EP0180093B1 - Centrale thermique - Google Patents

Centrale thermique Download PDF

Info

Publication number
EP0180093B1
EP0180093B1 EP85113145A EP85113145A EP0180093B1 EP 0180093 B1 EP0180093 B1 EP 0180093B1 EP 85113145 A EP85113145 A EP 85113145A EP 85113145 A EP85113145 A EP 85113145A EP 0180093 B1 EP0180093 B1 EP 0180093B1
Authority
EP
European Patent Office
Prior art keywords
feed water
line
exhaust gas
condensate
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113145A
Other languages
German (de)
English (en)
Other versions
EP0180093A1 (fr
Inventor
Hermann Brückner
Winfried Dipl.-Ing. Ganzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85113145T priority Critical patent/ATE34802T1/de
Publication of EP0180093A1 publication Critical patent/EP0180093A1/fr
Application granted granted Critical
Publication of EP0180093B1 publication Critical patent/EP0180093B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor

Definitions

  • the invention relates to a thermal power plant with a gas turbine, a device for heat recovery connected downstream of the gas turbine on the exhaust gas side, an energy converter associated with the device for heat recovery with an associated capacitor and this connected via a condensate line feed water tank for the device for heat recovery, and with a device downstream of the device for heat recovery on the exhaust gas side Exhaust gas heat exchanger, which is connected to the feed water tank via a feed water feed line and a feed water return line to form a closed feed water circuit.
  • the invention has for its object to improve the overall efficiency of a thermal power plant of the type mentioned.
  • the inlet temperature of the feed water into the exhaust gas heat exchanger can be reduced, so that more exhaust gas heat can be transferred to the feed water circuit and the supply of, for example, water vapor to the energy converter in the feed water tank can be dispensed with.
  • the specified setpoint, to which the feed water inlet temperature is regulated with the help of the control valve in the feed water supply line, can be selected higher than the dew point of H 2 0 or also of acids in the exhaust gas, so that corrosion on the heat transfer surfaces of the exhaust gas heat exchanger is avoided.
  • thermal power plant according to the invention can achieve that when the gas turbine changes load and the associated changes in the exhaust gas temperature, the setpoint value of the feed water temperature in the feed water return line is kept within the range between the predetermined maximum value and the predetermined minimum value.
  • the drawing shows the basic circuit diagram of a combined gas-steam thermal power plant with a gas turbine 2 and a steam turbine 3 with a high-pressure part and a low-pressure part.
  • the drive shaft of a compressor 4 for combustion air and an electric generator 5 is coupled to the output shaft of the gas turbine 2. Furthermore, a combustion chamber 8 is provided, to which the exhaust port of the compressor 4 and the feed port of the gas turbine 2 for combustion gas are connected. The drive shaft of an electric generator 6 is coupled to the output shaft of the steam turbine 3.
  • a waste heat steam generator 7 is connected to the discharge port of the gas turbine 2 for exhaust gas, with a high-pressure steam superheater 11 connected directly to the discharge port of the gas turbine 2 for exhaust gas, and to the high-pressure evaporator 13, high-pressure economizer 15, low-pressure steam superheater 17, low-pressure evaporator 9 and low-pressure economizer connected in series in the exhaust gas stream 12th
  • the heat recovery steam generator 7 also includes a high-pressure steam drum 22 and a low-pressure steam drum 28.
  • the feed water outlet of the high-pressure economizer 15 and the outlet of the high-pressure evaporator 13 are connected to the high-pressure steam drum 22.
  • the feed water outlet of the high pressure steam drum 22 is connected to the inlet of the high pressure evaporator 13 via a circulation pump 24.
  • the steam outlet of the high pressure steam drum 22 is connected to the steam inlet of the high pressure steam superheater 11.
