EP0599195B1 - Ansaugkanal einer Brennkraftmaschine mit einem Drosselsystem - Google Patents
Ansaugkanal einer Brennkraftmaschine mit einem Drosselsystem Download PDFInfo
- Publication number
- EP0599195B1 EP0599195B1 EP93118566A EP93118566A EP0599195B1 EP 0599195 B1 EP0599195 B1 EP 0599195B1 EP 93118566 A EP93118566 A EP 93118566A EP 93118566 A EP93118566 A EP 93118566A EP 0599195 B1 EP0599195 B1 EP 0599195B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- intake passage
- throttle
- throttle body
- supporting member
- passage according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 19
- 230000010355 oscillation Effects 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/08—Throttle valves specially adapted therefor; Arrangements of such valves in conduits
- F02D9/12—Throttle valves specially adapted therefor; Arrangements of such valves in conduits having slidably-mounted valve members; having valve members movable longitudinally of conduit
Definitions
- the invention relates to an intake duct of an internal combustion engine with an axially displaceable throttle body, which cooperates with a venturi-like wall section, according to the preamble of claim 1.
- throttle devices In addition to the usual throttle valves, by means of which the quantity of fresh air entering the cylinders, in particular quantity-controlled internal combustion engines, is metered and thus the internal combustion engine operating point is set, other throttle systems have also become known.
- a displaceable spindle-shaped throttle body is provided, which cooperates with a Venturi wall section and thus forms a Venturi nozzle which can be changed in the cross section.
- Such an arrangement is characterized by extremely low flow losses, so that the throttle losses can be significantly reduced compared to the conventional throttle valves.
- the actuating mechanism in the throttle device known from DE 27 26 146 C2 is disproportionately complex and causes relatively high flow losses again.
- the throttle body bears at least temporarily on the venturi-like wall section, with undesirable mechanical wear and tear appearing.
- a constant pressure gasifier with a throttle body-like element which can be axially positioned in various ways under the influence of a magnetic field, is known from DE 30 37 610 A1.
- a coil surrounding a part of the slide is provided, but this device is, on the one hand not an actual throttle body, on the other hand, the device shown is not able to position an axially displaceable throttle body as quickly as is required for a throttle system in an internal combustion engine intake duct.
- the throttle body continuously executes micro-oscillating movements by suitable control of the coil (s), so that a bearing air cushion is built up between the throttle body and the support body, this throttle body being displaceable by appropriate variation of the vibration amplitudes.
- the throttle body is positioned by means of a magnetic field, so that large-volume actuating devices, which would represent a flow obstacle, are not required. Rather, it is possible to arrange one or more magnetic coils, which generate the corresponding variable magnetic field, on the throttle body itself or within the same, which means that there is no significant additional space requirement beyond the geometric dimensions of the throttle body. All that is required are guides of some kind for the throttle body. However, a support body provided for this purpose can also be substantially adapted to the dimensions of the throttle body and thus, together with it, form a quasi dynamic flow unit, which at most has a slightly higher flow resistance than the throttle body alone.
- the one that is essentially rotationally symmetrical Throttle body may be hollow cylindrical, so that it is possible to arrange the support body coaxially to the throttle body partially within this hollow cylinder / throttle body.
- the support body itself can be fastened to the wall of the intake duct by means of one or more webs, each web viewed in the channel direction being so narrow that it does not constitute an essential flow obstacle.
- the support body can also carry the magnet coil (s), which then, when viewed in the direction of flow, likewise essentially lie within the throttle body which is present anyway and thus likewise do not form an obstacle to flow.
- the magnetic coils on the throttle body itself or, in an alternative embodiment, to provide it outside of the intake duct. In the latter case, the magnetic coils surround the intake duct in the region of the throttle body and thus generate a magnetic field that accordingly positions the throttle body within the intake duct.
- the throttle body is guided through a support body.
- This guide should be almost free of frictional forces in order to be able to position the throttle body quickly and precisely with low energy requirements.
- a possible embodiment for this is a magnetic bearing, ie the throttle body is not only positioned in the axial direction or in the direction of the intake duct by magnetic fields, but is also held within the intake duct and centrally by magnetic fields to the venturi section.
- magnetic storage requires a high level of control effort, a storage air cushion is provided as a much more elegant solution.
- Such air bearings which are also essentially free of frictional forces, only require a continuous movement between the warehouse or the management as well as the object to be stored or managed.
- the throttle body must continuously perform micro-oscillating movements, so that a bearing air cushion can build up between the throttle body and the support body.
- These micro-oscillating movements of the throttle body are initiated, which are known in a similar way on a throttle valve (cf. DE-OS 28 12 292), but do not build up a cushion of air there, again due to the magnetic fields also positioning the throttle body.
- the bearing air cushion can be formed between a bearing bush, which is provided in the support body, and a guide rod guided therein, which carries the throttle body.
- the surfaces of the bearing partners ie for example the bearing bush and the guide rod, are designed to be suitable for air bearings.
- corresponding structures can be provided in silicon carbide surfaces.
- the throttle body can already be positioned by means of the magnetic field according to the invention in that a corresponding metallic element of the throttle body, for example the guide rod, is exposed to this changeable magnetic field.
- a particularly fine control and in particular also the micro-oscillating movement required to form the air cushion bearing can be produced in a significantly improved manner if a permanent magnet interacts with the magnetic field caused by the magnetic coils.
- This permanent magnet can in turn be part of the throttle body and, for example, form a structural unit with the guide rod of the throttle body, ie the guide rod itself is designed to be permanent magnet.
- a permanent magnet can be provided on the support body in order to keep the internal combustion engine at a standstill and the inactive magnet coil to keep the throttle body in a defined position.
