EP0599885B1 - Verfahren zur abtrennung von einem wasserlöslichen edelmetallkatalysator aus einer edelmetallkatalysierten hydroformulierungsreaktion - Google Patents

Verfahren zur abtrennung von einem wasserlöslichen edelmetallkatalysator aus einer edelmetallkatalysierten hydroformulierungsreaktion Download PDF

Info

Publication number
EP0599885B1
EP0599885B1 EP92916534A EP92916534A EP0599885B1 EP 0599885 B1 EP0599885 B1 EP 0599885B1 EP 92916534 A EP92916534 A EP 92916534A EP 92916534 A EP92916534 A EP 92916534A EP 0599885 B1 EP0599885 B1 EP 0599885B1
Authority
EP
European Patent Office
Prior art keywords
noble metal
water soluble
reaction product
group viii
soluble group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92916534A
Other languages
English (en)
French (fr)
Other versions
EP0599885A1 (de
Inventor
Joel Robert Livingston, Jr.
Edmund John Mozeleski
Guido Sartori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of EP0599885A1 publication Critical patent/EP0599885A1/de
Application granted granted Critical
Publication of EP0599885B1 publication Critical patent/EP0599885B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • B01J31/4046Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4053Regeneration or reactivation of catalysts containing metals with recovery of phosphorous catalyst system constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4061Regeneration or reactivation of catalysts containing metals involving membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/786Separation; Purification; Stabilisation; Use of additives by membrane separation process, e.g. pervaporation, perstraction, reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/90Catalytic systems characterized by the solvent or solvent system used
    • B01J2531/96Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • This invention relates to a method for separating water soluble Group VIII noble metal-ligand complex catalysts from the crude reaction product of a noble metal-catalyzed hydroformylation reaction by contacting the crude reaction product to a hydrophobic membrane whereby the water soluble Group VIII noble metal-ligand complex catalysts are retained by the membrane as retentate, and the unreacted olefin feed and the hydroformylation reaction product are passed through the membrane as permeate.
  • Hydroformylation reactions involve the preparation of oxygenated organic compounds by the reaction of carbon monoxide and hydrogen (synthesis gas) with carbon compounds containing olefinic unsaturation.
  • the reaction is typically performed in the presence of a carbonylation catalyst and results in the formation of compounds, for example, aldehydes, which have one or more carbon atoms in their molecular structure than the starting olefinic feedstock.
  • aldehydes which have one or more carbon atoms in their molecular structure than the starting olefinic feedstock.
  • higher alcohols may be produced in the so-called oxo process by hydroformylation of commercial C 6 -C 12 olefin fractions to an aldehyde-containing oxonation product, which on hydrogenation yields the corresponding C 7 -C 13 saturated alcohols.
  • the oxo process is the commercial application of the hydroformylation reaction for making higher aldehydes and alcohols from olefins.
  • the crude product of the hydroformylation reaction will contain catalyst, aldehydes, alcohols, unreacted olefin feed, synthesis gas and by-products.
  • transition metals catalyze the hydroformylation reaction, but only cobalt and rhodium carbonyl complexes are used in commercial oxo plants.
  • the reaction is highly exothermic; the heat release is ca 125 kJ/mol (30 kcal/mol).
  • reaction products depends upon the olefin type, the catalyst, the solvent, and the reaction conditions. Reaction conditions have some effect and, with an unmodified cobalt catalyst, the yield of straight chain product from a linear olefin is favored by higher CO partial pressure.
  • a catalyst containing selected complexing ligands e.g., tertiary phosphines, results in the predominant formation of the normal isomer.
  • the aldehyde product In commercial operation. the aldehyde product usually used as an intermediate which is converted by hydrogenation to an alcohol or by aldolization and hydrogenation to a higher alcohol.
  • the aldol-hydrogenation route is used primarily for the manufacture of 2-ethylhexanol from propylene via n-butyraldehyde.
  • the hydroformylation reaction is catalyzed homogeneously by carbonyls of Group VIII metals but there are significant differences in their relative activities.
  • Roelen using a cobalt catalyst, discovered hydroformylation in 1938.
  • Dicobalt octacarbonyl, CO 2 (CO) 8 which either is introduced directly or formed in situ, is the primary conventional oxo catalyst precursor.
  • CO 2 (CO) 8 which either is introduced directly or formed in situ, is the primary conventional oxo catalyst precursor.
  • the ratio of linear to branched aldehyde is relatively low.
  • the first commercial oxo process to employ a rhodium-modified catalyst was developed by Union Carbide, Davy Powergas, and Johnson Matthey.
  • the complexed rhodium catalyst is dissolved in excess ligand and the reaction is run at relatively low pressures and temperatures as compared to a conventional oxo process.
  • the ratio of normal to iso isomers is high relative to conventional oxo processes and so is favored as a process for the production of n-butyraldehyde.
  • the reactor comprises the rhodium complex catalyst, excess triphenylphosphine and a mixture of product aldehydes and condensation by-products.
  • the product aldehyde may be recovered from the mixture by volatilization directly from the reactor or by distillation in a subsequent step.
  • the catalyst either remains in or is recycled to the reactor.
  • the complex catalyst and triphenylphosphine ligand are slowly deactivated and eventually the spent catalyst is removed for recovery of rhodium and reconversion to the active catalyst.
  • This process although effective for lower molecular weight aldehyde production, is not favored for higher molecular weight aldehydes which are higher boiling, distillation temperatures needed for aldehyde recovery are higher and catalyst deactivation is accelerated.
  • the aqueous ligand system is also very effective for propylene but higher molecular weight olefin feeds are not sufficiently soluble in the aqueous catalyst medium to allow acceptable rates of aldehyde formation.
