EP0598656B1 - Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe - Google Patents

Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe Download PDF

Info

Publication number
EP0598656B1
EP0598656B1 EP93402777A EP93402777A EP0598656B1 EP 0598656 B1 EP0598656 B1 EP 0598656B1 EP 93402777 A EP93402777 A EP 93402777A EP 93402777 A EP93402777 A EP 93402777A EP 0598656 B1 EP0598656 B1 EP 0598656B1
Authority
EP
European Patent Office
Prior art keywords
antenna
cavity
patch
subarray
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402777A
Other languages
English (en)
French (fr)
Other versions
EP0598656A1 (de
Inventor
Gérard Raguenet
Frédéric Magnin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP0598656A1 publication Critical patent/EP0598656A1/de
Application granted granted Critical
Publication of EP0598656B1 publication Critical patent/EP0598656B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage

Definitions

  • the field of the invention is that of antennas networks, and more particularly network antennas broadband (5 to 10%), especially for the space sector.
  • These network antennas include many sources radiant elementals, and the nourishment of these sources, in an appropriate relative provision to give to radiated fields the desired shape for application specific envisaged. So we are looking for a cheap item at manufacture (because it requires a large number, which can reach a few thousand), neither heavy nor bulky (because on board), and easy to integrate into the antenna (geometry implantation and food). In addition, for new antenna designs, we want to be able to arrange these elements on a shaped surface, possibly deformable.
  • a lobe of an antenna network is formed by geometry or relative arrangement radiating elements, as well as by the amplitude and the phase of the excitation signals applied to these elements radiant through a power network and its control electronics.
  • the proposed invention relates to an embodiment of an elementary source for radiating device of the flat antenna type, and radiating sub-assemblies including such sources.
  • the device according to the invention can therefore be integrated in a flat array antenna, but moreover, is particularly suitable for installing such a radiant sub-assembly on a surface consistent.
  • a means known from the prior art to increase the bandwidth of type printed radiating elements patch is to increase the thickness of dielectric between the patch and the ground plane.
  • This method suffers from the drawback that the network of elements thus constructed is more difficult to integrate on the radiating face of the antenna, all the more if this surface is not flat but conformed. Furthermore the characteristics of radiation from a thick planar antenna degrades very quickly, which does not provide only limited operational interest.
  • Another object of the invention is therefore to overcome this disadvantage of the prior art, to obtain a strip wide bandwidth without complicating the integration of the antenna on a shaped surface.
  • the radiating element consists, in part of a metallic cavity, whose fine geometry results from a optimization in relation to the mission of the antenna, other part of a patch-type resonator etched on a substrate thin dielectric.
  • the structure can therefore be considered as a element in technology known as buried microstrip.
  • the bandwidth (BP) of an etched microstrip antenna is inversely proportional to its cavity overvoltage, also known as quality factor Q.
  • Q quality factor
  • This same quality factor Q is (approximately) inversely proportional to the normalized height of the patch t / ⁇ ⁇ , where t is the thickness of dielectric between the patch and the ground plane, and ⁇ ⁇ is the electrical wavelength in the dielectric characterized by the dielectric constant ⁇ , at the operating frequency of the antenna. It follows that in the major part of the curve which describes the bandwidth as a function of the normalized height, and this up to reasonable thicknesses, the bandwidth BP is linear with respect to t / ⁇ ⁇ as shown by it the abacuses from the publication of Carver and Mink (1), and reproduced in FIG. 3.
  • the invention will therefore remedy the drawbacks of the prior art, and allow a wide band to be obtained busy using simple technology derived from that printed "patch" antennas, while retaining the advantages of this technology.
  • the invention proposes a radiating element high bandwidth patch type for an antenna network, as defined in claim 1.
  • said cavity of the embodiment previous is partially closed in the direction of radiation by a second resonator which consists of a conductive patch engraved on a support which is then placed on the front face of said conductive cavity.
  • the microstrip supply line can be carried out either in simple microstrip, or in shielded microstrip or channel, and enters said cavity either by a channel dug in the metal cavity, either through a recess in the wall of said cavity.
  • patch can be used, for example: circle, square, polygon, ...; as well as different forms of cavity: circular cylinder, square, octagonal, pentahexagonal, ...
  • the invention also provides a subset of radiating elements for a network antenna, known as a sub-network, said sub-network comprising in particular a mechanical support, several patches and their supplies in microstrip technology, with their dielectric substrate and their associated ground plane. , characterized in that said mechanical sub-array support is placed on the front face of said dielectric substrate, on the radiation side of the antenna.
  • the radiating elements conform to one of the preceding descriptions, and further comprise a resonant system around each patch, said resonant system possibly being a cavity, for example.
  • said mechanical support comprises said cavities.
  • said sub-assembly is supplied by a single supply point, common to all the elements of said sub-network.
  • said sub-network is not planar, but conformed, that is to say that the patches of a sub-network can have different angular orientations.
  • the invention also relates to the integration of subnets according to the previous descriptions in an antenna network.
  • said antenna can be placed on a flat surface, of revolution, or of a any curvature.
  • the subnets used to make the network antenna will be of geometry identical, allowing the production of series of components of said subnets, as well as subnets themselves.
  • FIG 1 we see an example of a subnet of four radiating elements 2 of the patch type, printed on one dielectric substrate 1.
  • the four radiating elements or “patches” are powered by a power network realized in microstrip technology, which consists of conductive tracks printed or engraved on the same dielectric substrate 1.
  • the feeding of the four patches is from a point common 5, which feeds two branches 3a, 3b which are then still branched into sub-branches 4a, 4b, 4c, 4d.
  • the relative amplitude of excitation can also be controlled by the management of the various impedances of the different paths.
  • FIG 2 we see an example of embodiment of a radiating element according to the prior art.
  • this element includes a patch etched conductor 2 on a dielectric substrate 1 covered on its back side by a ground plane 6.
  • Patch 2 is powered by microstrip 4b, which is an engraved track conductive, usually of the same material as the patch.
  • patch 2 is placed at the bottom of a system closed which consists for example of a cavity 7 defined by conductive walls 8 delimiting the radial extent of the cavity 7 around patch 2.
  • this cavity 7 determines its radio characteristics according to rules known to those skilled in the art; as a result, these dimensions can be chosen by the designer in order to provide the desired bandwidth at the frequency of operation of the radiating element, and this without increase in the thickness of dielectric 1 behind the patch 2. It follows that the dimensioning of the element radiating from the antenna according to the invention and as described as simply as possible in Figure 5 is not governed by the same mechanisms as sizing practical in the prior art.
  • the bandwidth curves ⁇ f / f as a function of the normalized height t / ⁇ ⁇ of dielectric indicates to us that an unacceptable thickness of dielectric is necessary to provide a bandwidth beyond a few percent.
  • Curve 10 represents the frequency response of a rectangular patch of dimensions equal to 0.3 x 0.5 ⁇ 0 , with the same dielectric constant parameters and from ROS. We see that for microwaves of the order of 1 to 10 GHz, indicated respectively on curves 9, 10 by a solid line and a dotted line, the relationship remains approximately linear between the bandwidth and the normalized height for widths of band between 1% and 10%.
  • the main propagation line is therefore of microstrip type and typically involves a conductor track etched on a thickness of dense substrate.
  • the thickness of this one is dimensioned by integrating the radioelectric criteria of use ( ⁇ r , w, h, Ze) as well as more specific constraints which can come from the envisaged mission.
  • the advantage of thin substrate thickness (of the order of 20 mils, 30 mils maximum, or 0.5 to 0.75 mm) is that it makes it entirely manageable in terms of industrial production the use of radiating elements as well as their associated distribution circuits on surfaces of course flat, but above all shaped in three dimensions, as will be seen below.
  • FIGS. 4a, 4b show two examples of microstrip technology which can be used for the production of supply lines for the radiating elements according to the invention.
  • the microstrip line consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate (on the opposite face of the face comprising the etched track).
  • the physical parameters characterizing this system are the dielectric constant ⁇ and the height or thickness of dielectric h 1 .
  • the microstrip line itself consists of a conductive track 22 etched on a dielectric substrate 1 having a ground plane 6 behind the substrate 1. Shielding around this line is constituted by conductive walls 18 which surround the track 22 and which are electrically connected to earth 6.
  • the physical parameters which characterize the system are the dielectric constant ⁇ and the height or thickness of dielectric h 1 , as well as the dimensions of the shielding h 2 for the height or the distance between the surface of the dielectric 1 and the conductive wall 18 which is oriented parallel to this surface, and the width d between the conductive walls 18 on each side of the track 22.
  • the space 17 inside the shield formed by the conductive walls 18 is assumed to be filled with air, and therefore will have a dielectric constant close to 1.
  • the radio propagation characteristics on such a line are calculated from the physical parameters cited according to methods well known to those skilled in the art.
  • this simple or "shielded" line using channel technology opens into a cavity and deforms significantly, so as to form a geometry of patch.
  • the simplest form of the cavity is that of a cylinder, but other geometries can be used in function of the application: square, pentagonal, hexagonal etc ... without aspect or limiting character.
  • the directivity of radiation of a element according to the invention is determined by the dimensions relative of the patch and the surrounding cavity.
  • Adaptation performance is also not managed by the same laws and the implementation of the cavity more than significantly improves the performance of ROS.
  • the cavity can be integrated into a structure carrier (such as the example shown in Figure 8) on which we will glue, screw, or assemble by any other means the microstrip circuit on a substrate thin dielectric 1 comprising patch 2 and the power line 4.
  • a structure carrier such as the example shown in Figure 8
  • FIG 5 we have a sectional view of a variant implementation of the invention.
  • This figure is identical to Figure 2 except for the presence of conductive elements 13.
  • This achievement allows thereby a total shielding of the microstrip assembly and patch compared to other neighboring elements.
  • the electrical continuity established by the element (s) conductor (s) 13 can be total or partial:
  • Partial One can imagine a discrete shielding using studs crossing the dielectric substrate 2 screwable on the cavity or even consider the technique of metallized holes in the dielectric substrate which one could weld in vapor phase for example to the continuous part of the cavity.
  • FIG. 6 A first example of an antenna realization using a very wide band element according to the invention is shown in Figure 6. This element is intended for antenna operating at 8 GHz which has been produced and on which of the measurements made it possible to confirm the expected performance.
  • FIG. 6 illustrates the method of this realization, which consists in adding to a basic patch 2 radiator, a second resonator 12 positioned above the first resonator 2.
  • the configuration is therefore that of the Figure 5, except that the resonant cavity 7 is partially closed on its front side by a second resonator 12 which can be for example a patch printed on a dielectric support 11.
  • the second element is implanted flush with cavity 7, but we could place it, with more elaborate constructions, either at a higher height or either at a lower height than the height of the conductive walls 8 of the cavity 7.
  • the second resonator 12 can be etched on a carrier substrate 11 of low thickness and mass and its assembly can be done by simple bonding or screwing.
  • the two resonators can be deformed at using chamfers to generate polarization circular, if required, using a single access.
  • the radiation patterns measured in a band 8.0 to 8.4 GHz application show excellent device behavior.
  • the ellipticity rate (cross polarization) is excellent at frequency optimization (8.2 GHz) and remains well below 3 dB on the entire useful band.
  • FIGS. 2 and 5 to 7 An antenna project in which the radiator fits according to the invention and presented in FIGS. 2 and 5 to 7, concerns the creation of a scanning antenna electronics as shown in Figures 8 and 9.
  • the Figure 8 shows schematically in perspective a structure mechanics of a radiating sub-assembly according to the invention, this sub-assembly being intended to be assembled with numerous similar sub-assemblies to form a network antenna as shown in Figure 9.
  • the operating principle of the antenna is exposed in Figure 9.
  • the example of a complete network therefore consists by installing it on a surface with symmetry of revolution around an axis z of identical subsets, such as shown in Figure 8.
  • the subsets are composed in this exemplary embodiment, four radiators identical patch type according to one of FIGS. 2, 5 to 7, supplied by a common distributor as shown on the Figure 1.
  • the mechanical structure 14 shown schematically in plan in Figure 8 has the conductive walls of four cavities 8 and fixing pads 15 of the circuit microstrip and its dielectric substrate 1 as shown on Figure 1.
  • Recesses 19 are arranged in the conductive walls 8 for the passage of microstrip lines supply of radiant elements.
  • each subnet is arranged with its axis 21 in the same plane with the main axis of the antenna z, and with an angular deviation constant between two successive planes thus defined.
  • the angle ⁇ is 10 ° as in figure 8.
  • the interest of this particular topology is to assist in lobe formation antenna radiation, as described in the application French patent no. 91 05510 of May 6, 1991, on behalf of the plaintiff (which is an integral part of this request as description of prior art concerning lobe antennas with formed lobes).
  • the dielectric etching support can be easily formed hot for example without operating problems radioelectric.
  • Another technology, triplate type for example, would have been either inapplicable or very delicate to implement.
  • antennas proposed networks can they include more of elements, to be established in a plane way, or to be used to sample a reflector antenna and set up in this case according to a surface type geometry of Petzwald which optimizes the efficiency of the device.

Landscapes

  • Waveguide Aerials (AREA)

Claims (13)

  1. Strahlungselement vom Flecken-Typ mit großer Bandbreite für eine Gruppenantenne, das eine Masseebene (6), ein dielektrisches Substrat (1), einen leitfähigen Flecken (2) und eine Versorgungssonde (4a, 4b, 4c, 4d) für Signale des Elements umfasst, wobei der Flecken (2) und die Sonde (4a, 4b, 4c, 4d) durch Ätzen von leitfähigen Mikrostreifen auf dem dielektrischen Substrat (1) ausgeführt ist (sind), wobei der Flecken (2) und die Versorgungssonde (4a, 4b, 4c, 4d) auf einer Seite angeordnet ist, die in Richtung der Strahlung Vorderseite des Substrates (1) genannt wird, wobei die Masseebene (6) auf der Rückseite des Substrates (1) angeordnet ist, wobei das Strahlungselement außerdem ein radial geschlossenes System vom Typ eines Hohlraums (7) umfasst, der durch leitfähige Wände (8) definiert ist, wobei der Hohlraum mit dem Flecken (2), der am Boden des Hohlraums (7) angeordnet ist, auf der Vorderseite des dielektrischen Substrats (1) angeordnet ist, wobei der Hohlraum (7) in Richtung der Strahlung des Elements wenigstens teilweise offen ist, dadurch gekennzeichnet, dass sich die leitfähigen Wände (8) des Hohlraums (7) quer durch das Substrat (1) bis zur Masseebene (6) erstrecken, die sich auf der Rückseite des Substrates (1) befindet.
  2. Strahlungselement nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlraum (7) in Richtung der Strahlung durch einen zweiten Resonator teilweise geschlossen ist, der in einem auf einem zweiten dünnen dielektrischen Substrat (11) geätzten, leitfähigen Flecken (12) besteht, der dann an der Vorderseite des Hohlraums (7) angeordnet ist.
  3. Strahlungselement nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Mikrostreifen-Versorgungssonde als einfacher Mikrostreifen ausgeführt ist.
  4. Strahlungselement nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Mikrostreifen-Versorgungssonde als abgeschirmter Mikrostreifen ausgeführt ist.
  5. Strahlende Untergruppe aus Strahlungselementen für eine Gruppenantenne nach einem der vorhergehenden Ansprüche, wobei die Untergruppe insbesondere einen mechanischen Träger (14), mehrere Flecken (2) und ihre Versorgungen in Mikrosteifentechnologie mit ihrem zugehörigen dielektrischen Substrat (1) und ihrer zugehörigen Masseebene (6) umfassen, dadurch gekennzeichnet, dass der mechanische Träger (14) der Untergruppe in Strahlungsrichtung der Antenne auf der Vorderseite des dielektrischen Substrats angeordnet ist.
  6. Strahlende Untergruppe nach Anspruch 5, dadurch gekennzeichnet, dass der mechanische Träger (14) die leitfähigen Wände (8) der Hohlräume (7) umfasst.
  7. Strahlende Untergruppe nach einem der Ansprüche 5 bis 6, dadurch gekennzeichnet, dass die Untergruppe durch einen einzigen Versorgungspunkt (5) versorgt wird, der allen Strahlungselementen der Untergruppe gemeinsam ist.
  8. Strahlende Untergruppe nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Untergruppe nicht eben sondern konform ist.
  9. Gruppenantenne, dadurch gekennzeichnet, dass die Antenne strahlende Untergruppen nach einem der Ansprüche 5 bis 8 umfasst.
  10. Gruppenantenne nach Anspruch 9, dadurch gekennzeichnet, dass die Antenne auf einer ebenen Fläche angeordnet ist.
  11. Gruppenantenne nach Anspruch 9, dadurch gekennzeichnet, dass die Antenne auf einer rotationssymmetrischen Fläche angeordnet ist.
  12. Gruppenantenne nach Anspruch 9, dadurch gekennzeichnet, dass die Antenne auf einer Fläche angeordnet ist, die mit irgendeiner Krümmung gestaltet ist.
  13. Gruppenantenne nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die Antenne aus Untergruppen mit gleichen Geometrien besteht.
EP93402777A 1992-11-16 1993-11-16 Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe Expired - Lifetime EP0598656B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9213744 1992-11-16
FR9213744A FR2698212B1 (fr) 1992-11-16 1992-11-16 Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.

Publications (2)

Publication Number Publication Date
EP0598656A1 EP0598656A1 (de) 1994-05-25
EP0598656B1 true EP0598656B1 (de) 2001-03-14

Family

ID=9435568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402777A Expired - Lifetime EP0598656B1 (de) 1992-11-16 1993-11-16 Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe

Country Status (4)

Country Link
US (1) US5434581A (de)
EP (1) EP0598656B1 (de)
DE (1) DE69330020T2 (de)
FR (1) FR2698212B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957473B2 (ja) * 1996-05-15 1999-10-04 静岡日本電気株式会社 マイクロストリップアンテナ装置
US5745079A (en) * 1996-06-28 1998-04-28 Raytheon Company Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
SE508513C2 (sv) * 1997-02-14 1998-10-12 Ericsson Telefon Ab L M Mikrostripantenn samt gruppantenn
US6297774B1 (en) * 1997-03-12 2001-10-02 Hsin- Hsien Chung Low cost high performance portable phased array antenna system for satellite communication
US6081235A (en) * 1998-04-30 2000-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High resolution scanning reflectarray antenna
FR2778802B1 (fr) * 1998-05-15 2000-09-08 Alsthom Cge Alcatel Dispositif d'emission et de reception d'ondes hyperfrequences polarisees circulairement
US6031504A (en) * 1998-06-10 2000-02-29 Mcewan; Thomas E. Broadband antenna pair with low mutual coupling
US6078223A (en) * 1998-08-14 2000-06-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Discriminator stabilized superconductor/ferroelectric thin film local oscillator
GB9819504D0 (en) * 1998-09-07 1998-10-28 Ardavan Houshang Apparatus for generating focused electromagnetic radiation
US6049305A (en) * 1998-09-30 2000-04-11 Qualcomm Incorporated Compact antenna for low and medium earth orbit satellite communication systems
FR2788171A1 (fr) * 1998-12-31 2000-07-07 Thomson Multimedia Sa Dispositif de reception de signaux a reseaux a balayage electronique dans un systeme de communication par satellites a defilement
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
DE10039772A1 (de) * 2000-08-16 2002-03-07 Bosch Gmbh Robert Kombinationsantenne
US6611237B2 (en) * 2000-11-30 2003-08-26 The Regents Of The University Of California Fluidic self-assembly of active antenna
GB2387036B (en) * 2002-03-26 2005-03-02 Ngk Spark Plug Co Dielectric antenna
GB2399949B (en) * 2002-03-26 2004-11-24 Ngk Spark Plug Co Dielectric antenna
US6989791B2 (en) * 2002-07-19 2006-01-24 The Boeing Company Antenna-integrated printed wiring board assembly for a phased array antenna system
TW584978B (en) * 2003-07-10 2004-04-21 Quanta Comp Inc Grounding module of antenna in portable electronic device
KR100626666B1 (ko) * 2003-11-22 2006-09-22 한국전자통신연구원 평판형 방사소자를 이용한 원형편파용 혼 안테나
US7443354B2 (en) * 2005-08-09 2008-10-28 The Boeing Company Compliant, internally cooled antenna apparatus and method
FR2901062B1 (fr) * 2006-05-12 2008-07-04 Alcatel Sa Dispositif rayonnant a cavite(s) resonnante(s) a air a fort rendement de surface, pour une antenne reseau
US8503941B2 (en) 2008-02-21 2013-08-06 The Boeing Company System and method for optimized unmanned vehicle communication using telemetry
WO2010065555A1 (en) * 2008-12-01 2010-06-10 Drexel University Mimo antenna arrays built on metamaterial substrates
US8766854B2 (en) * 2010-01-07 2014-07-01 National Taiwan University Bottom feed cavity aperture antenna
FR2975537B1 (fr) * 2011-05-17 2013-07-05 Thales Sa Element rayonnant pour antenne reseau active constituee de tuiles elementaires
US9183424B2 (en) 2013-11-05 2015-11-10 Symbol Technologies, Llc Antenna array with asymmetric elements
US20180294567A1 (en) * 2017-04-06 2018-10-11 The Charles Stark Draper Laboratory, Inc. Patch antenna system with parasitic edge-aligned elements
DE102019204680A1 (de) * 2019-04-02 2020-10-08 Vega Grieshaber Kg Radarmodul mit Mikrowellen-Chip

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131894A (en) * 1977-04-15 1978-12-26 Ball Corporation High efficiency microstrip antenna structure
US4197544A (en) * 1977-09-28 1980-04-08 The United States Of America As Represented By The Secretary Of The Navy Windowed dual ground plane microstrip antennas
US4605932A (en) * 1984-06-06 1986-08-12 The United States Of America As Represented By The Secretary Of The Navy Nested microstrip arrays
US4709240A (en) * 1985-05-06 1987-11-24 Lockheed Missiles & Space Company, Inc. Rugged multimode antenna
FR2583226B1 (fr) * 1985-06-10 1988-03-25 France Etat Antenne omnidirectionnelle cylindrique
US4816836A (en) * 1986-01-29 1989-03-28 Ball Corporation Conformal antenna and method
GB2193379B (en) * 1986-07-24 1990-04-18 Gen Electric Plc An antenna
JP2785825B2 (ja) * 1987-07-30 1998-08-13 ソニー株式会社 平面アンテナ
US5087920A (en) * 1987-07-30 1992-02-11 Sony Corporation Microwave antenna
US4990926A (en) * 1987-10-19 1991-02-05 Sony Corporation Microwave antenna structure
CA1323419C (en) * 1988-08-03 1993-10-19 Emmanuel Rammos Planar array antenna, comprising coplanar waveguide printed feed lines cooperating with apertures in a ground plane
US5124713A (en) * 1990-09-18 1992-06-23 Mayes Paul E Planar microwave antenna for producing circular polarization from a patch radiator
FR2676310B1 (fr) * 1991-05-06 1993-11-05 Alcatel Espace Antenne a lobe forme et grand gain.
US5210542A (en) * 1991-07-03 1993-05-11 Ball Corporation Microstrip patch antenna structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071879B2 (en) 2004-06-01 2006-07-04 Ems Technologies Canada, Ltd. Dielectric-resonator array antenna system

Also Published As

Publication number Publication date
US5434581A (en) 1995-07-18
FR2698212B1 (fr) 1994-12-30
DE69330020T2 (de) 2001-10-11
FR2698212A1 (fr) 1994-05-20
EP0598656A1 (de) 1994-05-25
DE69330020D1 (de) 2001-04-19

Similar Documents

Publication Publication Date Title
EP0598656B1 (de) Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
CA2004870C (fr) Dispositif rayonnant multifrequence
EP0627783B1 (de) Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP2194602B1 (de) Antenne mit gemeinsam benützten Elementarstrahlern und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützten Elementarstrahlern
EP0886889B1 (de) Breitbandige gedruckte gruppenantenne
EP0315141B1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
EP0667984B1 (de) Monopolantenne mit platten- und stabstrahlern
EP0575211A1 (de) Strahlerelement einer Antenne mit breitbandigem Durchlassbereich und aus derartigen Elementen bestehende Gruppenantenne
FR2975537A1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP0661773A1 (de) Konische, auf einem ebenen Substrat präparierte Streifenleitungsantenne und Verfahren zu ihrer Herstellung
FR2738954A1 (fr) Antenne a balayage electronique perfectionnee
EP3664214B1 (de) Mehrfachzugriff strahlelemente
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
EP3900113B1 (de) Elementare mikrostreifenantenne und gruppenantenne
EP0477102B1 (de) Richtnetzwerk mit benachbarten Strahlerelementen für Funkübertragungssystem und Einheit mit einem derartigen Richtnetzwerk
EP0617480A1 (de) Strahlende Struktur mit variabler Richtcharakteristik
EP0831550B1 (de) Vielseitige Gruppenantenne
FR2803694A1 (fr) Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
EP4092831A1 (de) Antenne mit lückenhaftem verteilungsnetz
FR2751138A1 (fr) Antenne microruban a polarisations multiples, notamment antenne elementaire pour reseau de type dalle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19940914

17Q First examination report despatched

Effective date: 19960612

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL SPACE INDUSTRIES

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010314

REF Corresponds to:

Ref document number: 69330020

Country of ref document: DE

Date of ref document: 20010419

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20101111

Year of fee payment: 18

Ref country code: IT

Payment date: 20101120

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121114

Year of fee payment: 20

Ref country code: FR

Payment date: 20121130

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121114

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69330020

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69330020

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20131115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131119

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131115