- Reference number 1 denotes an intake duct leading to a cylinder, not shown, of an internal combustion engine.
- the intake duct 1 With its upstream end, the intake duct 1 opens into an air collection housing 3, within which an air filter 4 can be provided.
- an injection valve 5 In the vicinity of the inlet valves 2, an injection valve 5 also opens into the intake duct 1, via which fuel an air flow passing through the intake duct 1 and via the inlet valves 2 into the internal combustion engine cylinder can be supplied.
- a throttle system for influencing the size of the air mass flow flowing through the intake duct 1 is also integrated in the intake duct 1.
- This throttle system essentially consists of a throttle body 7 which can be displaced axially in the direction of the arrow 6 and which cooperates with a venturi-like wall section 8 of the intake duct 1.
- the wall section 8 having a venturi profile thus forms together with that of the inlet valves 2 facing front area of the throttle body 7 a Venturi nozzle, which is known to be characterized by minimized flow losses.
- the throttle body is, as can be seen, hollow-cylindrical and has an essentially conical tip.
- this hollow cylindrical section is carried with the tip by a guide rod 9, which in turn is guided by a support body 10.
- the hollow-cylindrical throttle body 7, which has a tip, is guided axially displaceably within the likewise hollow-cylindrical support body 10 in the direction of the arrow 6.
- the positioning ie the displacement of the throttle body 7 according to the direction of arrow 6 into a desired position, throttling the intake air mass flow, takes place by means of a variable magnetic field.
- This magnetic field is generated electrically, for which purpose at least one coil 11 (FIG. 3) or two coils 11, 11 ′ (FIG. 1) arranged next to one another are provided.
- these coils 11, 11' surround the guide rod 9 and for this purpose are concentric with this on a bearing bush 12 provided for the guide rod 9, which in turn is part of the support body 10.
- the coil 11 is located as a winding directly on the throttle body 7.
- the stationary magnetic field generated by the coils 11, 11 'thus acts on the guide rod 9, while in the exemplary embodiment according to FIG. 3, in which the coil 11 or the magnetic field is displaceable according to arrow 6, the magnetic field interacts with a stationary iron rod 10 ′ attached to the support body 10.
- FIG. 2 shows the exemplary embodiment according to FIG. 1 in the area of the coils in detail.
- the bearing bush 12 can be seen, which is connected to the outer wall 14 of the support body 10 via an annular web 13.
- the support body 10 or its outer wall 14 is fixed in the interior of the intake duct 1 via webs 15 which, as can be seen, are supported on the wall of the intake duct 1.
- FIGS. 1 a, 1 b shows the throttle body 7 in this first exemplary embodiment surrounds the outer wall 14 of the support body 10 in regions.
- the guide rod 9 of the throttle body 7 is designed as a permanent magnet and has a magnetic north pole on the left side and a magnetic south pole on the right side. If the two coils 11, 11 'are each subjected to the opposite current direction, the north pole and the south pole of the permanent magnetic guide rod 9 experience a force in the same direction, for example to the left, because of the magnetic fields generated within the coils 11, 11' that the throttle body 7 is then also moved to the left. If you reverse the polarity of the two coils 11, 11 ', ie if you apply the opposite direction of current, the throttle body 7 is also accelerated in the opposite direction, namely to the right.
- the throttle body 7, including its guide rod 9 can be set into a micro-oscillation according to the direction of the arrow 6.
- this micro-vibration can build up a storage air cushion between the guide rod 9 and the bearing bush 12.
- the surfaces of the guide rod 9 and the bearing bush 12 involved can have correspondingly designed structures, for example in silicon carbide surfaces.
- the throttle body 7 can be set into a micro-oscillating movement by reversing the polarity of the magnetic field formed by the coil 11, so that a bearing air cushion is also built up between the throttle body 7 and the support body 10. It is not necessary that the component interacting with the magnetic field of the coil (s) 11, 11 'is designed to be permanently magnetic. It is also sufficient to carry out the corresponding component - in the exemplary embodiment according to FIG. 3 the iron rod 10 ', in the exemplary embodiment according to FIG. 1 the guide rod 9 - in a highly conductive metal. This also makes it possible to impart a micro-oscillating movement to the throttle body 7 when the magnetic field forms a gradient by changing the coil current over time.
- the vibration characteristic required in each case can be easily achieved by suitably changing the magnetic fields, ie by suitably controlling the coils 11, 11 '.
- the free flow cross section in the intake duct is reduced when the throttle body 7 is shifted to the left, and is increased when it is shifted to the right.
- a displacement movement of the throttle body 7 to the left thus reduces the amount of intake air entering the cylinder of the internal combustion engine, while conversely a displacement of the throttle body 7 to the right results in a higher internal combustion engine power output due to the larger amount of intake air.
- Fig. 1a shows as a further detail that the end of the support body 10 facing the air collection housing 3 is also designed to be streamlined in order to keep the flow resistance caused by the entire throttle system as low as possible.
- this figure shows an emergency stop 16 provided at the right-hand end of the guide rod 9.
- This emergency stop 16 prevents the throttle body 7 from falling out of the support body 10 in the direction of the inlet valves 2, for example when the internal combustion engine is at a standstill. Rather, with such a movement, the emergency stop 16 comes to rest on the support body 10 and thus prevents a further movement of the throttle body 7 in the direction of the inlet valves 2.
- the throttle body 7 During operation of the internal combustion engine and the throttle system, however, it is not possible at all for the throttle body 7 to leave the support body 10.
- a permanent magnet 17 which is likewise fastened to the support body 10 or to the outer wall 14 thereof and serves to provide a rest position of the throttle body 7 when the internal combustion engine is at a standstill and thus the coils 11, 11 'are not energized define.
- This permanent magnet 17 interacts with the permanent magnet guide rod 9.