  • higher molecular weight aldehyde should be more facile than the all-organic system, the slow rates preclude commercial acceptability.
  • the present inventors have discovered that when they satisfactorily hydroformylated olefins in the presence of water soluble Group VIII noble metal-ligand complex catalysts using an aqueous-organic medium enhanced by surfactants, the catalyst can be recovered quantitatively from a crude reaction product which includes both an aqueous phase and an organic phase by employing membrane separation either internal or external to the hydroformylation reactor.
  • This process only involves the separation of water-soluble ligands and noble metal catalyst from an aqueous solution. As such, the separation process does not pertain to the separation of a water-soluble noble metal catalyst and a water-soluble ligand from an organic-aqueous emulsion, dispersion or suspension produced from the hydroformylation process.
  • the pentene was completely converted to aldehydes according to proton nmr analysis.
  • the solution was permeated through a polyimide membrane under 68 atm nitrogen pressure.
  • the permeate (4.5 g passed in 2 min.) showed only 9% of the original rhodium concentration by X-ray fluorescence.
  • the rhodium catalyst should be retained in an amount of greater than 99.5% to be a commercially feasible process.
  • 87/881 a polydimethylsiloxane membrane having a thickness of 7 microns applied to a Teflon® support was used in the separation of a reaction mixture containing C 9 -C 15 alcohols, a homogeneous catalyst system comprising an organometallic complex of a transition metal from Group VIII or VIIa or Va of the Periodic Table, e.g., a tricarbonyl (triphenylphosphine) cobalt catalyst, and 40% low-viscosity lubricating oil (an antiswelling or de-swelling agent).
  • a homogeneous catalyst system comprising an organometallic complex of a transition metal from Group VIII or VIIa or Va of the Periodic Table, e.g., a tricarbonyl (triphenylphosphine) cobalt catalyst, and 40% low-viscosity lubricating oil (an antiswelling or de-swelling agent).
  • the cobalt contents in the feed, retentate, and permeate were 600, 910, and 18 ppm, versus 840, 1930, and 160 ppm, respectively, for a mixture without the de-swelling agent.
  • This process is directed to the separation of product from a reaction mixture containing a homogeneous catalyst system by means of a membrane, whereas the present invention is directed to a heterogeneous catalyst system comprising both an organic and an aqueous layer.
  • 8700881 are all organic soluble ligands, e.g., triphenylphosphine, tri-n-alkylphosphine or acetyl acetonate, whereas those used in the present invention are water soluble ligands.
  • Critical to the process of Dutch Patent No. 8700881 is the addition of a de-swelling agent to the reaction mixture which assists in the separation of the products from the reaction mixture.
  • the present invention provides a ligand and membrane combination which allows for the retention of over 99.5% of the noble metal catalyst from the hydroformylation reaction product which is passed over the membrane. Moreover, the hydrophobic membrane used in accordance with the process of the present invention remains thermally and hydrolytically stable during separation.
  • the present inventors have been able to demonstrate that an aqueous-organic-catalyst mixture can be separated from the crude hydroformylation product mixture using a hydrophobic membrane and a perstracting organic solvent. This novel process permits the organic products to permeate through the membrane, while retaining the rhodium catalyst and all other water soluble components.
  • the present invention also provides many additional advantages which shall become apparent as described below.
  • the present invention relates primarily to a process wherein an aqueous emulsion, suspension or dispersion of a crude reaction product comprising a water soluble Group VIII noble metal-ligand complex catalyst, unreacted olefin feed and a hydroformylation reaction product is contacted with or passed over a hydrophobic membrane capable of retaining the water soluble rhodium-ligand complex catalyst as retentate and permitting the unreacted olefin feed and organic hydroformylation reaction product comprising higher aldehydes and higher alcohols to permeate therethrough.
  • a hydrophobic membrane capable of retaining the water soluble rhodium-ligand complex catalyst as retentate and permitting the unreacted olefin feed and organic hydroformylation reaction product comprising higher aldehydes and higher alcohols to permeate therethrough.
  • the aqueous emulsion, suspension or dispersion is first settled before delivering the organic phase, i.e., the hydroformylation reaction product with smaller amounts of the water soluble Group VIII noble metal-ligand complex catalyst to the membrane for separation. It is also optional to add a surfactant to the noble metal-catalyzed hydroformylation reaction.
  • Typical olefins used in the aforementioned hydroformylation process are C 4 to C 20 , preferably C 6 to C 16 .
  • a method for separating a water soluble noble metal catalyst from the crude reaction product of a noble metal-catalyzed hydroformylation reaction run in aqueous solution, in an aqueous emulsion or as an aqueous suspension, said crude reaction product including an aqueous phase containing a water soluble Group VIII noble metal-ligand complex catalyst, and an organic phase containing unreacted olefin feed and an organic hydroformylation reaction product which comprises: (a) contacting the crude reaction product with a hydrophobic membrane capable of allowing a substantial portion of the unreacted olefin feed and the organic hydroformylation reaction product to pass therethrough while retaining a substantial portion of the water soluble Group VIII noble metal-ligand complex catalyst, said hydrophobic membrane is selected from the group consisting of: high density polyethylene crosslinked membranes, natural latex rubber membranes, polyvinylidene difluoride membranes, polychlorotrifluoroethylene membranes, and polyte
