EP0180093B1 - Wärmekraftwerk - Google Patents

Wärmekraftwerk Download PDF

Info

Publication number
EP0180093B1
EP0180093B1 EP85113145A EP85113145A EP0180093B1 EP 0180093 B1 EP0180093 B1 EP 0180093B1 EP 85113145 A EP85113145 A EP 85113145A EP 85113145 A EP85113145 A EP 85113145A EP 0180093 B1 EP0180093 B1 EP 0180093B1
Authority
EP
European Patent Office
Prior art keywords
feed water
line
exhaust gas
condensate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113145A
Other languages
English (en)
French (fr)
Other versions
EP0180093A1 (de
Inventor
Hermann Brückner
Winfried Dipl.-Ing. Ganzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85113145T priority Critical patent/ATE34802T1/de
Publication of EP0180093A1 publication Critical patent/EP0180093A1/de
Application granted granted Critical
Publication of EP0180093B1 publication Critical patent/EP0180093B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Definitions

  • the invention relates to a thermal power plant with a gas turbine, a device for heat recovery connected downstream of the gas turbine on the exhaust gas side, an energy converter associated with the device for heat recovery with an associated capacitor and this connected via a condensate line feed water tank for the device for heat recovery, and with a device downstream of the device for heat recovery on the exhaust gas side Exhaust gas heat exchanger, which is connected to the feed water tank via a feed water feed line and a feed water return line to form a closed feed water circuit.
  • the invention has for its object to improve the overall efficiency of a thermal power plant of the type mentioned.
  • the inlet temperature of the feed water into the exhaust gas heat exchanger can be reduced, so that more exhaust gas heat can be transferred to the feed water circuit and the supply of, for example, water vapor to the energy converter in the feed water tank can be dispensed with.
  • the specified setpoint, to which the feed water inlet temperature is regulated with the help of the control valve in the feed water supply line, can be selected higher than the dew point of H 2 0 or also of acids in the exhaust gas, so that corrosion on the heat transfer surfaces of the exhaust gas heat exchanger is avoided.
  • thermal power plant according to the invention can achieve that when the gas turbine changes load and the associated changes in the exhaust gas temperature, the setpoint value of the feed water temperature in the feed water return line is kept within the range between the predetermined maximum value and the predetermined minimum value.
  • the drawing shows the basic circuit diagram of a combined gas-steam thermal power plant with a gas turbine 2 and a steam turbine 3 with a high-pressure part and a low-pressure part.
  • the drive shaft of a compressor 4 for combustion air and an electric generator 5 is coupled to the output shaft of the gas turbine 2. Furthermore, a combustion chamber 8 is provided, to which the exhaust port of the compressor 4 and the feed port of the gas turbine 2 for combustion gas are connected. The drive shaft of an electric generator 6 is coupled to the output shaft of the steam turbine 3.
  • a waste heat steam generator 7 is connected to the discharge port of the gas turbine 2 for exhaust gas, with a high-pressure steam superheater 11 connected directly to the discharge port of the gas turbine 2 for exhaust gas, and to the high-pressure evaporator 13, high-pressure economizer 15, low-pressure steam superheater 17, low-pressure evaporator 9 and low-pressure economizer connected in series in the exhaust gas stream 12th
  • the heat recovery steam generator 7 also includes a high-pressure steam drum 22 and a low-pressure steam drum 28.
  • the feed water outlet of the high-pressure economizer 15 and the outlet of the high-pressure evaporator 13 are connected to the high-pressure steam drum 22.
  • the feed water outlet of the high pressure steam drum 22 is connected to the inlet of the high pressure evaporator 13 via a circulation pump 24.
  • the steam outlet of the high pressure steam drum 22 is connected to the steam inlet of the high pressure steam superheater 11.
  • the outlet of the low-pressure economizer 12 and the outlet of the low-pressure evaporator 9 are connected to the low-pressure steam drum 28.
  • the feed water outlet of the low-pressure steam drum 28 is connected both via a feed water pump 26 at the feed water inlet of the high-pressure economizer 15 and via a further circulation pump 10 at the inlet of the low-pressure evaporator 9.
  • the steam outlet of the low-pressure steam drum 28 is connected to the steam inlet of the low-pressure steam superheater 17.
  • the live steam outlet of the high pressure steam superheater 11 is connected to the steam inlet of the high pressure part of the steam turbine 3 and the live steam outlet of the low pressure steam superheater 17 is connected to the steam inlet of the low pressure part of the steam turbine 3.
  • a feed water line 32 having a feed water pump 31 leads from a feed water container 30 to the feed water inlet of the low-pressure economizer 12.
  • a condenser 34 which has a hotwell 35 on the condensate outlet side, is connected downstream of the evaporation nozzle of the steam turbine 3 via an exhaust steam line 33.
  • This hotwell 35 is connected to the feed water tank 30 via a condensate line 37 having a condensate pump 36 with a downstream control valve 43.
  • An exhaust gas heat exchanger 14 is connected on the gas side downstream of the low-pressure economizer 12 and is connected on its water side to the feed water tank 30 via a feed water return line 39.
  • a feed water supply line 38 with a control valve 40 and upstream circulation pump 41 also leads from the feed water tank 30 to the water side of the exhaust gas heat exchanger 14.
  • a bypass line 42 for condensate leads from a connection point on the condensate line 37 between the condensate pump 36 and the control valve 43 to a connection point on the feed water supply line 38 between the control valve 40 and the feed water inlet of the exhaust gas heat exchanger 14.
  • the control valve 43 has a regulator 45 with a pressure sensor in the feed water tank 30 and the control valve 40 a controller 46, each with a temperature sensor in the feed water return line 39 and in the feed water return line 38 between the feed water inlet into the exhaust gas heat exchanger 14 and the connection point of the bypass line 42.
  • Condensate flows out of the hotwell 35 via the condensate line 37, the bypass line 42 and the feed water supply line 38 through the exhaust gas heat exchanger 14 via the feed water return line 39 into the feed water tank 30 , warmer feed water from the feed water tank 30 mixed, so that the entry temperature of the condensate into the exhaust gas heat exchanger 14 assumes such a setpoint value, for example 70 ° C., at which the dew point temperature of the H 2 0 and lower SO 2 components in the exhaust gas on the exhaust gas side of the exhaust gas heat exchanger 14 is not undercut and therefore corrosion on the heat transfer surfaces of the exhaust gas heat exchanger 14 is avoided.
  • a setpoint value for example 70 ° C.
  • the pressure in the feed water tank 30 is set to a predetermined setpoint, e.g. 1.2 bar, regulated with the aid of the control valve 43, with which cold condensate from the condensate line 37 is fed directly into the feed water tank 30.
  • the outlet temperature of the condensate from the exhaust gas heat exchanger 14 in the feed water return line 39 e.g. changes in the load of the gas turbine 2 or the steam turbine 3 exceed a predetermined maximum value or fall below a predetermined minimum value
  • the regulation of the inlet temperature of the condensate in the exhaust gas heat exchanger 14 is replaced and the feed water throughput fed into the feed water supply line 38 via the control valve 40 is set such that the outlet temperature of the Feed water from the exhaust gas heat exchanger 14 a predetermined setpoint, for example 110 ° C, and the regulation of the pressure in the feed water tank 30 to the predetermined target value via the control valve 43 remains effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Saccharide Compounds (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Description

