehen ist.
  • In einem mehrgehäusigen Turbosatz ist es üblich, die Rotoren der einzelnen Turbinen miteinander zu kuppeln und starr mit der Welle eines Generators oder dergleichen zu verbinden. Dementsprechend drehen sich alle Turbinen des Turbosatzes synchron, darunter auch Turbinen, die beispielsweise wegen einer anderen Verwendung des Dampfes nicht im Leistungsbetrieb arbeiten.
  • In einer im Ventilationsbetrieb arbeitenden Niederdruck-Turbine herrscht kein absolutes Vakuum, sondern es liegt eine Dampfatmosphäre vor, deren statischer Druck dem in dem mit der Niederdruck-Turbine verbundenen Kondensator herrschenden Druck entspricht. Die Reibung der Turbinenschaufeln an diesem Dampf (Ventilation) kann zu beachtlicher Wärmeentwicklung führen, wodurch die Turbine stark, möglicherweise sogar unzulässig hoch, aufgeheizt werden kann. Zur Gewährleistung eines sicheren Ventilationsbetriebes ist daher eine Kühlung hierfür notwendig.
  • Im Rahmen bekannter Kühlmaßnahmen wird in den Auslaß oder, falls die aufzuwendende Kühlleistung besonders hoch sein muß, in den Einlaß der Turbine Kondensat unter Zerstäubung eingespritzt. Das Kondensat verdampft unter Temperaturabsenkung und vermag somit die ventilierende Turbine zu kühlen. Nachteilig ist, daß die Kühlwirkung des am Auslaß der Turbine eingespritzten Kondensates stark eingeschränkt ist, bzw. daß die Einspritzung von Kondensat am Einlaß der Turbine zu einer an sich unerwünschten starken Abkühlung der Turbinenwelle führt. Dadurch wird einerseits die aufzuwendende Kühlleistung stark erhöht, und andererseits wird die Turbinenwelle durch die Abkühlung unerwünschten Beanspruchungen unterzogen.
  • Erfolgt die Einspritzung am Auslaß, so beschrankt sich die Kühlwirkung außerdem häufig auf Teile der Turbine in der Nähe des Auslasses; erfolgt die Einspritzung am Einlaß, kann Kondensat, das sich im Bereich des Einlasses agglomeriert, durch Schwallbildung die Beschaufelung der Turbine gefährden.
  • Wärmekraftanlagen mit Dampfturbinen sind beispielsweise beschrieben in der DE-OS 14 26 887 und der DE 34 06 071 A1; letztere Schrift betrifft speziell Kühlmaßnahmen in einer Dampfturbine, allerdings Kühlmaßnahmen, die auf den Leistungsbetrieb der Dampfturbinen abzielen. Hinweise zur Ausführung mehrgehäusiger Dampfturbosätze sind beispielsweise der EP 0 213 297 B1, betreffend speziell Verbindungsmittel zwischen den Gehäusen eines Turbosatzes, entnehmbar. Allgemeine Hinweise zur Ausführung von Dampfkraftanlagen finden sich in der "Handbuchreihe Energie", herausgegeben von Thomas Bohn, Technischer Verlag Resch, Gräfelfing, und Verlag TÜV-Rheinland, Köln - siehe insbesondere den 1985 erschienenen Band 5, "Konzeption und Aufbau von Dampfkraftwerken". Ein Kondensator für den Wasser-Dampf-Kreislauf einer Kraftwerksanlage ist in der DE 37 17 521 A1 beschrieben.
  • Das US-Patent 3,173,654 zeigt ein Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb, wobei Kondensat durch eine besondere Verteilerrohranordnung zur Kühlung in die Dampfturbine eingespritzt wird.
  • In Ansehung des Standes der Technik basiert die Erfindung auf der Aufgabe, eine möglichst effiziente und schonende Kühlung einer Dampfturbine im Ventilationsbetrieb anzugeben.
  • Das erfindungsgemäße Verfahren zur Kühlung einer Niederdruck-Dampfturbine im Ventilationsbetrieb, welche Niederdruck-Dampfturbine einen absperrbaren Einlaß, durch den zum Leistungsbetrieb Dampf zustellbar ist und der im Ventilationsbetrieb abgesperrt ist, einen Auslaß, der mit einem Kondensator zur Kondensation des Dampfes zu Kondensat kommuniziert, sowie zwischen dem Einlaß und dem Auslaß eine Anzapfung aufweist, an der eine Zapfleitung zur Ableitung von Dampf und/oder Kondensat zu einem Vorwärmer bei Leistungsbetrieb angeschlossen ist, zeichnet sich dadurch aus, daß durch eine Dampf-Überleitung der Zapfleitung, und damit der Anzapfung, Dampf zugestellt wird.
  • Der an der Anzapfung in die Niederdruck-Dampfturbine eingeführte Dampf trägt vorteilhafterweise einen gewissen Anteil von fein verteilten Kondensattropfen mit sich, da solche Kondensattropfen in der Niederdruck-Dampfturbine verdampfen und dabei erhebliche Wärmemengen aufnehmen können. Ein solches Dampf-Kondensat-Gemisch kann durch Entnahme des der Niederdruck-Dampfturbine zuzustellenden Dampfes an geeigneter Stelle in der Wärmekraftanlage unmittelbar erhalten, durch Entspannung des Dampfes auf dem Wege zur Anzapfung gebildet oder durch Versetzen des Dampfes mit Kondensat bereitgestellt werden.