  • the noble metal-catalyzed hydroformylation reaction preferably includes the steps of: reacting an olefin with hydrogen and carbon monoxide in the presence of a water soluble Group VIII noble metal-ligand complex catalyst, at a temperature in the range between 80 to 125°C to produce an aldehyde having a normal aldehyde to isomeric aldehyde ratio in the range of between 0.5:1 to 80:1.
  • the ligand is preferably at least one compound selected from the group consisting of: Na-p-(diphenylphosphino) benzoate, Na-m-(diphenylphosphino)benzenesulfonate, and tri-(sodium m-sulfophenyl)-phosphine.
  • the surfactant is preferably at least one compound selected from the group consisting of cetyltrimethylammonium bromide, sodium laurate, sodium stearate, and linear dodecylbenzene sulfonate.
  • a further object of the present invention is a method for producing higher aldehydes and higher alcohols which comprises: (a) hydroformylating an olefinic feedstock with synthesis gas in the presence of a water soluble Group VIII noble metal-ligand complex catalyst to form a crude reaction product comprised of an organic phase containing unreacted olefin feed and organic hydroformylation reaction product and an aqueous phase containing a water soluble Group VIII noble metal-ligand complex catalyst: (b) removing the water soluble noble metal catalyst from the crude reaction product by feeding the crude reaction product to a membrane separator which comprises a hydrophobic membrane capable of allowing a substantial portion of the hydroformylation product, i.e., higher aldehydes, higher alcohols and secondary products, and unreacted olefin feed to pass therethrough while retaining a substantial portion of the water soluble Group VIII noble metal-ligand complex catalyst, wherein said hydrophobic membrane is selected from the group specified above: (c) recovering the hydroformylation reaction
  • the aforementioned method includes the additional step wherein the crude reaction product is separated into an aqueous layer and an organic layer before it is fed to the membrane separator.
  • the organic layer thereafter being fed to the membrane separator and the aqueous layer and retentate from the membrane separator are recycled to the hydroformylation reactor.
  • the noble metal-catalyzed hydroformylation reaction typically involves the reacting of a linear alpha olefin with carbon monoxide, and hydrogen in the presence of a water soluble Group VIII noble metal-ligand complex catalyst, at a temperature in the range between 80 to 125°C. and a pressure of 1 to 100 atmospheres to produce an aldehyde having a normal to iso ratio in the range of between 0.5:1 to 80:1.
  • Hydroformylation is a process of converting olefins to a product of one or more additional carbon numbers by the addition of carbon monoxide and hydrogen to the double bond(s) of the olefin in the presence of a catalyst elevated temperatures and pressures.
  • a typical hydroformylation process is demonstrated below: At a temperature of 100°C and a pressure of 150 lbs. the normal to iso ratio using rhodium as the catalyst may be below 1 or even as high as 100, depending on the ligand, ratio of ligand to rhodium, etc. When cobalt is used as the catalyst and is not modified by a ligand, the normal to iso ratio is below 3 at most.
  • the aqueous phase preferably contains a water-soluble phosphine in complex combination with a complex or catalytic precursor of the noble metal, e.g., sulfonated or carboxylated triaryl phosphines.
  • the amphiphilic reagent is typically an anionic, nonionic or cationic surfactant or phase transfer agent such as a complex ammonium salt or a polyoxyethylene nonionic surfactant.
  • the preferred ratio of aqueous phase to organic phase is 0.33:1 to 5:1, the ratio of H 2 to CO is 1:1 to 5:1, the content of precious metal in the aqueous phase is 100-500 ppm and the ratio of amphiphilic reagent to precious metal is up to 100:1 on a molar basis. It is preferable that the reaction be carried out at 300-10,000 kPa especially 300-3,000 kPa and at a temperature in the range between 40-150°C.
  • FIG. 1 is a schematic representation of a membrane separator 1 comprising a hydrophobic membrane 3.
  • Membrane separator 1 is preferably used to separate a water soluble Group VIII noble metal-ligand complex catalyst from a crude reaction product of a noble metal-catalyzed hydroformylation reaction run in aqueous solution, in an aqueous emulsion or as an aqueous suspension.
  • the crude reaction product typically includes an aqueous phase containing a water soluble Group VIII noble metal-ligand complex catalyst, and an organic phase containing unreacted olefin feed and an organic hydroformylation reaction product.
  • Separation occurs by contacting the crude reaction product with hydrophobic membrane 3 which is capable of allowing a substantial portion of the unreacted olefin feed and organic hydroformylation reaction product to pass therethrough while retaining a substantial portion of the water soluble Group VIII noble metal-ligand complex catalyst.
  • the unreacted olefin feed and organic hydroformylation reaction product which pass through hydrophobic membrane 3 as permeate is then removed from membrane separator 1 for further downstream treatment.
  • the retentate which comprises water soluble Group VIII noble metal-ligand complex catalyst and some of the organic phase constituents is recycled to the hydroformylation reactor.
  • organic hydroformylation reaction product and unreacted olefin feed are permeated, either by perstraction or pervaporation, through hydrophobic membrane 3 which retains the water-soluble catalyst quantitatively.
  • the preferred water soluble ligand is one compound selected from the group consisting of: Na-p-(diphenylphosphino)benzoate, Na-m-(diphenylphosphino)benzenesulfonate, and tris-(sodium m-sulfophenyl)-phosphine.
  • the preferred water soluble noble metal catalyst is rhodium.
  • the noble metal-catalyzed hydroformylation reaction preferably involves the reacting of an olefin with hydrogen and carbon monoxide (synthesis gas) in the presence of a water soluble Group VIII noble metal-ligand complex catalyst, at a temperature in the range between 80 to 125°C to produce an aldehyde having a normal to iso ratio in the range of between 0.5:1 to 80:1.
  • a surfactant may be added to the noble metal-catalyzed hydroformylation reaction.
  • the surfactant is preferabry one compound selected from the group consisting of cetyltrimethylammonium bromide, sodium laurate, sodium stearate, and linear dodecylbenzene sulfonate.