  • Die Erfindung betrifft ein Wärmekraftwerk mit einer Gasturbine, einer der Gasturbine abgasseitig nachgeschalteten Einrichtung zur Wärmerückgewinnung, einem der Einrichtung zur Wärmerückgewinnung zugeordneten Energieumsetzer mit zugeordnetem Kondensator und diesem über eine Kondensatleitung nachgeschalteten Speisewasserbehälter für die Einrichtung zur Wärmerückgewinnung, sowie mit einem der Einrichtung zur Wärmerückgewinnung abgasseitig nachgeschalteten Abgaswärmetauscher, der über eine Speisewasserhinführ- und eine Speisewasserrückführleitung unter Ausbildung eines geschlossenen Speisewasserkreislaufes am Speisewasserbehälter angeschlossen ist.
  • Es ist bereits üblich, bei einem solchen Wärmekraftwerk Wasserdampf aus dem aus einer Dampfturbine bestehenden Energieumsetzer direkt in den Speisewasserbehälter zu leiten, um dort das Kondensat auf eine vorgegebene Speisewassertemperaturvorzuwärmen und zu entgasen. Der Dampfturbine wird also Dampf entzogen, der für die Energieumsetzung nicht mehr zur Verfügung steht.
  • Durch die DE-A3002615 und DE-A 1626151 ist es aber auch schon bekannt, in einem separaten Kreislauf Kondensat aus dem Speisewasserbehälter durch einen separaten, dem Energieumsetzer zugeordneten Wärmetauscher zu leiten und wieder zurück in den Speisewasserbehälter zu pumpen. Hierdurch findet eine Aufheizung des Speisewassers statt. Jedoch ist hierbei die rückgewinnbare Wärme durch die Temperatur des Speisewassers begrenzt.
  • Der Erfindung liegt die Aufgabe zugrunde, den Gesamtwirkungsgrad eines Wärmekraftwerkes der eingangs erwähnten Art zu verbessern.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäss durch die Merkmale im kennzeichnenden Teil des Patentanspruches 1.
  • Mit dem über die Bypassleitung in die Speisewasserhinführleitung geführten Kondensat kann die Eintrittstemperatur des Speisewassers in den Abgaswärmetauscher abgesenkt werden, so dass mehr Abgaswärme in den Speisewasserkreislauf übertragen und auf die Zufuhr von z.B. Wasserdampf äus dem Energieumsetzer in den Speisewasserbehälter verzichtet werden kann. Der vorgegebene Sollwert, auf den die Speisewassereintrittstemperatur mit Hilfe des Regelventils in der Speisewasserhinführleitung geregelt wird, kann höher als der Taupunkt von H20 oder auch von Säuren im Abgas gewählt werden, so dass Korrosion an den Wärmeübertragungsflächen des Abgaswärmetauschers vermieden wird.
  • Mit einer vorteilhaften Weiterbildung des erfindungsgemässen Kraftwerkes entsprechend Patentanspruch 2 wird gleichbleibender Druck im Speisewasserbehälter und damit gleichbleibende Temperatur des Speisewassers im Speisewasserbehälter erzielt, so dass die Entgasung des Speisewassers im Speisewasserbehälter stets bei einem Druck erfolgen kann, der genügend hoch ist, um die im Speisewasser gelösten Gase auszutreiben.
  • Mit einer anderen vorteilhaften Weiterbildung des erfindungsgemässen Wärmekraftwerkes entsprechend Patentanspruch 3 kann erreicht werden, dass bei Laständerung der Gasturbine und damit verbundenen Änderungen der Abgastemperatur der Sollwert der Speisewassertemperatur in der Speisewasserrückführleitung innerhalb des Bereiches zwischen dem vorgegebenen Maximalwert und dem vorgegebenen Minimalwert gehalten wird.
  • Die Erfindung und ihre Vorteile seien anhand der Zeichnung an einem Ausführungsbeispiel näher erläutert:
  • In der Zeichnung ist das Prinzipschaltbild eines kombinierten Gas-Dampf-Wärmekraftwerkes dargestellt mit einer Gasturbine 2 und einer Dampfturbine 3 mit Hochdruckteil und Niederdruckteil.
  • An die Abtriebswelle der Gasturbine 2 ist die Antriebswelle eines Verdichters 4 für Verbrennungsluft und eines elektrischen Generators 5 angekoppelt. Ferner ist eine Brennkammer 8 vorgesehen, an der der Abluftstutzen des Verdichters 4 und der Zuführstutzen der Gasturbine 2 für Verbrennungsgas angeschlossen sind. An der Abtriebswelle der Dampfturbine 3 ist die Antriebswelle eines elektrischen Generators 6 angekoppelt.
  • Am Abführstutzen der Gasturbine 2 für Abgas ist ein Abhitzedampferzeuger 7 angeschlossen mit einem unmittelbar am Abführstutzen der Gasturbine 2 für Abgas angeschlossenen Hochdruckdampfüberhitzer 11 und zu diesem im Abgasstrom in der angegebenen Reihenfolge in Serie geschalteten Hochdruckverdampfer 13, Hochdruckeconomiser 15, Niederdruckdampfüberhitzer 17, Niederdruckverdampfer 9 und Niederdruckeconomiser 12.