- electrical supply lines 18 for the coils 11, 11 ′ can be seen in FIG. 2, which are integrated in a web 15 or applied to a web 15. Furthermore, these webs 15 can simultaneously be designed as air mass meters. For this purpose, the elements required for this purpose of a known hot film air mass meter can be applied to these webs.
- Fig. 3b shows a gap between the throttle body and the venturi-like wall section 8, which a passage of the air mass flow required for idling the internal combustion engine.
- the arrangement can also be made so that the throttle system described is statically leaky, but dynamically leaky. This dynamic tightness is then a consequence of the micro vortices formed in the gap between the throttle body 7 and the venturi-like wall section 8.
- a bypass 19 to the venturi-like wall section 8 is provided.
- This bypass 19 can moreover advantageously form a fluid coanda zone at a downstream end near the inlet valves 2, which allows a relatively low air mass flow preferably to flow via the lower inlet valve 2 into the internal combustion engine cylinder (not shown) in order to achieve desired turbulence in the latter to create.
- an intake duct according to the invention can also be designed as a common intake duct for all internal combustion engine cylinders, although the arrangement shown near the inlet valves 2 of a cylinder-specific intake duct 1 is of particular advantage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Description
- Die Erfindung betrifft einen Ansaugkanal einer Brennkraftmaschine mit einem mit einem venturiartigen Wandabschnitt zusammenwirkenden, axial verschiebbaren Drosselkörper nach dem Oberbegriff des Anspruchs 1.
- Neben den üblichen Drosselklappen, mit Hilfe derer die in die Zylinder insbesondere quantitätsgesteuerter Brennkraftmaschinen gelangende Frischluftmenge dosiert und somit der Brennkraftmaschinen-Betriebspunkt eingestellt wird, wurden auch andere Drosselsysteme bekannt, so u. a. die in der DE 27 26 146 C2 gezeigte Drosseleinrichtung für eine mehrzylindrige Brennkraftmaschine. Vorgesehen ist dabei ein verschiebbarer spindelförmiger Drosselkörper, der mit einem Venturi-Wandabschnitt zusammenwirkt und somit eine im Durchgangsquerschnitt veränderbare Venturi-Düse bildet. Eine derartige Anordnung zeichnet sich durch äußerst geringe Strömungsverluste aus, so daß die Drosselverluste gegenüber den herkömmlichen Drosselklappen wesentlich reduziert werden können. Jedoch ist die Betätigungsmechanik bei der aus der DE 27 26 146 C2 bekannten Drosseleinrichtung unverhältnismäßig aufwendig und verursacht dabei selbst wieder relativ hohe Strömungsverluste. Ferner liegt beim bekannten Stand der Technik der Drosselkörper zumindest zeitweise am venturiartigen Wandabschnitt an, wobei unerwünschte mechanische Abnutzungserscheinungen auftreten.
- Weiterhin ist ein Gleichdruckvergaser mit einem drosselkörperähnlichen Element, das unter Einfluß eines Magnetfeldes verschiedenartig axial positionierbar ist, aus der DE 30 37 610 A1 bekannt. Bei dieser Vorrichtung ist eine einen Teil des Schiebers umgebende Spule vorgesehen, jedoch handelt es sich bei dieser Vorrichtung zum einen nicht um einen eigentlichen Drosselkörper, zum anderen ist die gezeigte Vorrichtung nicht in der Lage, einen axial verschiebbaren Drosselkörper so schnell zu positionieren, wie die für ein Drosselsystem in einem Brennkraftmaschinen-Ansaugkanal erforderlich ist.
- Folglich ist es Aufgabe der vorliegenden Erfindung, eine demgegenüber verbesserte Betätigungsvorrichtung für ein Drosselsystem in einem Ansaugkanal nach dem Oberbegriff des Anspruchs 1 aufzuzeigen.
Zur Lösung dieser Aufgabe ist vorgesehen, daß der Drosselkörper durch geeignete Ansteuerung der Spule(n) kontinuierlich Mikro-Schwingbewegungen ausführt, so daß sich ein Lagerungs-Luftkissen zwischen dem Drosselkörper sowie dem Stützkörper aufbaut, wobei durch entsprechende Variation der Schwingungsamplituden dieser Drosselkörper verschiebbar ist. Vorteilhafte Weiterbildungen sind Inhalt der Unteransprüche. - Erfindungsgemäß wird der Drosselkörper durch ein Magnetfeld positioniert, so daß großvolumige Betätigungsvorrichtungen, die ein Strömungshindernis darstellen würden, nicht erforderlich sind. Vielmehr ist es möglich, eine oder mehrere Magnet-Spulen, die das entsprechende veränderliche Magnetfeld erzeugen, auch am Drosselkörper selbst oder innerhalb desselben anzuordnen, wodurch kein wesentlicher zusätzlicher, über die geometrischen Abmessungen des Drosselkörpers hinausgehender Platzbedarf entsteht. Erforderlich sind lediglich irgendwie geartete Führungen für den Drosselkörper. Jedoch kann auch ein hierfür vorgesehener Stützkörper im wesentlichen den Abmessungen des Drosselkörpers angepaßt sein und somit zusammen mit diesem quasi eine strömungsdynamische Baueinheit bilden, die allenfalls einen geringfügig höheren Strömungswiderstand aufweist als der Drosselkörper alleine. Beispielsweise kann der im wesentliche rotationssymmetrische Drosselkörper hohlzylindrisch ausgebildet sein, so daß es möglich ist, den Stützkörper koaxial zum Drosselkörper teilweise innerhalb dieses Hohlzylinders/Drosselkörpers anzuordnen. Der Stützkörper selbst kann über einen oder mehrere Stege an der Wand des Ansaugkanales befestigt sein, wobei jeder Steg in Kanalrichtung betrachtet so schmal ausgebildet sein kann, daß er kein wesentliches Strömungshindernis darstellt. Weiterhin kann der Stützkörper auch die Magnet-Spule(n) tragen, welche dann in Strömungsrichtung betrachtet ebenfalls im wesentlichen innerhalb des ohnehin vorhandenen Drosselkörpers liegen und somit ebenfalls kein Strömungshindernis bilden. Es ist aber auch möglich, die Magnet-Spulen auf dem Drosselkörper selbst anzuordnen oder in einer alternativen Ausführungsform außerhalb des Ansaugkanales vorzusehen. Im letztgenannten Fall umgeben die Magnetspulen den Ansaugkanal im Bereich des Drosselkörpers und erzeugen somit innerhalb des Ansaugkanales ein den Drosselkörper entsprechend positionierendes Magnetfeld.