  • Hydrophobic membrane 3 is preferably selected from the group consisting of: a high density polyethylene crosslinked membrane, a natural latex rubber membrane, a polyvinylidene difluoride membrane, a polychlorotrifluoroethylene membrane, and a polytetrafluoroethylene membrane.
  • the method for producing higher aldehydes and higher alcohols according to the present invention can best be described by referring to fig. 2., wherein an olefin feedstock is hydroformylated with synthesis gas in the presence of a water soluble Group VIII noble metal-ligand complex catalyst in hydroformylation reactor loop comprising vessel 10, pump 16 and separator 18 to form a crude reaction product.
  • the crude reaction product is typically comprised of an emulsion of the organic phase containing unreacted olefin feed and organic hydroformylation reaction product and an aqueous phase containing a water soluble Group VIII noble metal-ligand complex catalyst.
  • Membrane separator 18 includes a hydrophobic membrane 20 which is capable of allowing a substantial portion of the hydroformylation reaction product and unreacted olefin feed to pass from reactant chamber 22 through membrane 20 and into sweep chamber 24, while retaining a substantial portion of the water soluble Group VIII noble metal-ligand complex catalyst within reactant chamber 22.
  • the hydroformylation reaction product and the unreacted olefin feed which pass through membrane 20 are swept away by means of an organic sweep solvent which can be supplied via reactor vessel 26 and pumping means 28.
  • Hydrophobic membrane 20 is substantially impermeable to water soluble Group VIII noble metal-ligand complex catalyst which are retained as retentate in reactant chamber 22 and thereafter recycled to reaction vessel 10 via pump means 23 for further reaction with the olefinic feedstock.
  • Pump means 23 is also capable of removing the permeate from sweep chamber 24 and thereafter sending the permeate for further downstream treatment.
  • the crude reaction product can optionally be separated into an aqueous layer and an organic layer before it is fed to membrane separator 18.
  • This separation takes place in a settler or other conventional settling tank 30, wherein organic layer 32 rises to the top and aqueous layer 34 settles to the bottom of settler 30.
  • Aqueous layer 34 is recycled to hydroformylation reactor vessel 10 and organic layer 32 is fed to membrane separator 18, wherein water soluble Group VIII noble metal-ligand complex catalyst are retained as retentate and unreacted olefin feed and organic hydroformylation reaction product pass through hydrophobic membrane 20 as permeate.
  • the retentate is recycled to reactor vessel 10 to be again used in the hydroformylation process.
  • Example 1 The resulting clear and colorless liquid was cooled to room temperature and the rhodium acetate dimer was added. A cloudy orange liquid with orange solids resulted. Finally, 2.0 grams (5.49 x 10 -3 moles) of cetyltrimethylammonium bromide (Example 1) was added. A cloudy orange emulsion resulted in fine orange solids. In Example 2, 2.0 grams (5.49 x 10 -3 moles) of lauric acid was used in place of the cetyltrimethylammonium bromide.
  • the membrane reactor was assembled and the membrane to be tested, 9 cm in diameter, sandwiched by two pieces of Gortex® (0.2 micron Teflon®) also 9 cm in diameter, and were mounted in place and the membrane reactor unit was purged with nitrogen. Next the system was evacuated with a vacuum. The catalyst solution was drawn with vacuum to the catalyst side of the membrane and then the decene/hexadecane solution was added to the same side. Finally, the hexene/hexadecane/squalane solution was drawn with vacuum into the sweep side of the unit to act as the perstracting solvent. The hexadecane was employed as an internal standard.
  • Both the catalyst solution and sweep solution were circulated at a rate of about 1,000 cc/minute.
  • the contents of the membrane reactor unit were pressurized to 100 psi pressure with a 50/50 mixture of hydrogen/carbon monoxide, then heated to about 80°C in thirty minutes.
  • the hydrogen/carbon monoxide pressure was increased to 150 psi operating pressure and the supply of hydrogen/carbon monoxide kept constant throughout the run.
  • Example 1 used a high density polyethylene crosslinked by radiation (1.05 mils) membrane wherein only 0.086 ppm of rhodium were detected in the permeate, i.e., 0.02%.
  • Example 2 a natural latex rubber membrane demonstrated less than 0.011 ppm rhodium in the permeate, i.e., 0.002%.
  • a membrane reactor was assembled with a 9 cm HALAR® (i.e., a chlorotrifluoroethylene and ethylene copolymer) membrane sandwiched between two pieces of Gortex® (0.2 micron Teflon®) also 9 cm in diameter.
  • the HALAR® membrane was mounted in place and the membrane reactor was purged with nitrogen. Next the system was evacuated with a vacuum.
  • the catalyst solution was drawn with vacuum to the catalyst side of the membrane and then a decene/hexadecane solution was added to the same side. Finally, the hexene/hexadecane/squalane solution was drawn with vacuum into the sweep side of the unit.
  • Both the catalyst solution and sweep solution were circulated at a rate of about 1,000 cc/minute.
  • the contents of the membrane reactor unit were pressurized to 100 psi pressure with a 50/50 mixture of hydrogen/carbon monoxide then heated to about 80°C for thirty minutes.
  • the hydrogen/carbon monoxide pressure was increased to 150 psi operating pressure and the supply of hydrogen/carbon monoxide kept constant throughout the run.
  • the clear and colorless liquid on the sweep side was analyzed for rhodium.
  • the catalyst solution on standing separated into two phases, i.e., a clear and colorless upper phase and a yellow-brown lower aqueous phase.
  • the HALAR® membrane permitted only 0.13 ppm of rhodium to permeate therethrough, i.e., less than 0.03%.
  • halogenated polymers as a class, will be advantageous in this type of membrane reactor application. It also appears that hydroformylation reaction products which included a water soluble ligand, such as p-diphenylphosphino-benzoic acid, exhibit satisfactory normal to iso ratios based upon aldehydes, as well as satisfactory turnover number.
  • a water soluble ligand such as p-diphenylphosphino-benzoic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (11)