  • Es ist nicht notwendig, daß der Einlaß der erfindungsgemäß zu kühlenden Niederdruck-Turbine unmittelbar eine Absperreinrichtung aufweist - die Absperrung des Einlasses der Niederdruck-Turbine kann auch bewirkt werden, indem eine der Niederdruck-Turbine vorgeschaltete und mit dieser kommunizierende Mitteldruck-Turbine oder Hochdruck-Turbine abgesperrt wird (und dementsprechend ebenfalls ventiliert). Auch kann die erfindungsgemäß zu kühlende Turbine mehrere Anzapfungen aufweisen.
  • Ein wesentliches Merkmal der Erfindung ist, daß der kühlende Dampf bzw. das kühlende Dampf-Kondensat-Gemisch der Turbine nicht am Einlaß oder am Auslaß, sondern an einer Anzapfung zugeführt wird. Auf diese Weise kommt die Kühlung in der Turbine besonders den radial außen liegenden Enden der Schaufeln zugute, die durch die Reibung an dem in der Turbine befindlichen Dampf ohnehin am höchsten belastet sind. Erfindungsgemäß wird damit die Kühlwirkung weitgehend auf die Bereiche der Turbine beschränkt, wo sie erwünscht ist; die Abkühlung anderer Komponenten der Turbine, die aus den erwähnten Gründen in der Regel unerwünscht ist, wird vermieden.
  • Ein weiterer Vorteil der Erfindung ergibt sich in Dampfturbinenanlagen mit Zapfleitungen, die von den angezapften Turbinen vertikal nach unten geführt sind. Wird einer solchen Zapfleitung ein Gemisch aus Dampf und Kondensat zugestellt, so gelangen nur Dampf und hinreichend kleine, von dem Dampf mitgeführte Kondensattropfen bis zur Turbine. Größere Tropfen sowie Kondensat, das sich auf den Wänden der Zapfleitung niederschlägt, werden nach unten weggeführt und erreichen die Turbine nicht. Dementsprechend ist es nicht erforderlich, in der erfindungsgemäß gekühlten Turbine mit etwa vertikal nach unten geführter Zapfleitung besondere Entwässerungseinrichtungen vorzusehen, mit denen das von den großen Tropfen stammende und kaum verdampfende Kondensat aus der Turbine abgeführt werden müßte.
  • Besonders günstig ist es stets, der Zapfleitung außer dem Dampf zusätzlich Kondensat zuzustellen, insbesondere indem durch eine Kondensat-Überleitung Kondensat in die Dampf-Überleitung und/oder in die Anzapfleitung eingespritzt wird. Besonders vorteilhaft ist es, das Kondensat mit dem Dampf in einer Zerstäuberdüse zu mischen und aus dieser Zerstäuberdüse in die Zapfleitung einzuspritzen. In feinen Tröpfchen verteiltes Kondensat - ein Tröpfchendurchmesser kleiner als etwa 0,1 mm ist wünschenswert - zeitigt eine besonders hohe Kühlwirkung durch das in der zu kühlenden Turbine unter Wärmeaufnahme erfolgende Verdampfen.
  • Kondensat zur Zustellung in die Zapfleitung wird vorteilhafterweise hinter einer das Kondensat fördernden Kondensatpumpe von der Kondensat-Hauptleitung abgezweigt; auf diese Weise kann auf eine besondere Fördereinrichtung für das im Rahmen der Erfindung einzusetzende Kondensat verzichtet werden.
  • Besonders vorteilhaft wird das erfindungsgemäße Verfahren in der Weise gesteuert, daß in der ventilierenden, erfindungsgemäß gekühlten Niederdruck-Turbine zwischen der Anzapfung und dem Auslaß an einer Meßstelle eine Temperatur gemessen und in Abhängigkeit von dieser Temperatur die Zustellung des Dampfes, bzw. die Zustellung des Dampf-Kondensat-Gemisches, zur Zapfleitung geregelt wird.
  • Vorteilhafterweise wird die Zustellung von Dampf bzw. Dampf und Kondensat zu der Zapfleitung im Rahmen der Erfindung so begrenzt, daß in der Niederdruck-Turbine ein Dampfstrom entsteht, der einem Anteil der Größenordnung von etwa 1 % des Dampfstromes bei Leistungsbetrieb entspricht. Ein Dampfstrom dieser Größenordnung ermöglicht erfindungsgemäß die Kühlung der Turbine in hinreichendem Umfang, leistet jedoch nicht soviel Arbeit, daß die Drehzahlregelung des Turbosatzes, dessen Bestandteil die gekühlte Turbine ist, beeinträchtigt werden könnte.
  • Günstig ist es, den zum Zwecke der Kühlung der NiederdruckDampfturbine einzusetzenden Dampf (der günstigerweise einen gewissen Anteil von fein verteilten Kondensattropfen enthält) einem vielfach in Dampfkraftanlagen ohnehin vorgesehenen Kondensatbehälter zu entnehmen, welcher der Sammlung, Aufwärmung und Entgasung des Kondensates dient. Einem solchen Kondensatbehälter ist zum Zwecke der Entgasung des Kondensates in der Regel Heizdampf zuzuführen; dadurch werden die thermodynamischen Bedingungen in dem Kondensatbehälter stets sehr konstant gehalten. Deshalb stellt der Kondensatbehälter ein bevorzugtes Reservoir für erfindungsgemäß verwendbaren Dampf dar, da der aus dem Dampfraum des Kondensatbehälters entnommene Dampf stets sofort durch Ausdampfen des Kondensats ersetzt wird, wobei aufgrund der erfindungsgemäß erforderlichen geringen Dampfmengen keine wesentlichen Veränderungen der thermodynamischen Verhältnisse in dem Kondensatbehälter eintreten. Dampf aus dem Kondensatbehälter ist aufgrund der Koexistenz von Dampf und Kondensat gesättigt, eventuell sogar mit fein verteiltem Kondensat versetzt, und eignet sich daher besonders zur Verwendung im Rahmen der Erfindung.