- Wie bereits erläutert, wird der Drosselkörper durch einen Stützkörper geführt. Diese Führung sollte dabei nahezu frei von Reibkräften sein, um den Drosselkörper mit geringem Energiebedarf schnell und exakt positionieren zu können. Eine mögliche Ausführungsform hierfür ist eine magnetische Lagerung, d. h. der Drosselkörper wird nicht nur in Axialrichtung bzw. in Richtung des Ansaugkanales durch Magnetfelder positioniert, sondern auch innerhalb des Ansaugkanales sowie zentrisch zum Venturiabschnitt durch Magnetfelder gehalten. Da eine magnetische Lagerung jedoch einen hohen Steuerungsaufwand erforderlich macht, ist als wesentlich elegantere Lösung ein Lagerungs-Luftkissen vorgesehen. Derartige Luftlager, die ebenfalls im wesentlichen frei von Reibkräften sind, erfordern lediglich eine kontinuierliche Bewegung zwischen dem Lager bzw. der Führung sowie dem zu lagernden bzw. zu führenden Gegenstand. Im vorliegenden Fall bedeutet dies, daß der Drosselkörper kontinuierlich Mikro-Schwingbewegungen ausführen muß, so daß sich zwischen dem Drosselkörper sowie dem Stützkörper ein Lagerungs-Luftkissen aufbauen kann. Initiiert werden diese Mikro-Schwingbewegungen des Drosselkörpers, die in ähnlicher Weise an einer Drosselklappe bekannt sind (vgl. DE-OS 28 12 292), dort jedoch kein Lagerungs-Luftkissen aufbauen, wiederum durch die den Drosselkörper auch positionierenden Magnetfelder. Das Lagerungs-Luftkissen kann dabei zwischen einer Lagerbuchse, die im Stützkörper vorgesehen ist, sowie einer darin geführten Führungsstange, die den Drosselkörper trägt, gebildet werden. Selbstverständlich werden dabei die Oberflächen der Lagerungspartner, d. h. beispielsweise der Lagerbuchse sowie der Führungsstange luftlagergerecht gestaltet. Hierzu können beispielsweise entsprechende Strukturen in Siliziumcarbid-Oberflächen vorgesehen sein.
- Der Drosselkörper kann bereits dadurch mittels des erfindungsgemäßen Magnetfeldes positioniert werden, daß ein entsprechendes metallisches Element des Drosselkörpers, so beispielsweise die Führungsstange, diesem veränderbaren Magnetfeld ausgesetzt wird. Eine besonders feine Ansteuerung und insbesondere auch die zur Bildung der Luftkissen-Lagerung erforderliche Mikro-Schwingbewegung läßt sich jedoch deutlich verbessert erzeugen, wenn mit dem durch die Magnetspulen hervorgerufenen Magnetfeld ein Permanentmagnet zusammenwirkt. Dieser Permanentmagnet kann wiederum Bestandteil des Drosselkörpers sein und beispielsweise mit der Führungsstange des Drosselkörpers eine Baueinheit bilden, d. h. die Führungsstange selbst ist permanentmagnetisch ausgebildet. Ebenso kann ein Permanentmagnet am Stützkörper vorgesehen sein, um bei stillstehender Brennkraftmaschine sowie inaktiver Magnetspule den Drosselkörper in einer definierten Position zu halten.
- Weitere vorteilhafte Merkmale sind Inhalt der Unteransprüche. Diese sowie weitere, ggf. erfindungswesentliche Merkmale ergeben sich auch aus der folgenden Beschreibung zweier bevorzugter Ausführungsbeispiele. Es zeigt
- Fig. 1a
- eine Prinzipdarstellung eines ersten Ausführungsbeispieles für ein erfindungsgemäßes Drosselsystem in einem Ansaugkanal im Schnitt,
- Fig. 1b
- den Schnitt A-A aus Fig. 1a,
- Fig. 2
- die Einzelheit X aus Fig. 1a,
- Fig. 3a
- ein weiteres Ausführungsbeispiel gemäß der Darstellung in Fig. 1a, sowie
- Fig. 3b
- den Schnitt A-A aus Fig. 3a.
- Mit der Bezugsziffer 1 ist ein zu einem nicht gezeigten Zylinder einer Brennkraftmaschine führender Ansaugkanal bezeichnet. Am stromabseitigen Ende des Ansaugkanales 1 befinden sich wie bekannt zwei Einlaßventile 2. Mit seinem stromaufseitigen Ende mündet der Ansaugkanal 1 in ein Luftsammelgehäuse 3, innerhalb dessen ein Luftfilter 4 vorgesehen sein kann. Nahe der Einlaßventile 2 mündet in den Ansaugkanal 1 ferner ein Einspritzventil 5, über welches einem durch den Ansaugkanal 1 sowie über die Einlaßventile 2 in den Brennkraftmaschinen-Zylinder gelangendem Luftstrom Brennstoff zugeführt werden kann.