  1. Verfahren zum Abtrennen eines wasserlöslichen Edelmetallkatalysators aus einem rohen Reaktionsprodukt einer edelmetallkatalysierten Hydroformylierungsreaktion, die in wäßriger Lösung, in einer wäßrigen Emulsion oder in einer wäßrigen Suspension durchgeführt wird, wobei das rohe Reaktionsprodukt eine wäßrige Phase, die einen wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator und eine organische Phase einschließt, die nicht umgesetztes Olefineinsatzmaterial und ein organisches Hydroformylierungsreaktionsprodukt umfaßt, bei dem (a) das rohe Reaktionsprodukt mit einer hydrophoben Membran kontaktiert wird, die einen wesentlichen Anteil des nicht umgesetzten Olefineinsatzmaterials und organischen Hydroformylierungsreaktionsprodukts durchlassen kann, während ein wesentlicher Anteil des wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators zurückgehalten wird, wobei die hydrophobe Membran ausgewählt ist aus der Gruppe bestehend aus Membranen aus vernetztem Polyethylen mit hoher Dichte, Naturlatexkautschukmembranen, Polyvinylidendifluoridmembranen, Polychlortrifluorethylenmembranen und Polytetrafluorethylenmembranen, (b) nicht umgesetztes Olefineinsatzmaterial und das organische Hydroformylierungsreaktionsprodukt, das durch die hydrophobe Membran gelangt, als Permeat entfernt wird, und (c) der wasserlösliche Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator als Retentat zurückgehalten wird, wobei die hydrophobe Membran mindestens 99,5 % des wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators zurückhält.
  2. Verfahren nach Anspruch 1, bei dem die edelmetallkatalysierte Hydroformylierungsreaktion die Stufen einschließt, in denen: ein Olefin mit Wasserstoff und Kohlenmonoxid in Anwesenheit eines wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators bei einer Temperatur im Bereich zwischen 80 und 125°C umgesetzt wird, um einen Aldehyd mit einem Verhältnis von n-Verbindung zu Isoverbindung im Bereich zwischen 0,5:1 bis 80:1 herzustellen.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, bei dem der Ligand eine Verbindung ausgewählt aus der Gruppe bestehend aus Na-p-(diphenylphosphino)benzoat, Na-m-(diphenylphosphino)benzolsulfonat und Tris(natrium-m-sulfophenyl)phosphin ist.
  4. Verfahren nach einem der vorhergehenden Ansprüchen, bei dem der wasserlösliche Gruppe-VIII-Edelmetallkatalysator Rhodium ist.
  5. Verfahren nach Anspruch 2, bei dem der edelmetallkatalysierten Hydroformylierungsreaktion ein Tensid zugesetzt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüchen, bei dem das organische Hydroformylierungsprodukt und das Olefineinsatzmaterial mittels Perstraktion oder Pervaporation durch die hydrophobe Membran permeiert werden.
  7. Verfahren nach einem der vorhergehenden Ansprüchen, bei dem das Olefineinsatzmaterial ein C4- bis C20-Olefin ist.
  8. Verfahren zur Herstellung höherer Aldehyde und höherer Alkohole, bei dem
    (a) ein olefinisches Einsatzmaterial mit Synthesegas in Gegenwart von wasserlöslichem Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator unter Bildung eines rohen Reaktionsprodukts hydroformyliert wird, das aus einer organischen Phase, die nicht umgesetztes Olefineinsatzmaterial und organisches Hydroformylierungsreaktionsprodukt enthält, und einer wäßrigen Phase zusammengesetzt ist, die einen wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator enthält,
    (b) der wasserlösliche Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator aus dem rohen Reaktionsprodukt entfernt wird, indem das rohe Reaktionsprodukt einer Membrantrennvorrichtung zugeführt wird, die eine hydrophobe Membran umfaßt, die einen wesentlichen Anteil des Hydroformylierungsreaktionsprodukts und des nicht umgesetzten Olefineinsatzmaterials passieren läßt, während ein wesentlicher Anteil des wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators zurückgehalten wird, wobei die hydrophobe Membran ausgewählt ist aus der Gruppe bestehend aus: Membranen aus vernetztem Polyethylen mit hoher Dichte, Naturlatexkautschukmembranen, Polyvinylidendifluoridmembranen, Polychlortrifluorethylenmembranen und Polytetrafluorethylenmembranen,
    (c) das Hydroformylierungsreaktionsprodukt und das nicht umgesetzte Olefineinsatzmaterial als Permeat gewonnen werden,
    (d) der wasserlösliche Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator als Retentat zurückbehalten wird, wobei die hydrophobe Membran mindestens 99,5 % des wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators zurückbehält, und
    (e) der zurückbehaltene wasserlösliche Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysator in die Hydroformylierungsstufe (a) zurückgeführt wird.
  9. Verfahren nach Anspruch 8, bei dem das rohe Reaktionsprodukt in eine wäßrige Phase und eine organische Phase getrennt wird, bevor es in die Membrantrennvorrichtung eingespeist wird.
  10. Verfahren nach Anspruch 9, bei dem die organische Schicht in die Membrantrennvorrichtung eingespeist wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10, bei dem die edelmetallkatalysierte Hydroformylierungsreaktion die Stufen einschließt, in denen: ein Olefin mit Wasserstoff und Kohlenmonoxid in Gegenwart eines wasserlöslichen Gruppe-VIII-Edelmetall-Ligandkomplex-Katalysators bei einer Temperatur im Bereich zwischen 80 und 125°C umgesetzt wird, um einen Aldehyd mit einem Verhältnis von n-Verbindung zu Isoverbindung im Bereich zwischen 0,5:1 und 80:1 herzustellen.
EP92916534A 1991-08-20 1992-07-28 Verfahren zur abtrennung von einem wasserlöslichen edelmetallkatalysator aus einer edelmetallkatalysierten hydroformulierungsreaktion Expired - Lifetime EP0599885B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/747,597 US5215667A (en) 1991-08-20 1991-08-20 Method for separating water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
US747597 1991-08-20
PCT/US1992/006260 WO1993004029A1 (en) 1991-08-20 1992-07-28 A method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction

Publications (2)

Publication Number Publication Date
EP0599885A1 EP0599885A1 (de) 1994-06-08
EP0599885B1 true EP0599885B1 (de) 1997-01-08

Family

ID=25005795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92916534A Expired - Lifetime EP0599885B1 (de) 1991-08-20 1992-07-28 Verfahren zur abtrennung von einem wasserlöslichen edelmetallkatalysator aus einer edelmetallkatalysierten hydroformulierungsreaktion

Country Status (6)

Country Link
US (1) US5215667A (de)
EP (1) EP0599885B1 (de)
JP (1) JPH06510038A (de)
BR (1) BR9206380A (de)
DE (1) DE69216618T2 (de)
WO (1) WO1993004029A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288818A (en) * 1991-08-20 1994-02-22 Exxon Chemical Patents Inc. Method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
GB9119955D0 (en) * 1991-09-18 1991-10-30 Imperial College Treatment of aqueous supplies containing organic material
DE4217245A1 (de) * 1992-05-25 1993-12-02 Degussa Verfahren zur Abtrennung katalysatorfreier Arbeitslösung aus dem Hydrierkreislauf des Anthrachionverfahrens zur Herstellung von Wasserstoffperoxid
IT1256360B (it) * 1992-09-01 1995-12-01 Enichem Spa Processo per la separazione di catalizzatori in soluzioni organiche per mezzo di membrane semipermeabili
US5395979A (en) * 1993-02-25 1995-03-07 Exxon Chemical Patents Inc. Method for separating catalyst from a hydroformylation reaction product using alkylated ligands
US5298669A (en) * 1993-03-23 1994-03-29 Exxon Chemical Patent Inc. Perstraction sweep stream for a membrane reactor
US5302750A (en) * 1993-05-25 1994-04-12 Exxon Chemical Patents Inc. Method for producing n-octadienol from butadiene
KR970703805A (ko) * 1995-05-01 1997-08-09 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크놀러지 코포레이션 막 분리방법(Membrane Separation)
US5753584A (en) * 1996-06-04 1998-05-19 Intevep, S.A. Catalyst system for selective hydrogenation of heteroaromatic sulfur-containing and nitrogen-containing compounds
US6252123B1 (en) * 1998-07-09 2001-06-26 Union Carbide Chemicals & Plastics Technology Corporation Membrane separation process for metal complex catalysts
WO2003082788A1 (en) * 2002-03-29 2003-10-09 Exxonmobil Chemical Patents Inc. Improved cobalt flash process
DE102005046250B4 (de) * 2005-09-27 2020-10-08 Evonik Operations Gmbh Anlage zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren
DE102009001230A1 (de) * 2009-02-27 2010-09-02 Evonik Oxeno Gmbh Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen
WO2010125025A1 (de) * 2009-04-29 2010-11-04 Basf Se Verfahren zur konditionierung von katalysatoren mittels membranfiltration
GB201012080D0 (en) 2010-07-19 2010-09-01 Imp Innovations Ltd Asymmetric membranes for use in nanofiltration
GB201012083D0 (en) 2010-07-19 2010-09-01 Imp Innovations Ltd Thin film composite membranes for separation
GB201117950D0 (en) 2011-10-18 2011-11-30 Imp Innovations Ltd Membranes for separation
TWI669317B (zh) 2014-09-22 2019-08-21 德商贏創德固賽有限責任公司 反應性單體的改良製造方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243507A (en) * 1968-03-13 1971-08-18 British Petroleum Co Ultrafiltration separation process
GB1243508A (en) * 1968-10-29 1971-08-18 British Petroleum Co Ultrafiltration of metal compounds
GB1260733A (en) * 1969-06-17 1972-01-19 British Petroleum Co Membrane separation process
GB1266180A (de) * 1969-12-19 1972-03-08
GB1312076A (en) * 1970-05-15 1973-04-04 Bp Chem Int Ltd Hydroformylation process
GB1432561A (en) * 1972-03-27 1976-04-22 Ici Ltd Hydroformylation of olefines
US3966595A (en) * 1972-07-20 1976-06-29 E. I. Du Pont De Nemours And Company Method of making group VIII metal complex compounds
US3956112A (en) * 1973-01-02 1976-05-11 Allied Chemical Corporation Membrane solvent extraction
US4248802A (en) * 1975-06-20 1981-02-03 Rhone-Poulenc Industries Catalytic hydroformylation of olefins
GB1594603A (en) * 1977-10-18 1981-08-05 Chapman D Hydrogenation of lipids
US4255591A (en) * 1978-11-20 1981-03-10 Monsanto Company Carbonylation process
US4306085A (en) * 1979-07-05 1981-12-15 Shell Oil Company Hydroformylation process using resin-ligand-metal catalyst
DE2946067A1 (de) * 1979-11-15 1981-05-21 Merck Patent Gmbh, 6100 Darmstadt Verfahren zur umstimmung von diffusionsmembranen, die so umgestimmten membranen und ihre verwendung
FR2478078A2 (fr) * 1980-03-12 1981-09-18 Rhone Poulenc Ind Procede d'hydroformylation des olefines
GB2085874B (en) * 1980-09-04 1984-08-08 Johnson Matthey Plc Hydroformylation of olefins
US4525276A (en) * 1980-11-26 1985-06-25 Tokyo Ohka Kogyo Kabushiki Kaisha Apparatus for separation of immiscible liquids
SU938516A1 (ru) * 1980-12-10 1984-11-23 Отделение ордена Ленина института химической физики АН СССР Способ получени водорода