  • the outlet of the low-pressure economizer 12 and the outlet of the low-pressure evaporator 9 are connected to the low-pressure steam drum 28.
  • the feed water outlet of the low-pressure steam drum 28 is connected both via a feed water pump 26 at the feed water inlet of the high-pressure economizer 15 and via a further circulation pump 10 at the inlet of the low-pressure evaporator 9.
  • the steam outlet of the low-pressure steam drum 28 is connected to the steam inlet of the low-pressure steam superheater 17.
  • the live steam outlet of the high pressure steam superheater 11 is connected to the steam inlet of the high pressure part of the steam turbine 3 and the live steam outlet of the low pressure steam superheater 17 is connected to the steam inlet of the low pressure part of the steam turbine 3.
  • a feed water line 32 having a feed water pump 31 leads from a feed water container 30 to the feed water inlet of the low-pressure economizer 12.
  • a condenser 34 which has a hotwell 35 on the condensate outlet side, is connected downstream of the evaporation nozzle of the steam turbine 3 via an exhaust steam line 33.
  • This hotwell 35 is connected to the feed water tank 30 via a condensate line 37 having a condensate pump 36 with a downstream control valve 43.
  • An exhaust gas heat exchanger 14 is connected on the gas side downstream of the low-pressure economizer 12 and is connected on its water side to the feed water tank 30 via a feed water return line 39.
  • a feed water supply line 38 with a control valve 40 and upstream circulation pump 41 also leads from the feed water tank 30 to the water side of the exhaust gas heat exchanger 14.
  • a bypass line 42 for condensate leads from a connection point on the condensate line 37 between the condensate pump 36 and the control valve 43 to a connection point on the feed water supply line 38 between the control valve 40 and the feed water inlet of the exhaust gas heat exchanger 14.
  • the control valve 43 has a regulator 45 with a pressure sensor in the feed water tank 30 and the control valve 40 a controller 46, each with a temperature sensor in the feed water return line 39 and in the feed water return line 38 between the feed water inlet into the exhaust gas heat exchanger 14 and the connection point of the bypass line 42.
  • Condensate flows out of the hotwell 35 via the condensate line 37, the bypass line 42 and the feed water supply line 38 through the exhaust gas heat exchanger 14 via the feed water return line 39 into the feed water tank 30 , warmer feed water from the feed water tank 30 mixed, so that the entry temperature of the condensate into the exhaust gas heat exchanger 14 assumes such a setpoint value, for example 70 ° C., at which the dew point temperature of the H 2 0 and lower SO 2 components in the exhaust gas on the exhaust gas side of the exhaust gas heat exchanger 14 is not undercut and therefore corrosion on the heat transfer surfaces of the exhaust gas heat exchanger 14 is avoided.
  • a setpoint value for example 70 ° C.
  • the pressure in the feed water tank 30 is set to a predetermined setpoint, e.g. 1.2 bar, regulated with the aid of the control valve 43, with which cold condensate from the condensate line 37 is fed directly into the feed water tank 30.
  • the outlet temperature of the condensate from the exhaust gas heat exchanger 14 in the feed water return line 39 e.g. changes in the load of the gas turbine 2 or the steam turbine 3 exceed a predetermined maximum value or fall below a predetermined minimum value
  • the regulation of the inlet temperature of the condensate in the exhaust gas heat exchanger 14 is replaced and the feed water throughput fed into the feed water supply line 38 via the control valve 40 is set such that the outlet temperature of the Feed water from the exhaust gas heat exchanger 14 a predetermined setpoint, for example 110 ° C, and the regulation of the pressure in the feed water tank 30 to the predetermined target value via the control valve 43 remains effective.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Saccharide Compounds (AREA)
  • Lubricants (AREA)
  • Catalysts (AREA)

Claims (3)