- In den Ansaugkanal 1 integriert ist ferner ein Drosselsystem zur Beeinflussung der Größe des durch den Ansaugkanal 1 strömenden Luftmassenstromes. Im wesentlichen besteht dieses Drosselsystem aus einem axial gemäß Pfeilrichtung 6 verschiebbaren Drosselkörper 7, der mit einem venturiartigen Wandabschnitt 8 des Ansaugkanales 1 zusammenwirkt. Der ein Venturi-Profil aufweisende Wandabschnitt 8 bildet somit zusammen mit dem den Einlaßventilen 2 zugewandten vorderen Bereich des Drosselkörpers 7 eine Venturi-Düse, die sich bekanntermaßen durch minimierte Strömungsverluste auszeichnet.
- Nach beiden Ausführungsbeispielen ist der Drosselkörper wie ersichtlich hohlzylindrisch ausgebildet und weist eine im wesentlichen kegelförmige Spitze auf. Beim Ausführungsbeispiel nach Fig. 1 wird dieser hohlzylindrische Abschnitt mit der Spitze von einer Führungsstange 9 getragen, die ihrerseits durch einen Stützkörper 10 geführt ist. Beim Ausführungsbeispiel nach Fig. 3 ist der hohlzylindrische, eine Spitze aufweisende Drosselkörper 7 innerhalb des ebenfalls hohlzylindrisch ausgebildeten Stützkörpers 10 axial gemäß Pfeilrichtung 6 verschiebbar geführt.
- Die Positionierung, d. h. die Verschiebung des Drosselkörpers 7 gemäß Pfeilrichtung 6 in eine gewünschte, den Ansaugluft-Massenstrom drosselnde Position erfolgt mittels eines veränderbaren Magnetfeldes. Dieses Magnetfeld wird auf elektrischem Wege erzeugt, wozu zumindest eine Spule 11 (Fig. 3) bzw. zwei nebeneinander angeordnete Spulen 11, 11' (Fig. 1) vorgesehen sind. Diese Spule(n) 11, 11' umgibt/umgeben einen Teil des Drosselkörpers 7. Beim Ausführungsbeispiel nach Fig. 1 umgeben diese Spulen 11, 11' die Führungsstange 9 und sind hierzu konzentrisch zu dieser auf einer für die Führungsstange 9 vorgesehenen Lagerbuchse 12, die wiederum Bestandteil des Stützkörpers 10 ist, angeordnet. Beim Ausführungsbeispiel nach Fig. 3 befindet sich die Spule 11 als Wicklung direkt auf dem Drosselkörper 7. Beim Ausführungsbeispiel nach Fig. 1 wirkt das von den Spulen 11, 11' erzeugte ortsfeste Magnetfeld somit auf die Führungsstange 9 ein, während beim Ausführungsbeispiel nach Fig. 3, bei dem die Spule 11 bzw. das Magnetfeld gemäß Pfeil 6 verschiebbar ist, das Magnetfeld mit einem ortsfesten, am Stützkörper 10 befestigten Eisenstab 10' zusammenwirkt.
- Fig. 2 zeigt das Ausführungsbeispiel gemäß Fig. 1 im Bereich der Spulen im Detail. Man erkennt die Lagerbuchse 12, die über einen Ringsteg 13 mit der Außenwand 14 des Stützkörpers 10 verbunden ist. Im Inneren des Ansaugkanales 1 fixiert ist der Stützkörper 10 bzw. dessen Außenwand 14 über Stege 15, die sich wie ersichtlich an der Wand des Ansaugkanales 1 abstützen. Dies wird auch aus den Fig. 1a, 1b ersichtlich, ebenfalls erkennt man hieraus, daß der Drosselkörper 7 bei diesem ersten Ausführungsbeispiel die Außenwand 14 des Stützkörpers 10 bereichsweise umgibt.
- Wie Fig. 2 zeigt, ist die Führungsstange 9 des Drosselkörpers 7 als Permanentmagnet ausgebildet und besitzt linksseitig einen magnetischen Nordpol sowie rechtsseitig einen magnetischen Südpol. Werden nun die beiden Spulen 11, 11' jeweils mit entgegengesetzter Stromrichtung beaufschlagt, so erfahren aufgrund der innerhalb der Spulen 11, 11' entstehenden Magnetfelder der Nordpol und der Südpol der permanentmagnetischen Führungsstange 9 eine Kraft in die gleiche Richtung, so beispielsweise nach links, so daß dann der Drosselkörper 7 auch nach links bewegt wird. Polt man die beiden Spulen 11, 11' elektrisch um, d. h. legt man die umgekehrte Stromrichtung an, so wird der Drosselkörper 7 auch in die entgegengesetzte Richtung, nämlich nach rechts beschleunigt. Durch gezielte Beaufschlagung der Spulen 11, 11' ist es somit möglich, dem Drosselkörper 7 eine gewünschte Bewegungsrichtung aufzuprägen. Überlagert man dieser Umpol-Schwingung eine weitere Umpol-Schwingung mit höherer Taktfrequenz, so kann der Drosselkörper 7 inklusive seiner Führungsstange 9 in eine Mikro-Schwingung gemäß Pfeilrichtung 6 versetzt werden. Mit dieser Mikro-Schwingung kann sich zwischen der Führungsstange 9 sowie der Lagerbuchse 12 ein Lagerungs-Luftkissen aufbauen. Zur verbesserten Ausbildung dieses Lagerungs-Luftkissens können die beteiligten Oberflächen der Führungsstange 9 sowie der Lagerbuchse 12 entsprechend gestaltete Strukturen, beispielsweise in Siliziumcarbid-Oberflächen aufweisen.
- Das gleiche Lagerungsprinzip ist auch beim Ausführungsbeispiel nach Fig. 3 möglich. Auch hier kann durch entsprechend schnelles Umpolen des durch die Spule 11 gebildeten Magnetfeldes der Drosselkörper 7 in eine MikroSchwingbewegung versetzt werden, so daß sich auch hier zwischen dem Drosselkörper 7 sowie dem Stützkörper 10 ein Lagerungs-Luftpolster aufbaut. Dabei ist es nicht erforderlich, daß das mit dem Magnetfeld der Spule(n) 11, 11' zusammenwirkende Bauelement permanentmagnetisch ausgebildet ist. Es ist auch bereits ausreichend, das entsprechende Bauelement - beim Ausführungsbeispiel nach Fig. 3 den Eisenstab 10', beim Ausführungsbeispiel nach Fig. 1 die Führungsstange 9 - in einem gut leitenden Metall auszuführen. Auch hiermit ist es möglich, dem Drosselkörper 7 bei Gradientenbildung des Magnetfeldes durch zeitlich veränderten Spulenstrom eine Mikro-Schwingbewegung aufzuprägen.
- Für beide Ausführungsbeispiele gilt, daß nunmehr, nachdem der Drosselkörper 7 Mikro-Schwingbewegungen ausführt und hierdurch gemäß Pfeilrichtung 6 verschiebbar bezüglich des Stützkörpers 10 gelagert ist, durch entsprechende Variation der Schwingungsamplituden der Drosselkörper 7 mit seinem Schwingungszentrum gemäß Pfeilrichtung 6 verschoben werden kann. Dies bedeutet, daß durch Vergrößerung der Schwingungsamplituden nach links der Drosselkörper 7 in seiner Gesamtheit nach links bewegt wird, daß sich also das Schwingungszentrum, um welches der Drosselkörper 7 seine Mikro-Schwingbewegungen ausführt, nach links verlagert. Entsprechend umgekehrt erfolgt eine Verlagerung des Drosselkörpers 7 nach rechts, so daß hierbei also die nach rechts gerichteten Schwingungsamplituden größer sind als die nach links gerichteten Amplituden. Die jeweils erforderliche Schwingungs-Charakteristik ist durch geeignete Veränderung der Magnetfelder, d. h. durch geeignete Ansteuerung der Spulen 11, 11' einfach zu erzielen. Wie man aus den Fig. 1a, 3a dabei unschwer erkennt, wird der freie Strömungsquerschnitt im Ansaugkanal bei einer Verschiebung des Drosselkörpers 7 nach links verringert, sowie bei einer Verschiebung nach rechts vergrößert. Eine Verschiebebewegung des Drosselkörpers 7 nach links reduziert somit die in den Zylinder der Brennkraftmaschine gelangende Ansaugluftmenge, während sich umgekehrt bei einer Verschiebung des Drosselkörpers 7 nach rechts aufgrund der größeren Ansaugluftmenge eine höhere Brennkraftmaschinen-Leistungsabgabe einstellt.
- Fig. 1a zeigt als weiteres Detail, daß das dem Luftsammelgehäuse 3 zugewandte Ende des Stützkörpers 10 ebenfalls strömungsgünstig ausgebildet ist, um den durch das gesamte Drosselsystem hervorgerufenen Strömungswiderstand so gering als möglich zu halten. Ferner Zeigt diese Figur einen am rechtsseitigen Ende der Führungsstange 9 vorgesehenen Notlaufanschlag 16. Dieser Notlaufanschlag 16 verhindert, daß der Drosselkörper 7 beispielsweise bei Stillstand der Brennkraftmaschine aus dem Stützkörper 10 in Richtung der Einlaßventile 2 herausfallen kann. Vielmehr kommt bei einer derartigen Bewegung der Notlaufanschlag 16 am Stützkörper 10 zum Anliegen und verhindert somit eine weitere Bewegung des Drosselkörpers 7 in Richtung der Einlaßventile 2.
Während des Betriebs der Brennkraftmaschine sowie des Drosselsystemes hingegen ist es überhaupt nicht möglich, daß der Drosselkörper 7 den Stützkörper 10 verläßt. Verhindert wird dies durch einen sicherheitsrelevanten Vorteil dieser Anordnung, der u. a. durch Betrachtung von Fig. 2 ersichtlich wird: Verläßt nämlich der rechtsliegende Südpol der Führungsstange 9 die rechte Spule 11, in der er eine nach links gerichtete Bewegung erfährt, so tritt dann bei nicht rechtzeitiger Umpolung der Spulen 11, 11' dieser Südpol in die Spule 11' ein, die gemäß den obigen Erläuterungen rechtsseitig ebenfalls einen Südpol aufweist, so daß aufgrund der dann vorliegenden magnetischen Abstoßung die Führungsstange 9 abgebremst bzw. gestoppt wird. Mit dem sich hierbei in der Richtung umkehrenden Bewegungsimpuls wird somit der Drosselkörper 7 mit seiner Führungsstange 9 wieder nach rechts bewegt. Ausdrücklich soll darauf hingewiesen werden, daß dieser Effekt auch ohne Beeinflussung der Spulenströme auftritt und somit auch zur Bewegungssteuerung des Drosselkörpers 7 genutzt werden kann. - Die Fig. 1a, 2 zeigen ferner als weiteres Detail einen Permanentmagneten 17, der ebenfalls am Stützkörper 10 bzw. an dessen Außenwand 14 befestigt ist und dazu dient, eine Ruhelage des Drosselkörpers 7 bei stillstehender Brennkraftmaschine und somit nicht strombeaufschlagten Spulen 11, 11' zu definieren. Dabei wirkt dieser Permanentmagnet 17 mit der permanentmagnetisch ausgebildeten Führungsstange 9 zusammen.
- Ferner erkennt man in Fig. 2 elektrische Versorgungsleitungen 18 für die Spulen 11, 11', die in einen Steg 15 integriert bzw. auf einen Steg 15 aufgebracht sind. Weiterhin können diese Stege 15 gleichzeitig als Luftmassenmesser ausgebildet sein. Hierzu können auf diesen Stegen die dazu erforderlichen Elemente eines an sich bekannten Heißfilm-Luftmassenmessers aufgebracht sein.
- Fig. 3b zeigt zwischen dem Drosselkörper sowie dem venturiartigen Wandabschnitt 8 einen Spalt, der ein Passieren des für den Leerlaufbetrieb der Brennkraftmaschine erforderlichen Luftmassenstromes ermöglicht. Die Anordnung kann aber auch so getroffen werden, daß das beschriebene Drosselsystem zwar statisch undicht, dynamisch jedoch dicht ist. Diese dynamische Dichtheit ist dann eine Folge der sich im Spalt zwischen dem Drosselkörper 7 sowie dem venturiartigen Wandabschnitt 8 bildenden Mikrowirbel. Um dennoch einen für den Leerlaufbetrieb ausreichenden Luftmassenstrom über den Ansaugkanal 1 in den Brennkraftmaschinen-Zylinder gelangen zu lassen, ist ein Bypass 19 zum venturiartigen Wandabschnitt 8 vorgesehen. Dieser Bypass 19 kann darüber hinaus vorteilhafterweise an einem stromabseitigen Ende nahe der Einlaßventile 2 eine Fluid-Coanda-Zone bilden, die einen relativ geringen Luftmassenstrom bevorzugt über das untere Einlaßventil 2 in den nicht gezeigten Brennkraftmaschinen-Zylinder einströmen läßt, um in diesem eine gewünschte Turbulenz zu erzeugen. Dies sowie weitere Details können jedoch durchaus abweichend von den gezeigten Ausführungsbeispielen gestaltet sein, ohne den Inhalt der Patentansprüche zu verlassen. So kann beispielsweise ein erfindungsgemäßer Ansaugkanal auch als gemeinsamer Ansaugkanal für sämtliche Brennkraftmaschinen-Zylinder ausgebildet sein, wenngleich die gezeigte Anordnung nahe der Einlaßventile 2 eines zylinderindividuellen Ansaugkanales 1 von besonderem Vorteil ist.
Claims (9)
- Ansaugkanal (1) einer Brennkraftmaschine mit einem mit einem venturiartigen Wandabschnitt (8) zusammenwirkenden, axial verschiebbaren Drosselkörper (7), mit zumindest einer einen Teil des Drosselkörpers (7) umgebenden Spule (11, 11') und mit einem Stützkörper (10) zur Führung des Drosselkörpers (7), dadurch gekennzeichnet, daß der Drosselkörper (7) durch geeignete Ansteuerung der Spule(n) (11, 11') kontinuierlich Mikro-Schwingbewegungen ausführt, so daß sich ein Lagerungs-Luftkissen zwischen dem Drosselkörper (7) sowie dem Stützkörper (10) aufbaut, wobei durch entsprechende Variation der Schwingungsamplituden dieser Drosselkörper (7) verschiebbar ist.
- Ansaugkanal nach Anspruch 1,
dadurch gekennzeichnet, daß der Drosselkörper (7) im wesentlichen rotationssymmetrisch und der Stützkörper (10) koaxial zu diesem angeordnet ist. - Ansaugkanal nach Anspruch 2,
dadurch gekennzeichnet, daß der Stützkörper (10) über zumindest einen Steg (15) an der Wand des Ansaugkanales (1) befestigt ist. - Ansaugkanal nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß der Stützkörper (10)
und/oder der Drosselkörper (7) die das verändernde Magnetfeld erzeugende(n) Spule(n) (11, 11') trägt. - Ansaugkanal nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß der Stützkörper (10) und/oder der Drosselkörper (7) einen Permanentmagneten (17) trägt. - Ansaugkanal nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß der Drosselkörper (7) eine im wesentlichen kegelförmige Spitze aufweist, an die sich ein im wesentlichen hohlzylindrischer Abschnitt anschließt, innerhalb dessen eine einen Notlaufanschlag (16) tragende Führungsstange (9) vorgesehen ist, und der abschnittsweise den Stützkörper (10) aufnimmt. - Ansaugkanal nach Anspruch 6,
dadurch gekennzeichnet, daß die Führungsstange (9) permanentmagnetisch ausgebildet ist. - Ansaugkanal nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß in den Stützkörper (10) und/oder dessen Stege (15) eine Luftmengen- oder Luftmassen-Meßvorrichtung integriert ist. - Ansaugkanal nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, daß ein Bypass (19) zum venturiartigen Wandabschnitt (8) vorgesehen ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4239975A DE4239975C1 (de) | 1992-11-27 | 1992-11-27 | Drosselsystem einer Brennkraftmaschine |
DE4239975 | 1992-11-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0599195A1 EP0599195A1 (de) | 1994-06-01 |
EP0599195B1 true EP0599195B1 (de) | 1996-04-10 |
Family
ID=6473843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93118566A Expired - Lifetime EP0599195B1 (de) | 1992-11-27 | 1993-11-18 | Ansaugkanal einer Brennkraftmaschine mit einem Drosselsystem |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0599195B1 (de) |
DE (2) | DE4239975C1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10128785A1 (de) * | 2001-06-13 | 2002-12-19 | Bayerische Motoren Werke Ag | Gemischaufbereitungsvorrichtung für einen Verbrennungsmotor |