JPS58157739A (ja) * 1982-03-12 1983-09-19 Kuraray Co Ltd 1,9−ノナンジア−ルの製造方法
JPS58216138A (ja) * 1982-06-09 1983-12-15 Kuraray Co Ltd 1,8−オクタンジア−ルまたは1,10−デカンジア−ルの製造法
JPS594402A (ja) * 1982-06-30 1984-01-11 Asahi Chem Ind Co Ltd 複合親水性膜
DE3235029A1 (de) * 1982-09-22 1984-03-22 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur rueckgewinnung von wasserloeslichen, rhodium enthaltenden hydroformylierungskatalysatoren
US4430222A (en) * 1982-09-27 1984-02-07 Walker Richard E Water shedding device
DE3245318C3 (de) * 1982-12-08 1996-06-20 Bayer Ag Verfahren zur Durchführung von Druckreaktionen mit suspendierten Katalysatoren
FR2550202B1 (fr) * 1983-08-03 1986-03-21 Rhone Poulenc Rech Procede de preparation de tri(m-sulfophenyl) phosphine
JPS6061005A (ja) * 1983-09-13 1985-04-08 Asahi Chem Ind Co Ltd 物質の分離方法
DE3412335A1 (de) * 1984-04-03 1985-10-10 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur herstellung von aldehyden
EP0167736B1 (de) * 1984-05-21 1988-08-10 Akzo GmbH Verfahren zum Überführen von Metallionen unter Verwendung mikroporöser Membranen
DE3420493A1 (de) * 1984-06-01 1985-12-05 Ruhrchemie Ag, 4200 Oberhausen Quartaere ammoniumsalze sulfonierter triarylphosphine
DE3420491A1 (de) * 1984-06-01 1985-12-05 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur herstellung von aldehyden
ATE34166T1 (de) * 1984-08-30 1988-05-15 Ruhrchemie Ag Verfahren zur herstellung von aldehyden.
DE3443474A1 (de) * 1984-11-29 1986-05-28 Ruhrchemie Ag, 4200 Oberhausen Verfahren zur rueckgewinnung von rhodium aus reaktionsprodukten der oxosynthese
GB8430225D0 (en) * 1984-11-30 1985-01-09 Exxon Research Engineering Co Hydroformylation catalyst removal
US4625068A (en) * 1985-03-20 1986-11-25 Exxon Chemical Patents Inc. Rhodium catalyzed hydroformylation of internal olefins
JPH0662480B2 (ja) * 1985-04-15 1994-08-17 株式会社クラレ α,ω−ジアルデヒドの製造方法
JPH0662479B2 (ja) * 1985-07-16 1994-08-17 株式会社クラレ ジアルデヒドの分離方法
DE3530839A1 (de) * 1985-08-29 1987-03-05 Ruhrchemie Ag Verfahren zur herstellung von 2-ethylhexanol
US4642388A (en) * 1985-08-30 1987-02-10 Exxon Chemical Patents Inc. Rhodium catalyzed hydroformylation of alpha-substituted alpha-olefins
DE3534317A1 (de) * 1985-09-26 1987-04-02 Ruhrchemie Ag Verfahren zur herstellung von nonadecandiolen
DE3534314A1 (de) * 1985-09-26 1987-04-02 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
US4921612A (en) * 1985-10-22 1990-05-01 The Trustees Of Stevens Institute Of Technology Asymmetrically-wettable porous membrane process
DE3546123A1 (de) * 1985-12-24 1987-06-25 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
US4689152A (en) * 1986-05-02 1987-08-25 The Dow Chemical Company Apparatus and method for multistage membrane phase separation
DE3616057A1 (de) * 1986-05-13 1987-11-19 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
US4716250A (en) * 1986-07-10 1987-12-29 Union Carbide Corporation Hydroformylation using low volatile/organic soluble phosphine ligands
US4732671A (en) * 1986-08-04 1988-03-22 Allied Corporation Diesel fuel filter/water separator
JPS6344904A (ja) * 1986-08-12 1988-02-25 Agency Of Ind Science & Technol 液体混合物の分離膜
DE3630587A1 (de) * 1986-09-09 1988-03-10 Ruhrchemie Ag Verfahren zur abtrennung von rhodiumkomplexverbindungen aus waessrigen loesungen
US4731486A (en) * 1986-11-18 1988-03-15 Union Carbide Corporation Hydroformylation using low volatile phosphine ligands
DE3640614A1 (de) * 1986-11-27 1988-06-09 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
DE3640615A1 (de) * 1986-11-27 1988-06-09 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
US4754089A (en) * 1986-12-05 1988-06-28 Sepracor Inc. Phase transfer catalysis
NL8700881A (nl) * 1987-04-14 1988-11-01 Shell Int Research Werkwijze voor het afscheiden van produkt uit een homogeen katalysatorsysteem-bevattend reaktiemengsel.
DE3726128A1 (de) * 1987-08-06 1989-02-16 Ruhrchemie Ag Verfahren zur herstellung von aldehyden
DE3822036A1 (de) * 1988-06-30 1990-02-08 Hoechst Ag Verfahren zur trennung von in waessriger oder waessrig/organischer loesung enthaltenen substanzgemischen
US4935550A (en) * 1988-08-12 1990-06-19 Union Carbide Chemicals And Plastics Company Inc. Catalytic metal recovery from non-polar organic solutions
US4861918A (en) * 1988-08-12 1989-08-29 Union Carbide Corporation Reactivation of hydroformylation catalysts
US4929767A (en) * 1988-08-12 1990-05-29 Union Carbide Chemicals And Plastics Company Inc. Treatment of rhodium catalysts
US5114473A (en) * 1988-08-25 1992-05-19 Union Carbide Chemicals And Plastics Technology Corporation Transition metal recovery
DE3842819A1 (de) * 1988-12-20 1990-06-21 Hoechst Ag Verfahren zur abtrennung von metallorganischen verbindungen und/oder metallcarbonylen aus ihren loesungen in organischen medien