  • Auch ist es vorteilhaft, den erfindungsgemäß der Zapfleitung zuzustellenden Dampf aus einer Dampf-Ableitung, durch die beim Ventilationsbetrieb der Niederdruck-Turbine der Dampf um diese herumgeleitet wird, zu entnehmen. Eine solche Dampf-Ableitung führt beispielsweise den Dampf von einer der Niederdruck-Dampfturbine vorgeschalteten Hochdruck-Dampfturbine bzw. Anordnung aus einer Hochdruck-Dampfturbine und einer Mitteldruck-Dampfturbine um die Niederdruck-Dampfturbine herum zu einer Heizeinrichtung oder dergleichen, wo möglicherweise der Dampf abgekühlt und kondensiert wird. Besonders günstig ist es, zum Erhalt eines Dampf-Kondensat-Gemisches den der Zapfleitung zuzustellenden Dampf einer solchen Heizeinrichtung zu entnehmen.
  • Vorteilhaft ist es weiterhin, den der Zapfleitung zuzustellenden Dampf einer der Niederdruck-Dampfturbine vorgeschalteten Hochdruck- oder Mitteldruck-Dampfturbine direkt oder indirekt (beispielsweise einem von dieser gespeisten Vorwärmer oder dergleichen) zu entnehmen. Der einer der Niederdruck-Dampfturbine vorgeschalteten Stelle des Dampf-Kondensat-Kreislaufs entnommene Dampf hat üblicherweise einen hinreichend hohen Eigendruck und kann daher der Zapfleitung zugeführt werden, ohne daß hierfür besondere Pumpen oder dergleichen erforderlich sind. Auch kann Dampf, der unter hinreichend hohem Druck steht, durch Entspannen in ein Dampf-Kondensat-Gemisch überführt werden, welches für die erfindungsgemäße Kühlung der Niederdruck-Dampfturbine besonders günstig ist.
  • Die weitere Erläuterung der Erfindung erfolgt anhand des in der Zeichnung schematisiert dargestellten Ausführungsbeispiels. Die einzige Figur zeigt einen Ausschnitt aus einer Wärmekraftanlage, in der ein Arbeitsmittel, speziell Wasser, in einem geschlossenen Kreislauf geführt wird. Der Kreislauf umfaßt eine Hochdruck-Dampfturbine 17, eine Niederdruck-Dampfturbine 1, einen Kondensator 5, einen Vorwärmer 7 und einen Kondensatbehälter 8; weitere Bestandteile des Kreislaufs, beispielsweise ein Kessel, sind nicht dargestellt. Der Übersichtlichkeit halber ist nur eine einzige Hochdruck-Dampfturbine 17 gezeigt; selbstverständlich ist die Erfindung auch in Kreisläufen anwendbar, in denen sich drei oder mehr Turbinengehäuse befinden, oder in denen eine Turbine nicht einflutig wie dargestellt, sondern zweiflutig ausgeführt ist. Auch die Darstellung eines einzigen Vorwärmers 7 soll nicht die Anwendbarkeit der Erfindung für Kreisläufe ausschließen, in denen eine Mehrzahl von Vorwärmern 7 vorgesehen ist. Die dargestellten Bestandteile des Kreislaufs sind untereinander verbunden durch Dampf-Verbindungsleitungen 18 bzw. Kondensat-Hauptleitungen 9. In die Kondensat-Hauptleitung 9 ist eine Kondensat-Pumpe 15 eingefügt. Auch diese Kondensat-Pumpe 15 ist dargestellt stellvertretend für eine möglicherweise vorhandene Mehrzahl solcher Kondensat-Pumpen 15. Zwischen der Hochdruck-Dampfturbine 17 und der Niederdruck-Dampfturbine 1 befindet sich in der Dampf-Verbindungsleitung 18 ein Umschalter 19, der üblicherweise mit Klappen gebildet wird, mit dessen Hilfe der von der Hochdruck-Dampfturbine 17 abströmende Dampf durch eine Dampf-Ableitung 20 zu einem Heizwärmetauscher 21 ableitbar ist, so daß je nach Einstellung des Umschalters 19 die Niederdruck-Dampfturbine 1 nicht mit Dampf beaufschlagt wird. Der Heizwärmetauscher 21 symbolisiert eine Vielzahl von Möglichkeiten zur Nutzung des Dampfes, der von der Hochdruck-Dampfturbine 17 abströmt. Im dargestellten Beispiel wird der dem Heizwärmetauscher 21 zugeführte Dampf in diesem kondensiert und fließt als Kondensat über eine Kondensat-Rückleitung 22 der Kondensat-Hauptleitung 9 vor dem Vorwärmer 7 wieder zu.
  • Die Niederdruck-Dampfturbine 1 soll mit der Hochdruck-Dampfturbine 17 starr gekuppelt sein, so daß die Rotoren beider Dampfturbinen 1 und 17 synchron laufen. Wenn also der von der Hochdruck-Dampfturbine 17 abströmende Dampf durch die Dampf-Ableitung 20 abgeleitet wird, rotiert die Niederdruck-Dampfturbine 1 im Leerlauf; da in dieser Niederdruck-Dampfturbine 1 ein statischer Druck herrscht, der dem Druck des Dampfes in dem Kondensator 5 entspricht, tritt Reibung auf. Eine Wärmeabführung durch den Energieverlust des im Leistungsbetrieb in der Niederdruck-Dampfturbine 1 entspannten Dampfes tritt aber nicht ein. Dementsprechend kann zur Ermöglichung eines Ventilationsbetriebes der Niederdruck-Dampfturbine 1 das Vorsehen einer Kühlung erforderlich sein.
  • Die Niederdruck-Dampfturbine 1 wird an einem Einlaß 2 mit Dampf beaufschlagt, und der entspannte Dampf verläßt die Niederdruck-Dampfturbine 1 an einem Auslaß 3 zum Kondensator 5. Zur Abführung von Kondensat, das in der Niederdruck-Dampfturbine 1 beim Leistungsbetrieb durch Entspannen des Arbeit leistenden Dampfes bereits entsteht, oder zur Abzapfung von Dampf zur Beheizung eines Vorwärmers 7, ist zwischen Einlaß 2 und Auslaß 3 eine Anzapfung 4 vorgesehen, wo eine Zapfleitung 6 angeschlossen ist. Die Zapfleitung 6 führt von der Anzapfung 4 zum Vorwärmer 7, wo das abgezapfte Arbeitsmittel zur Vorwärmung des Kondensates aus dem Kondensator 5 herangezogen wird. Zur Abführung des an der Anzapfung 4 abgezapften Arbeitsmittels aus dem Vorwärmer 7 gibt es mehrere Möglichkeiten; beispielsweise kann dieses nach Durchströmen des Vorwärmers 7 weitere, nicht dargestellte Vorwärmer durchfließen und schließlich mit dem Kondensat in der Kondensat-Hauptleitung 9 vereinigt werden. Durch die Kondensat-Hauptleitung 9 fließt das Kondensat einem Kondensatbehälter 8 (der gelegentlich auch als "Entgaser" bezeichnet wird) zu. In dem Kondensatbehälter 8 wird das Kondensat beheizt mittels Dampf, der durch eine Heizdampf-Leitung 10 unterhalb des Kondensatspiegels 26 in das Kondensat eingeleitet wird. Diese Beheizung dient u. a. dazu, aus dem Kondensat Gase, wie z. B. Sauerstoff, zu entfernen. Oberhalb des Kondensatspiegels 26 befindet sich in dem Kondensatbehälter 8 ein mit Dampf erfüllter Dampfraum 11. Diesem Dampfraum 11 wird Dampf entnommen und durch eine Dampf-Überleitung 12 der Zapfleitung 6 zugeführt. Weiterhin fließt der Zapfleitung 6 durch eine Kondensat-Überleitung 13 Kondensat zu; Dampf und Kondensat werden durch eine schematisch angedeutete Zerstäuberdüse 14 gemeinsam in die Zapfleitung 6 eingespritzt. In der Zapfleitung 6 entsteht ein Gemisch aus Dampf und feinen Kondensattropfen, das zum Zwecke der Kühlung an der Anzapfung 4 in die Niederdruck-Dampfturbine 1 einströmt. Die Kondensat-Überleitung 13 mündet hinter der Kondensat-Pumpe 15 in die Kondensat-Hauptleitung 9. Es ist nicht erforderlich, Kondensat und Dampf der Zapfleitung 6 durch eine einzige Zerstäuberdüse 14 zuzuführen; Dampf und Kondensat können auch unabhängig voneinander der Zapfleitung 6 zugestellt werden. Zur Begrenzung des Dampfstroms in der Niederdruck-Turbine kann in der Dampf-Überleitung 12 gegebenenfalls eine kritische Blende vorgesehen werden. Zur Regelung der Kühlung der Niederdruck-Dampfturbine 1 bei Ventilationsbetrieb, ohne Arbeitsleistung, ist in dieser zwischen der Anzapfung 4 und dem Auslaß 3 eine Meßstelle 16 vorgesehen, an der eine Temperaturmessung erfolgt; diese Temperaturmessung wird durch (nicht dargestellte, an sich bekannte Mittel) ausgewertet und über eine Steuerleitung 25 einem Dampf-Regelventil 23 in der Dampf-Überleitung 12, bzw. einem Kondensat-Regelventil 24 in der Kondensat-Überleitung 13 zugeführt.
  • Schließlich ist zu bemerken, daß die Dampf-Überleitung 12 und die Kondensat-Überleitung 13 während des Leistungsbetriebs der Niederdruck-Dampfturbine 1 nicht unbedingt vollständig abgesperrt sein müssen; über kleine Umgehungsleitungen, mit denen Dampf-Regelventil 23 bzw. Kondensat-Regelventil 24 umgangen werden, kann ein geringer Fluß von Dampf bzw. Kondensat zur Zapfleitung 6 aufrechterhalten werden, was zur Warmhaltung der Dampf-Überleitung 12 und der Kondensat-Überleitung 13 u. U. vorteilhaft sein kann.
  • Sofern ein Kondensatbehälter 8 für eine Entnahme von Dampf zur Einspeisung in die Anzapfung 4 der Niederdruck-Dampfturbine 1 nicht zur Verfügung steht, kann solcher Dampf einer Dampf-Verbindungsleitung 18 zwischen Hochdruck-Dampfturbine 17 und Niederdruck-Dampfturbine 1 oder der Dampf-Ableitung 20, womöglich sogar dem Heizwärmetauscher 21, entnommen werden; auch ist eine Entnahme aus einem der Hochdruck-Dampfturbine 17 zugeordneten, nicht dargestellten Vorwärmer denkbar. Da die Hochdruck-Dampfturbine 17 auch im Ventilationsbetrieb der Niederdruck-Dampfturbine 1 im Leistungsbetrieb arbeitet, ist jedenfalls davon auszugehen, daß die thermodynamischen Verhältnisse sowohl in der Hochdruck-Dampfturbine 17 als auch in den mit dieser unmittelbar kommunizierenden Hilfseinrichtungen sehr stabil sind, so daß sie zur Einbindung in das erfindungsgemäße System zur Kühlung der ventilierenden Niederdruck-Dampfturbine 1 ohne weiteres einbezogen werden können.
  • Das erfindungsgemäße Verfahren zur Kühlung einer Niederdruck-Dampfturbine im Ventilationsbetrieb ist besonders energiesparend, da es weitgehend auf ohnehin verfügbare Ressourcen zurückgreift, und es vermeidet Materialbeanspruchungen dadurch, daß die Kühlwirkung sich hauptsächlich nur in Bereichen der Niederdruck-Dampfturbine auswirkt, wo sie erwünscht ist.

Claims (10)

  1. Verfahren zur Kühlung einer Niederdruck-Dampfturbine (1) im Ventilationsbetrieb, welche Niederdruck-Dampfturbine (1) einen absperrbaren Einlaß (2), durch den zum Leistungsbetrieb Dampf zustellbar ist und der im Ventilationsbetrieb abgesperrt ist, einen Auslaß (3), der mit einem Kondensator (5) zur Kondensation des Dampfes zu Kondensat kommuniziert, sowie zwischen dem Einlaß (2) und dem Auslaß (3) eine Anzapfung (4) aufweist, an der eine Zapfleitung (6) zur Ableitung von Dampf und/oder Kondensat zu einem Vorwärmer (7) bei Leistungsbetrieb angeschlossen ist, bei welchem Verfahren Dampf der Zapfleitung (6) durch eine Dampf-Überleitung (12) zugestellt wird.
  2. Verfahren nach Anspruch 1, bei dem der Zapfleitung (6) zusätzlich durch eine Kondensat-Überleitung (13) Kondensat zugestellt wird.
  3. Verfahren nach Anspruch 2, bei dem das Kondensat in die Dampf-Überleitung (12) und/oder in die Zapfleitung (6) eingespritzt wird.
  4. Verfahren nach Anspruch 3, bei dem das Kondensat durch eine Zerstäuberdüse (14) in die Zapfleitung (6) eingespritzt und in der Zerstäuberdüse (14) mit dem Dampf gemischt und zerstäubt wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, bei dem das Kondensat zur Zustellung in die Zapfleitung (6) hinter einer Kondensatpumpe (15) von der Kondensat-Hauptleitung (9) abgeführt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem
    a) in der Niederdruck-Turbine (1) zwischen der Anzapfung (4) und dem Auslaß (3) an einer Meßstelle (16) eine Temperatur gemessen wird;
    b) in Abhängigkeit von der Temperatur die Zustellung des Dampfes, bzw. die Zustellung des Dampfes und/oder des Kondensates, zur Zapfleitung (6) geregelt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Zustellung von Dampf bzw. Dampf und Kondensat zu der Zapfleitung (6) so begrenzt wird, daß in der Niederdruck-Turbine (1) ein Dampfstrom entsteht, der höchstens etwa 1 % des Dampfstromes in der Niederdruck-Turbine (1) bei Leistungsbetrieb beträgt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem einem Kondensatbehälter (8), dem aus dem Kondensator (5) und durch den Vorwärmer (7) über eine Kondensat-Hauptleitung (9) das Kondensat zugestellt wird und in dem das Kondensat durch Einleiten von Dampf durch eine Heizdampf-Leitung (10) beheizbar ist, aus einem Dampfraum (11) Dampf entnommen und der Zapfleitung (6) zugeführt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der der Zapfleitung (6) zuzustellende Dampf einer Dampf-Ableitung (20), durch die beim Ventilationsbetrieb der Niederdruck-Dampfturbine (1) Dampf geleitet wird, entnommen wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der der Zapfleitung (6) zuzustellende Dampf einer der Niederdruck-Dampfturbine (1) vorgeschalteten Hochdruck-Dampfturbine (17) entnommen wird.
EP92909172A 1991-09-06 1992-05-07 Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb Expired - Lifetime EP0602040B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4129518 1991-09-06
DE4129518A DE4129518A1 (de) 1991-09-06 1991-09-06 Kuehlung einer niederbruck-dampfturbine im ventilationsbetrieb
PCT/DE1992/000373 WO1993005276A1 (de) 1991-09-06 1992-05-07 Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb

Publications (2)

Publication Number Publication Date
EP0602040A1 EP0602040A1 (de) 1994-06-22
EP0602040B1 true EP0602040B1 (de) 1995-03-01

Family

ID=6439917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92909172A Expired - Lifetime EP0602040B1 (de) 1991-09-06 1992-05-07 Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb

Country Status (10)

Country Link
US (1) US5490386A (de)
EP (1) EP0602040B1 (de)
JP (1) JP3093267B2 (de)
CZ (1) CZ283638B6 (de)
DE (2) DE4129518A1 (de)
ES (1) ES2069997T3 (de)
PL (1) PL169627B1 (de)
RU (1) RU2085751C1 (de)
UA (1) UA27766C2 (de)
WO (1) WO1993005276A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640298A1 (de) * 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
DE19823251C1 (de) * 1998-05-26 1999-07-08 Siemens Ag Verfahren und Vorrichtung zur Kühlung einer Niederdruckstufe einer Dampfturbine
US6135707A (en) * 1996-09-26 2000-10-24 Siemens Aktiengesellschaft Steam turbine with a condenser and method of cooling a steam turbine in the ventilation mode

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19506787B4 (de) * 1995-02-27 2004-05-06 Alstom Verfahren zum Betrieb einer Dampfturbine
KR100437922B1 (ko) * 1995-08-31 2004-08-16 지멘스 악티엔게젤샤프트 증기터빈의저압단을냉각시키기위한방법및장치
DE19731852A1 (de) * 1997-07-24 1999-01-28 Asea Brown Boveri Generatorkühlsystem
WO1999028599A1 (de) * 1997-11-28 1999-06-10 Siemens Aktiengesellschaft Dampfturbogenerator mit wassergeschmierten lagern und ventilen
US6233938B1 (en) * 1998-07-14 2001-05-22 Helios Energy Technologies, Inc. Rankine cycle and working fluid therefor
US6041604A (en) * 1998-07-14 2000-03-28 Helios Research Corporation Rankine cycle and working fluid therefor
EP1152125A1 (de) * 2000-05-05 2001-11-07 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Kühlung eines Einström-Wellenbereichs einer Dampfturbine
US6626637B2 (en) 2001-08-17 2003-09-30 Alstom (Switzerland) Ltd Cooling method for turbines
EP1998014A3 (de) * 2007-02-26 2008-12-31 Siemens Aktiengesellschaft Verfahren zum Betreiben einer mehrstufigen Dampfturbine
US8424281B2 (en) * 2007-08-29 2013-04-23 General Electric Company Method and apparatus for facilitating cooling of a steam turbine component
DE102008033402A1 (de) * 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Dampfturbinenanlage sowie Verfahren zum Betreiben einer Dampfturbine
EP2196633A1 (de) * 2008-12-15 2010-06-16 Siemens Aktiengesellschaft Kraftwerk mit einer Turbineneinheit und einem Generator
US8146363B2 (en) * 2009-02-06 2012-04-03 Siemens Energy, Inc. Condenser system
US8616323B1 (en) 2009-03-11 2013-12-31 Echogen Power Systems Hybrid power systems
WO2010121255A1 (en) 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
WO2010151560A1 (en) 2009-06-22 2010-12-29 Echogen Power Systems Inc. System and method for managing thermal issues in one or more industrial processes
US9316404B2 (en) 2009-08-04 2016-04-19 Echogen Power Systems, Llc Heat pump with integral solar collector
US20110030335A1 (en) * 2009-08-06 2011-02-10 General Electric Company Combined-cycle steam turbine and system having novel cooling flow configuration
US8869531B2 (en) 2009-09-17 2014-10-28 Echogen Power Systems, Llc Heat engines with cascade cycles
US8613195B2 (en) 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8096128B2 (en) 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
US8813497B2 (en) 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8783034B2 (en) 2011-11-07 2014-07-22 Echogen Power Systems, Llc Hot day cycle
US8857186B2 (en) 2010-11-29 2014-10-14 Echogen Power Systems, L.L.C. Heat engine cycles for high ambient conditions
US8616001B2 (en) 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
JP5866819B2 (ja) 2011-06-27 2016-02-24 株式会社Ihi 廃熱発電装置
US9062898B2 (en) 2011-10-03 2015-06-23 Echogen Power Systems, Llc Carbon dioxide refrigeration cycle
US20130305720A1 (en) * 2012-05-15 2013-11-21 General Electric Company Systems and methods for active temperature control in steam turbine
KR20150143402A (ko) 2012-08-20 2015-12-23 에코진 파워 시스템스, 엘엘씨 직렬 구성의 터보 펌프와 시동 펌프를 갖는 초임계 작동 유체 회로
US9341084B2 (en) 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
US9118226B2 (en) 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US8863522B2 (en) * 2012-10-16 2014-10-21 General Electric Company Operating steam turbine reheat section with overload valve
WO2014117074A1 (en) 2013-01-28 2014-07-31 Echogen Power Systems, L.L.C. Process for controlling a power turbine throttle valve during a supercritical carbon dioxide rankine cycle
US9638065B2 (en) 2013-01-28 2017-05-02 Echogen Power Systems, Llc Methods for reducing wear on components of a heat engine system at startup
US10934895B2 (en) 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits
JP5397560B1 (ja) * 2013-04-05 2014-01-22 富士電機株式会社 抽気蒸気タービン発電設備の保安運転方法および装置
RU2540213C1 (ru) * 2013-07-18 2015-02-10 Открытое акционерное общество "Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И. Ползунова" (ОАО "НПО ЦКТИ") Часть низкого давления паровой турбины
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
KR101907741B1 (ko) * 2016-06-27 2018-10-12 두산중공업 주식회사 스팀터빈의 윈디지 로스 방지 장치
CN108506057B (zh) * 2018-03-01 2023-07-14 华电电力科学研究院有限公司 一种用于切除低压缸进汽的热电联产系统及调节方法
US10883388B2 (en) 2018-06-27 2021-01-05 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
US11629638B2 (en) 2020-12-09 2023-04-18 Supercritical Storage Company, Inc. Three reservoir electric thermal energy storage system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE365270C (de) * 1918-08-16 1922-12-12 Westinghouse Electric & Mfg Co Dampfturbinenaggregat mit zeitweise leer laufenden Einheiten
DE928346C (de) * 1952-03-22 1955-05-31 Licentia Gmbh Einrichtung, um eine Dampfturbine im Schleppbetrieb mittels Dampf aus dem Kondensator der Turbine zu kuehlen
DE1016719B (de) * 1952-12-12 1957-10-03 Licentia Gmbh Verfahren zur Bereitschaftshaltung von Dampfturbinen
US3173654A (en) * 1962-03-14 1965-03-16 Burns & Roe Inc Temperature control of turbine blades on spinning reserve turbines
US3194021A (en) * 1964-07-14 1965-07-13 Westinghouse Electric Corp Vapor condensing apparatus
JPS5650084B2 (de) * 1972-04-26 1981-11-26
US4309873A (en) * 1979-12-19 1982-01-12 General Electric Company Method and flow system for the control of turbine temperatures during bypass operation
US4353216A (en) * 1980-09-29 1982-10-12 General Electric Company Forward-reverse flow control system for a bypass steam turbine
JPS59153901A (ja) * 1983-02-21 1984-09-01 Fuji Electric Co Ltd 蒸気タ−ビンロ−タの冷却装置
DE8518569U1 (de) * 1985-06-27 1988-07-14 Siemens AG, 1000 Berlin und 8000 München Turbosatz mit wenigstens einer, ein Außengehäuse und ein dazu koaxiales Innengehäuse aufweisenden Niederdruck-Teilturbine und mit Hochdruck- und/oder Mitteldruck-Teilturbine
DE3717521A1 (de) * 1987-05-04 1988-11-17 Siemens Ag Kondensator fuer den wasser-dampf-kreislauf einer kraftwerksanlage, insbesondere kernkraftwerksanlage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135707A (en) * 1996-09-26 2000-10-24 Siemens Aktiengesellschaft Steam turbine with a condenser and method of cooling a steam turbine in the ventilation mode
DE19640298A1 (de) * 1996-09-30 1998-04-09 Siemens Ag Dampfturbine, Verfahren zur Kühlung einer Dampfturbine im Ventilationsbetrieb sowie Verfahren zur Kondensationsminderung bei einer Dampfturbine im Leistungsbetrieb
DE19823251C1 (de) * 1998-05-26 1999-07-08 Siemens Ag Verfahren und Vorrichtung zur Kühlung einer Niederdruckstufe einer Dampfturbine
WO1999061758A2 (de) 1998-05-26 1999-12-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur kühlung einer niederdruckstufe einer dampfturbine
WO1999061758A3 (de) * 1998-05-26 2000-01-13 Siemens Ag Verfahren und vorrichtung zur kühlung einer niederdruckstufe einer dampfturbine
CN1119506C (zh) * 1998-05-26 2003-08-27 西门子公司 汽轮机低压级的冷却方法与设备

Also Published As

Publication number Publication date
UA27766C2 (uk) 2000-10-16
PL169627B1 (pl) 1996-08-30
DE59201560D1 (de) 1995-04-06
JPH06510347A (ja) 1994-11-17
DE4129518A1 (de) 1993-03-11
EP0602040A1 (de) 1994-06-22
US5490386A (en) 1996-02-13
CZ48894A3 (en) 1994-05-18
ES2069997T3 (es) 1995-05-16
RU2085751C1 (ru) 1997-07-27
CZ283638B6 (cs) 1998-05-13
JP3093267B2 (ja) 2000-10-03
WO1993005276A1 (de) 1993-03-18

Similar Documents

Publication Publication Date Title
EP0602040B1 (de) Kühlung einer niederdruck-dampfturbine im ventilationsbetrieb
DE69630359T2 (de) Gasturbine mit Wassereinspritzung
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE102012011294B4 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
DE3605653C2 (de) Gasturbinentriebwerk und Verfahren zu dessen Betreiben
DE60112519T2 (de) Dampfgekühlte Gasturbinenanlage
EP1090208B1 (de) Verfahren und vorrichtung zur kühlung einer niederdruckstufe einer dampfturbine
DE3419216A1 (de) Chemischer prozessor mit geschlossenem kreislauf
EP1682750B1 (de) Kraftwerksanlage
DE19501471A1 (de) Turbine, insbesondere Gasturbine
EP0770771A1 (de) Zwischengekühlter Verdichter
EP1440223A1 (de) Gasturbogruppe
EP0929736B1 (de) Dampfturbine sowie verfahren zur kühlung einer dampfturbine im ventilationsbetrieb
DE19834196A1 (de) Speisewasser-Heizsystem für Stromversorgungsanlage
DE19732091A1 (de) Verfahren zum Betreiben einer Gasturbine, Gasturbine und Leistungserzeugungseinrichtung
WO2013072183A2 (de) Verfahren zum betrieb einer gas- und dampfturbinenanlage für die frequenzstützung
WO2005042947A1 (de) Verfahren zum betrieb einer kraftwerksanlage
DE10392154T5 (de) Turbinenanlage und Kombikraftwerk sowie Turbinenbetriebsverfahren
DE10022243A1 (de) Verfahren zum Betrieb eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
EP1280981B1 (de) Verfahren und vorrichtung zur kühlung eines einström-wellenbereichs einer dampfturbine
EP0597325B1 (de) Verfahren zur Zwischenkühlung eines Turboverdichter
DE102016214447B4 (de) Kraftwerk mit Phasenwechselmaterial-Wärmespeicher und Verfahren zum Betreiben eines Kraftwerks mit Phasenwechselmaterial-Wärmespeicher
DE102009025803A1 (de) System und Verfahren zur Kühlung erhitzter Komponenten in einer Turbine
EP0180093B1 (de) Wärmekraftwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931005

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19940721

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 59201560

Country of ref document: DE

Date of ref document: 19950406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069997

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950505

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030515

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040508

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#D-80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110615

Year of fee payment: 20

Ref country code: FR

Payment date: 20110530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110516

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110809

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110718

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201560

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59201560

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120506

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120508