1. Centrale thermique comportant une turbine à gaz (2), un dispositif (11, 13, 15, 17, 9, 12) monté en aval de la turbine à gaz, sur le côté des gaz d'échappement, pour la récupération de la chaleur, un convertisseur d'énergie (3) associé au dispositif de récupération de chaleur et auquel est associé un condenseur (34), et un réservoir d'eau d'alimentation (30) qui est monté en aval du condenseur par l'intermédiaire d'une canalisation (37) de circulation du condensat et est prévu pour le dispositif de récupération de chaleur, ainsi qu'un échangeur de chaleur (14) à gaz d'échappement, qui est monté en aval du dispositif de récupération de chaleur, sur le côté de sortie du gaz d'échappement et est raccordé par l'intermédiaire d'une canalisation (38) d'amenée de l'eau d'alimentation et d'une canalisation (39) de retour de l'eau d'alimentation, au réservoir d'alimentation (30) en formant un circuit fermé de circulation de l'eau d'alimentation, caractérisée par le fait qu'il est prévu une canalisation de dérivation (42), qui part de la canalisation (37) de circulation du condensat, pour dériver le condensat en direction de l'entrée de l'eau d'alimentation de l'échangeur de chaleur à gaz d'échappement (14), et que dans la canalisation (38) d'amenée de l'eau d'alimentation il est prévu, en amont du point de raccordement de la canalisation de dérivation (42) dans la direction de l'écoulement de l'eau d'alimentation, une soupape de régulation (40) comportant un capteur de mesure de la température monté dans la canalisation (38) d'amenée de l'eau d'alimentation en aval du point de raccordement de la canalisation de dérivation (42), et un régulateur associé (46), qui règle la température d'entrée de l'eau d'alimentation pour l'échangeur de chaleur à gaz d'échappement (14) à une valeur de consigne prédéterminée, grâce à une amenée correspondante d'eau d'alimentation depuis le réservoir d'eau d'alimentation (30) dans la canalisation (38) d'amenée de l'eau d'alimentation.
2. Centrale thermique suivant la revendication 1, caractérisée par le fait que dans la canalisation (37) de circulation du condensat est montée, en aval du point d'embranchement de la canalisation de dérivation (42) dans la direction de circulation du condensat, une soupape de régulation (43) comportant un capteur de pression monté dans le réservoir d'eau d'alimentation (30) et un régulateur (45) qui règle la pression régnant dans le réservoir d'eau d'alimentation (30) à une valeur de consigne prédéterminée, grâce à un envoi correspondant de condensat dans le réservoir d'eau d'alimentation (30).
3. Centrale thermique suivant la revendication 1, caractérisée par le fait que dans la canalisation (39) de retour de l'eau d'alimentation se trouve disposé un capteur de température, qui est raccordé au régulateur (46) de la soupape de régulation (40) qui est située dans la canalisation (38) d'amenée de l'eau d'alimentation, régulateur qui, lorsque la température de l'eau d'alimentation située dans la canalisation (39) de retour de l'eau d'alimentation, dépasse une valeur maximale prédéterminée ou tombe au-dessous d'une valeur minimale prédéterminée, règle la température de sortie de l'eau d'alimentation sortant de l'échangeur de chaleur (14) à gaz d'échappement à une valeur de consigne prédéterminée, grâce à un apport correspondant d'eau d'alimentation.
EP85113145A 1984-10-29 1985-10-16 Centrale thermique Expired EP0180093B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113145T ATE34802T1 (de) 1984-10-29 1985-10-16 Waermekraftwerk.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3439567 1984-10-29
DE3439567 1984-10-29

Publications (2)

Publication Number Publication Date
EP0180093A1 EP0180093A1 (fr) 1986-05-07
EP0180093B1 true EP0180093B1 (fr) 1988-06-01

Family

ID=6249023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113145A Expired EP0180093B1 (fr) 1984-10-29 1985-10-16 Centrale thermique

Country Status (5)