  • Zum Abhitzedampferzeuger 7 gehören ferner eine Hochdruckdampftrommel 22 und eine Niederdruckdampftrommel 28. An der Hochdruckdampftrommel 22 ist der Speisewasseraustritt des Hochdruckeconomisers 15 und der Austritt des Hochdruckverdampfers 13 angeschlossen. Der Speisewasseraustritt der Hochdruckdampftrommel 22 ist über eine Umwälzpumpe 24 am Eintritt des Hochdruckverdampfers 13 angeschlossen. Der Dampfaustritt der Hochdruckdampftrommel 22 ist am Dampfeintritt des Hochdruckdampfüberhitzers 11 angeschlossen.
  • Der Austritt des Niederdruckeconomisers 12 und der Austritt des Niederdruckverdampfers 9 sind an der Niederdruckdampftrommel 28 angeschlossen. Der Speisewasseraustritt der Niederdruckdampftrommel 28 ist sowohl über eine Speisewasserpumpe 26 am Speisewassereintritt des Hochdruckeconomisers 15 als auch über eine weitere Umwälzpumpe 10 am Eintritt des Niederdruckverdampfers 9 angeschlossen. Der Dampfaustritt der Niederdruckdampftrommel 28 ist am Dampfeintritt des Niederdruckdampfüberhitzers 17 angeschlossen. Der Frischdampfaustritt des Hochdruckdampfüberhitzers 11 ist am Dampfeintritt des Hochdruckteiles der Dampfturbine 3 und der Frischdampfaustritt des Niederdruckdampfüberhitzers 17 am Dampfeintritt des Niederdruckteils der Dampfturbine 3 angeschlossen. Von einem Speisewasserbehälter 30 führt eine eine Speisewasserpumpe 31 aufweisende Speisewasserleitung 32 zum Speisewassereintritt des Niederdruckeconomisers 12.
  • Dem Abdampfstutzen der Dampfturbine 3 ist über eine Abdampfleitung 33 ein Kondensator 34 nachgeschaltet, der auf der Kondensataustrittsseite einen Hotwell 35 aufweist. Dieser Hotwell 35 ist über eine eine Kondensatpumpe 36 mit nachgeschaltetem Regelventil 43 aufweisende Kondensatleitung 37 am Speisewasserbehälter 30 angeschlossen. Ein Abgaswärmetauscher 14 ist an seiner Gasseite dem Niederdruckeconomiser 12 abgasseitig nachgeschaltet und an seiner Wasserseite über eine Speisewasserrückführleitung 39 mit dem Speisewasserbehälter 30 verbunden. Eine Speisewasserhinführleitung 38 mit einem Regelventil 40 und vorgeschalteter Umwälzpumpe 41 führt vom Speisewasserbehälter 30 ebenfalls zur Wasserseite des Abgaswärmetauschers 14.
  • Ferner führt eine Bypassleitung 42 für Kondensat von einer Anschlussstelle an der Kondensatleitung 37 zwischen der Kondensatpumpe 36 und dem Regelventil 43 zu einer Anschlussstelle an der Speisewasserhinführleitung 38 zwischen dem Regelventil 40 und dem Speisewassereintritt des Abgaswärmetauschers 14. Das Regelventil 43 weist einen Regler 45 mit einem Druckfühler im Speisewasserbehälter 30 und das Regelventil 40 einen Regler 46 mit je einem Temperaturfühler in der Speisewasserrückführleitung 39 und in der Speisewasserhinführleitung 38 zwischen dem Speisewassereintritt in den Abgaswärmetauscher 14 und der Anschlussstelle der Bypassleitung 42 auf.
  • Aus dem Hotwell 35 strömt Kondensat über die Kondensatleitung 37, die Bypassleitung 42 und die Speisewasserhinführleitung 38 durch den Abgaswärmetauscher 14 über die Speisewasserrückführleitung 39 in den Speisewasserbehälter 30. An der Anschlussstelle der Bypassleitung 42 an die Speisewasserhinführleitung 38 wird das Kondensat mit über das Regelventil 40 geleitetem, wärmerem Speisewasser aus dem Speisewasserbehälter 30 vermischt, so dass die Eintrittstemperatur des Kondensats in den Abgaswärmetauscher 14 einen solchen Sollwert annimmt, z.B. 70°C, bei dem die Taupunkttemperatur des H20 und geringer SO2-Anteile im Abgas auf der Abgasseite des Abgaswärmetauschers 14 nicht unterschritten ist und deshalb Korrosion an den Wärmeübertragungsflächen des Abgaswärmetauschers 14 vermieden wird.
  • Der Druck im Speisewasserbehälter 30 wird auf einen vorgegebenen Sollwert, z.B. 1.2 bar, mit Hilfe des Regelventils 43 geregelt, mit dem kaltes Kondensat aus der Kondensatleitung 37 direkt in den Speisewasserbehälter 30 geführt wird.
  • Wenn die Austrittstemperatur des Kondensats aus dem Abgaswärmetauscher 14 in der Speisewasserrückführleitung 39 z.B. durch Laständerungen der Gasturbine 2 oder der Dampfturbine 3 einen vorgegebenen Maximalwert überschreitet oder einen vorgegebenen Minimalwert unterschreitet, wird die Regelung der Eintrittstemperatur des Kondensats in den Abgaswärmetauscher 14 abgelöst und der über das Regelventil 40 in die Speisewasserhinführleitung 38 eingespeiste Speisewasserdurchsatz so eingestellt, dass die Austrittstemperatur des Speisewassers aus dem Abgaswärmetauscher 14 einen vorgegebenen Sollwert, z.B. 110°C, hat und die Regelung des Druckes im Speisewasserbehälter 30 auf den vorgegebenen Sollwert über das Regelventil 43 wirksam bleibt.

Claims (3)

1. Wärmekraftwerk mit einer Gasturbine (2), einer der Gasturbine abgasseitig nachgeschalteten Einrichtung zur Wärmerückgewinnung (11, 13, 15, 17, 9, 12), einem der Einrichtung zur Wärmerückgewinnung zugeordneten Energieumsetzer (3) mit zugeordnetem Kondensator (34) und diesem über eine Kondensatleitung (37) nachgeschaltetem Speisewasserbehälter (30) für die Einrichtung zur Wärmerückgewinnung, sowie mit einem der Einrichtung zur Wärmerückgewinnung abgasseitig nachgeschalteten Abgaswärmetauscher (14), der über eine Speisewasserhinführ- (38) und eine Speisewasserrückführleitung (39) unter Ausbildung eines geschlossenen Speisewasserkreislaufes am Speisewasserbehälter (30) angeschlossen ist, dadurch gekennzeichnet, dass eine von der Kondensatleitung (37) abgehende Bypassleitung (42) für Kondensat zum Speisewassereintritt des Abgaswärmetauschers (14) vorgesehen ist und dass in der Speisewasserhinführleitung (38) in Richtung des Speisewasserstromes gesehen vor der Anschlussstelle der Bypassleitung (42) ein Regelventil (40) mit einem Temperaturmessfühler in der Speisewasserhinführleitung (38) hinter der Anschlussstelle der Bypassleitung (42) und mit einem zugeordneten Regler (46) angebracht ist, der die Speisewassereintrittstemperatur für den Abgaswärmetauscher (14) durch entsprechende Zufuhr von Speisewasser aus dem Speisewasserbehälter (30) in die Speisewasserhinführleitung (38) auf einen vorgegebenen Sollwert regelt.
2. Wärmekraftwerk nach Anspruch 1, dadurch gekennzeichnet, dass in der Kondensatleitung (37) in Richtung des Kondensatstromes gesehen hinter der Abzweigstelle der Bypassleitung (42) ein Regelventil (43) mit einem Druckfühler im Speisewasserbehälter (30) und einem Regler (45) angebracht ist, der den Druck im Speisewasserbehälter (30) durch entsprechende Zufuhr von Kondensat in den Speisewasserbehälter (30) auf einen vorgegebenen Sollwert regelt.
3. Wärmekraftwerk nach Anspruch 1, dadurch gekennzeichnet, dass in der Speisewasserrückführleitung (39) ein Temperaturfühler angebracht und am Regler (46) des Regelventils (40) in der Speisewasserhinführleitung (38) angeschlossen ist, der bei Überschreiten eines vorgegebenen Maximalwertes und bei Unterschreiten eines vorgegebenen Minimalwertes der Speisewassertemperatur in der Speisewasserrückführleitung (39) die Speisewasseraustrittstemperatur aus dem Abgaswärmetauscher (14) durch entsprechende Zufuhr von Speisewasser auf einen vorgegebenen Sollwert regelt.
EP85113145A 1984-10-29 1985-10-16 Wärmekraftwerk Expired EP0180093B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113145T ATE34802T1 (de) 1984-10-29 1985-10-16 Waermekraftwerk.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3439567 1984-10-29
DE3439567 1984-10-29

Publications (2)

Publication Number Publication Date
EP0180093A1 EP0180093A1 (de) 1986-05-07
EP0180093B1 true EP0180093B1 (de) 1988-06-01

Family

ID=6249023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113145A Expired EP0180093B1 (de) 1984-10-29 1985-10-16 Wärmekraftwerk

Country Status (5)

Country Link
EP (1) EP0180093B1 (de)
JP (1) JPS61108814A (de)
AT (1) ATE34802T1 (de)
DE (1) DE3563088D1 (de)
IN (1) IN161926B (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643452Y2 (ja) * 1988-02-08 1994-11-14 株式会社三五 消音器
US4976100A (en) * 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
DE102009010020B4 (de) * 2009-02-21 2016-07-07 Flagsol Gmbh Speisewasserentgaser eines solarthermischen Kraftwerks
DE102010054963B4 (de) * 2010-12-17 2017-06-01 Jumag Dampferzeuger Gmbh Druckregelung für die Vollentgasung in Speisewassergefäßen mittels ansteuerbarem Ventil
DE102013204396A1 (de) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Kondensatvorwärmer für einen Abhitzedampferzeuger
CN107697494B (zh) * 2017-09-14 2019-02-22 江苏航天惠利特环保科技有限公司 一种耦合法油气回收装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1626151A1 (de) * 1967-02-22 1971-01-14 Aeg Kanis Turbinen Waermekraftanlage mit einer Dampfturbine mit Zwischenueberhitzer und mit einer Gasturbine
CH613255A5 (en) * 1976-11-25 1979-09-14 Sulzer Ag System for the utilisation of waste heat from a gas flow to drive electrical generators
DE3002615A1 (de) * 1979-12-05 1981-06-11 BBC AG Brown, Boveri & Cie., Baden, Aargau Verfahren und einrichtung fuer den teillastbetrieb von kombinierten kraftanlagen
CH655548B (de) * 1982-03-31 1986-04-30

Also Published As

Publication number Publication date
ATE34802T1 (de) 1988-06-15
IN161926B (de) 1988-02-27
EP0180093A1 (de) 1986-05-07
DE3563088D1 (en) 1988-07-07
JPS61108814A (ja) 1986-05-27

Similar Documents

Publication Publication Date Title
EP0695860B1 (de) Luftspeicherturbine
EP0526816B1 (de) Gas- und Dampfturbinenkraftwerk mit einem solar beheizten Dampferzeuger
EP0523467B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
EP0436536B1 (de) Verfahren und anlage zur abhitzedampferzeugung
EP0439754B1 (de) Verfahren zum Anfahren einer Kombianlage
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE2945404C2 (de) Verfahren zum Betrieb einer kombinierten Gas-Dampfturbinenanlage und Gas-Dampfturbinenanlage zur Durchführung dieses Verfahrens
DE102010001118B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage
EP0778397A2 (de) Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Dampfturbogruppe
DE102010060064A1 (de) Verfahren zur Steigerung der Leistungsabgabe eines Gas- und Dampf-Kombikraftwerks während ausgewählter Betriebszeiträume
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE19652349C2 (de) Solar- und Niedertemperaturwärme-Kombianlage-Solico
EP1154127B1 (de) Verfahren zum Betrieb eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
EP0764768A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
EP0180093B1 (de) Wärmekraftwerk
EP0410111B1 (de) Abhitzedampferzeuger für ein Gas- und Dampfturbinenkraftwerk
DE3719861C2 (de) Dampfturbinenanlage
EP1286030B1 (de) Gas- und Luftturbinenanlage
EP1425079B1 (de) Verfahren und vorrichtung zur thermischen entgasung des arbeitsmittels eines zweiphasenprozesses
DE19943782C5 (de) Gas- und Dampfturbinenanlage
DE1074326B (de) Wärmekraftanlage
CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
DE3419560A1 (de) Verfahren zum betrieb einer gasturbinenanlage sowie anlage zur durchfuehrung des verfahrens
EP3728800B1 (de) Kraftwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860626

17Q First examination report despatched

Effective date: 19870416

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34802

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3563088

Country of ref document: DE

Date of ref document: 19880707

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911009

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911022

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920918

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941016

EUG Se: european patent has lapsed

Ref document number: 85113145.8

Effective date: 19940510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801