DE10329400A1 (de) * | 2003-06-30 | 2005-02-03 | Siemens Ag | Zusatzsteuerventileinrichtung für einen Einlasskanal einer Kolbenbrennkraftmaschine |
DE10347441A1 (de) * | 2003-10-13 | 2005-05-12 | Audi Ag | Strömungsventil mit variablem Hub |
DE102012208045B3 (de) * | 2012-05-14 | 2013-10-10 | Lorenz Bauer | Ansaugelement für einen Verbrennungsmotor |
US9222403B2 (en) * | 2013-02-07 | 2015-12-29 | Thrival Tech, LLC | Fuel treatment system and method |
CN104533633B (zh) * | 2014-12-11 | 2017-02-01 | 中国第一汽车股份有限公司无锡油泵油嘴研究所 | 一种汽油机油气混合控制装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1927090A (en) * | 1928-04-26 | 1933-09-19 | Carburetor Control Company | Carburetor |
US3596873A (en) * | 1968-12-04 | 1971-08-03 | Optical Coating Laboratory Inc | Valve assembly and servo system incorporating same |
GB1323878A (en) * | 1969-11-25 | 1973-07-18 | Ultra Electronics Ltd | Combination of a fuel valve and a rectilinear position arrangement |
GB1503086A (en) * | 1976-06-25 | 1978-03-08 | Ford Motor Co | Internal combustion engine throttle valve assembly |
US4216938A (en) * | 1977-08-18 | 1980-08-12 | Aisin Seiki Kabushiki Kaisha | Solenoid actuated valve device |
DE2812292A1 (de) * | 1978-03-21 | 1979-10-04 | Bosch Gmbh Robert | Stelleinrichtung zur genauen drehwinkeleinstellung von stellgliedern |
DE3019167A1 (de) * | 1980-05-20 | 1981-11-26 | Robert Bosch Gmbh, 7000 Stuttgart | Stelleinrichtung zur steuerung eines durchflussquerschnitts |
DE3037610A1 (de) * | 1980-10-04 | 1982-05-19 | Pierburg Gmbh & Co Kg, 4040 Neuss | Gleichdruckvergaser |
DE3626681A1 (de) * | 1986-06-26 | 1988-01-14 | Arne Dipl Ing Walde | Vorrichtung zur steuerung der luft- und/oder kraftstoffmenge in verbrennungskraftmaschinen |
JPS63203983A (ja) * | 1987-02-20 | 1988-08-23 | Sanyo Electric Co Ltd | 電動弁の制御装置 |
US4796579A (en) * | 1988-03-02 | 1989-01-10 | Ford Motor Company | Automotive type throttle body |
IT1241946B (it) * | 1990-05-22 | 1994-02-01 | M T M S R L | Dispositivo regolatore della portata di gas-carburante in autoveicoli |
-
1992
- 1992-11-27 DE DE4239975A patent/DE4239975C1/de not_active Expired - Fee Related
-
1993
- 1993-11-18 EP EP93118566A patent/EP0599195B1/de not_active Expired - Lifetime
- 1993-11-18 DE DE59302189T patent/DE59302189D1/de not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE59302189D1 (de) | 1996-05-15 |
DE4239975C1 (de) | 1994-04-28 |
EP0599195A1 (de) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602005000662T2 (de) | Einspritzventil einer Brennkraftmaschine | |
EP0685028B1 (de) | Fremdgezündeter kolbenmotor mit richtungsänderbarer einströmung des kraftstoff-luft-gemisches | |
DE19726833B4 (de) | Kraftstoffeinspritzventil | |
DE3326840C2 (de) | ||
DE3732553A1 (de) | Magnetventil | |
DE2219768A1 (de) | Einrichtung zur regelung des massenverhaeltnisses des kraftstoff-luft-gemisches einer brennkraftmaschine | |
DE2508390A1 (de) | Einspritz-magnetventil | |
EP0574960B1 (de) | Elektrischer Rotationsmotor | |
DE60001135T2 (de) | Elektromagnetisches Kraftstoffeinspritzventil | |
DE3626681A1 (de) | Vorrichtung zur steuerung der luft- und/oder kraftstoffmenge in verbrennungskraftmaschinen | |
DE2943155C2 (de) | ||
DE3006815C2 (de) | ||
EP0599195B1 (de) | Ansaugkanal einer Brennkraftmaschine mit einem Drosselsystem | |
DE68913209T2 (de) | Elektrisch betätigbares ventil für kraftstoff-einspritzanlagen für brennkraftmaschinen. | |
DE3913239A1 (de) | Steuermotor, insbesondere fuer ein servoventil | |
DE3520142A1 (de) | Elektromagnet | |
DE69200841T2 (de) | Treibstoffeinspritzventil fuer verbrennungsmotoren. | |
DE2928235C2 (de) | Kraftstoffbemessungsventil | |
DE1120807B (de) | Brennkraftmaschine mit starker Drehbewegung der Luft um die Zylinderlaengsachse | |
DE2628484A1 (de) | Ventil mit einer elektro-magnetischen betaetigungseinrichtung | |
DE3804333C2 (de) | Vorrichtung zur Veränderung des Steuerwinkels zwischen einem Maschinenteil und einer dieses betätigenden Antriebseinheit | |
EP0223018B1 (de) | Elektromagnetisch betätigbares Kraftstoffeinspritzventil | |
DE3301501A1 (de) | Elektromagnetische kraftstoffeinspritzeinrichtung | |
DE2238238A1 (de) | Saugleitung einer kolbenbrennkraftmaschine | |
DE10042247C5 (de) | Mischeinheit für Gasströme an einer Verbrennungskraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940331 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19940929 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59302189 Country of ref document: DE Date of ref document: 19960515 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960503 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19991111 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19991129 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991217 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001118 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051118 |