Country Link
EP (1) EP0180093B1 (fr)
JP (1) JPS61108814A (fr)
AT (1) ATE34802T1 (fr)
DE (1) DE3563088D1 (fr)
IN (1) IN161926B (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643452Y2 (ja) * 1988-02-08 1994-11-14 株式会社三五 消音器
US4976100A (en) * 1989-06-01 1990-12-11 Westinghouse Electric Corp. System and method for heat recovery in a combined cycle power plant
DE102009010020B4 (de) * 2009-02-21 2016-07-07 Flagsol Gmbh Speisewasserentgaser eines solarthermischen Kraftwerks
DE102010054963B4 (de) * 2010-12-17 2017-06-01 Jumag Dampferzeuger Gmbh Druckregelung für die Vollentgasung in Speisewassergefäßen mittels ansteuerbarem Ventil
DE102013204396A1 (de) * 2013-03-13 2014-09-18 Siemens Aktiengesellschaft Kondensatvorwärmer für einen Abhitzedampferzeuger
CN107697494B (zh) * 2017-09-14 2019-02-22 江苏航天惠利特环保科技有限公司 一种耦合法油气回收装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1626151A1 (de) * 1967-02-22 1971-01-14 Aeg Kanis Turbinen Waermekraftanlage mit einer Dampfturbine mit Zwischenueberhitzer und mit einer Gasturbine
CH613255A5 (en) * 1976-11-25 1979-09-14 Sulzer Ag System for the utilisation of waste heat from a gas flow to drive electrical generators
DE3002615A1 (de) * 1979-12-05 1981-06-11 BBC AG Brown, Boveri & Cie., Baden, Aargau Verfahren und einrichtung fuer den teillastbetrieb von kombinierten kraftanlagen
CH655548B (fr) * 1982-03-31 1986-04-30

Also Published As

Publication number Publication date
ATE34802T1 (de) 1988-06-15
IN161926B (fr) 1988-02-27
EP0180093A1 (fr) 1986-05-07
JPS61108814A (ja) 1986-05-27
DE3563088D1 (en) 1988-07-07

Similar Documents

Publication Publication Date Title
EP0695860B1 (fr) Centrale à turbine à gaz avec stockage d'air comprimé
EP0526816B1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP0523467B1 (fr) Procédé pour opérer une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP0436536B1 (fr) Procede et installation de generation de vapeur au moyen de chaleur perdue
EP0439754B1 (fr) Méthode de démarrage d'une centrale combinée
EP0591163B1 (fr) Installation combinee a turbines a gaz et a vapeur
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
DE10041413B4 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE2945404C2 (de) Verfahren zum Betrieb einer kombinierten Gas-Dampfturbinenanlage und Gas-Dampfturbinenanlage zur Durchführung dieses Verfahrens
DE102010001118B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einer Dampfkraftanlage
EP0778397A2 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
DE4321081A1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende GuD-Anlage
DE19652349C2 (de) Solar- und Niedertemperaturwärme-Kombianlage-Solico
EP1154127B1 (fr) Procédé de fonctionnement d'une centrale combinée et centrale combinée pour la mise en oeuvre du procédé
EP0764768A1 (fr) Procédé de fonctionnement d'une centrale d'énergie
EP0180093B1 (fr) Centrale thermique
EP0410111B1 (fr) Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur
DE3719861C2 (de) Dampfturbinenanlage
EP1286030B1 (fr) Installation avec combination de turbine à gaz et à air
EP1425079B1 (fr) Procede et dispositif de degazage thermique de la substance active d'un processus a deux phases
DE19943782C5 (de) Gas- und Dampfturbinenanlage
DE1074326B (de) Wärmekraftanlage
CH626426A5 (en) Internal combustion engine system with a pressure-charged, water-cooled engine
DE3419560A1 (de) Verfahren zum betrieb einer gasturbinenanlage sowie anlage zur durchfuehrung des verfahrens
EP3728800B1 (fr) Centrale électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19860626

17Q First examination report despatched

Effective date: 19870416

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 34802

Country of ref document: AT

Date of ref document: 19880615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3563088

Country of ref document: DE

Date of ref document: 19880707

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911009

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911022

Year of fee payment: 7

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920918

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921027

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941016

EUG Se: european patent has lapsed

Ref document number: 85113145.8

Effective date: 19940510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941016

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801