Also Published As

Publication number Publication date
JPH06510038A (ja) 1994-11-10
DE69216618D1 (de) 1997-02-20
US5215667A (en) 1993-06-01
EP0599885A1 (de) 1994-06-08
BR9206380A (pt) 1995-09-12
WO1993004029A1 (en) 1993-03-04
DE69216618T2 (de) 1997-05-28

Similar Documents

Publication Publication Date Title
EP0599885B1 (de) Verfahren zur abtrennung von einem wasserlöslichen edelmetallkatalysator aus einer edelmetallkatalysierten hydroformulierungsreaktion
US5288818A (en) Method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
KR920010519B1 (ko) 디유기아인산염 리간드의 제조방법
US4247486A (en) Cyclic hydroformylation process
US4287370A (en) Hydroformylation process for the production of n-valeraldehyde
EP0214622B1 (de) Durch Übergangsmetallkomplexe katalysierte Herstellungsverfahren
WO1980001691A1 (en) Process for the preparation of aldehydes
US4740626A (en) Process for the preparation of aldehydes
KR0131293B1 (ko) 하이드로포르밀화 촉매의 재활성화 방법
US5298669A (en) Perstraction sweep stream for a membrane reactor
JP2002509127A (ja) アルデヒドの製造方法
PL151795B1 (en) Hydroformylation using low volatile/organic soluble phosphine ligands.
US5395979A (en) Method for separating catalyst from a hydroformylation reaction product using alkylated ligands
Dubois et al. Cobalt hydroformylation catalyst supported on a phosphinated polyphosphazene. Identification of phosphorus-carbon bond cleavage as mode of catalyst deactivation
EP1312598B1 (de) Verfahren zur Herstellung von Aldehyden
US5264600A (en) Process for the recovery of rhodium from residues of the distillation of products of the oxo synthesis
JPS5850234B2 (ja) 第8族貴金属固体錯体の取得方法
JPH0655687B2 (ja) アルフア−置換アルフア−オレフイン類のロジウムで触媒されたヒドロホルミル化法
JP2981328B2 (ja) アルデヒド類の製造方法
JP3888008B2 (ja) 第8族貴金属及び/又は有機ホスファイト化合物の回収方法
EP0389617B1 (de) Behandlung von rhodium-katalysatoren
CA1257878A (en) Process for the production of nonadecanediols
JP2001163821A (ja) アルデヒドの製造方法
KR100548975B1 (ko) 하이드로포르밀화에 의한 알데히드의 제조방법
TWI378915B (en) Process for the hydroformylation of olefinically unsaturated compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19950124

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970108

REF Corresponds to:

Ref document number: 69216618

Country of ref document: DE

Date of ref document: 19970220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970226

Year of fee payment: 6

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970408

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970917

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980728

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST