EP0627783B1 - Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm - Google Patents

Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm Download PDF

Info

Publication number
EP0627783B1
EP0627783B1 EP94401183A EP94401183A EP0627783B1 EP 0627783 B1 EP0627783 B1 EP 0627783B1 EP 94401183 A EP94401183 A EP 94401183A EP 94401183 A EP94401183 A EP 94401183A EP 0627783 B1 EP0627783 B1 EP 0627783B1
Authority
EP
European Patent Office
Prior art keywords
radiating
elements
excitation
level
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94401183A
Other languages
English (en)
French (fr)
Other versions
EP0627783A1 (de
Inventor
Frederic Croq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Espace Industries SA
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA, Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel Espace Industries SA
Publication of EP0627783A1 publication Critical patent/EP0627783A1/de
Application granted granted Critical
Publication of EP0627783B1 publication Critical patent/EP0627783B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/005Patch antenna using one or more coplanar parasitic elements

Definitions

  • the field of the invention is that of antennas network, and more specifically that of network antennas multi-layer and multi-element prints, including elements radiant are produced by the microstrip technique.
  • antennas are produced by etching or lithography of conductive tracks and pavers on substrates dielectrics, which are generally but not exclusively plans. More elaborate configurations exist having several dielectric substrates, ground planes, cavities resonators, et cetera, some examples of which will be described in more detail below. In this case, several layers of dielectric, each of which has a pattern of conductive tracks and / or pavers are stacked.
  • the radiating elements printed have directivities conventionally between 5 and around 10 dBi depending on the characteristics antenna geometry (substrate height, dimensions radiant pavers and cavities if they exist) and materials used (dielectric constant of substrates).
  • the invention aims to overcome these limitations of performances of the antennas of the prior art, and in particular aims to simultaneously provide a high gain, a very wide bandwidth, controlling the purity of polarization, and radiation template control.
  • the invention provides a structure radiant with variable directivity, this structure comprising a plurality of radiating elements and means electromagnetic excitation of these radiating elements, characterized in that said radiating elements are distributed at the interfaces of a plurality of spacers dielectrics stacked on successive levels in a multi-layer radiating structure, this structure radiant multilayer being itself disposed on said means of excitement.
  • said structure radiant multilayer includes a plurality of interfaces dielectric, each dielectric interface comprising a or more radiating elements, said structure being composed so that each successive interface has a larger coupled radiating surface than the surface of the radiating elements of the previous level, in starting from a first level containing said means of excitement.
  • the radiating elements of different levels are coupled by electromagnetic coupling to obviate the need a specific energy distribution structure electromagnetic.
  • the lower level has a single radiating pad, which will be excited by said means of excitation, and which in turn will excite the elements radiant from the next level, and so on.
  • the first paving stone radiant which is on the first level of the multilayer structure, is fed so as to radiate the desired polarization.
  • the polarization of this radiant paving stone exciter will then be controlled and improved upon coupling to the different radiating structures of levels superior through the use of structures and elements radiant shaped.
  • the radiating elements of a higher level cover partially the radiating elements of a level immediately lower when viewed in projection according to the stacking direction of the levels, and the coupling between the elements of the contiguous levels is managed by the percentage of covering of these elements in the current zones magnetic, as well as the thickness and qualities separator dielectric.
  • a polarization particular can be achieved by using of excitations by sequential rotation in structure coupled.
  • the radiating structure can be equipped with a polarizing grid.
  • the exciter element E is a block of conductive material, printed or engraved on one side of a dielectric substrate D1. The other side of this dielectric is covered with a layer conductor M which makes ground plane.
  • the exciter patch E is supplied via coaxial connectors C, but you can imagine any other feeding technology instead, for example: triplate, microstrip, slot coupling, et cetera.
  • Figures 3 and 4 we have a second example a printed radiating element of the prior art, comprising a first excitation patch element E arranged on a first dielectric substrate D1 conforming to the geometry common to Figures 1 and 2, as well as a second resonator patch element R disposed on a second substrate dielectric D2 placed in front of the first excitation element E (in the direction of radiation).
  • a first excitation patch element E arranged on a first dielectric substrate D1 conforming to the geometry common to Figures 1 and 2, as well as a second resonator patch element R disposed on a second substrate dielectric D2 placed in front of the first excitation element E (in the direction of radiation).
  • these substrates are contiguous in practical realizations, and they are most often made of the same material dielectric.
  • the height H2 of the second dielectric substrate D2 is larger than the height H1 of the dielectric substrate D1, to form a resonant cavity between the excitatory patch E and the patch resonator R at the operating frequency.
  • This configuration allows you to manage the coupling between elements, and by the same, the bandwidth of the device.
  • the diameter of the resonator patch R is less than the diameter of the patch exciter E.
  • a patch resonator R is placed on a second substrate dielectric D2, placed on the first substrate D1.
  • the diameter of the resonator patch R is less than the diameter of the excitatory patch E.
  • the simple patch R is completed by a plurality of elements radiant (R1 ... R6, ...) distributed on an insulating surface (D2) stacked on said excitation means (C, E, M, D1) in a multilayer structure.
  • Resonator patches secondary (R1 ... R6) are arranged around the patch central resonator R, to form a multi-element resonator so as to cover the exciter patch E in an area of currents of the latter, that is to say on its periphery.
  • the second insulating surface D2 thus comprises a total area of resonator patch elements (R1, ... R6, R) significantly larger than the surface of the excitatory patch E alone, or of the resonator patch R of FIG. 3.
  • the opening effective antenna is increased in proportion, allowing a gain in directivity.
  • the arrangement of Figure 7 is particularly suitable for radiation in circular polarization.
  • the excitation means (C) of the exciter patch E are supplied so as to excite a circular polarization at the level of this first patch E, which in turn excites the resonator multi-elements (P1 ... P12) by electromagnetic coupling. Magnetic currents on the periphery of the element exciter E excites currents in elements P1 to P12.
  • the desired polarization is controlled and reinforced by the multi-element resonator (P1, ... P12), which gives a very high purity of polarization at the same time than increased directivity, thanks to greater radiant opening, as well as optimized performance.
  • a first patch exciter E on the upper face of a first substrate dielectric D1 having a ground plane M on its face opposite, is excited by means of excitation which include, in this example, coaxial connectors C.
  • Excitation of element E generates magnetic currents on its periphery, which, by electromagnetic coupling, in turn excite currents in the elements resonators R1, ... R6 of the neighboring level.
  • the coupling between the elements of a level results from the geometry of the different patches, and the geometry relative to their layout, as described in the request n ° 93 03502 in the name of the Applicant.
  • the coupling between elements of different levels will function of the overlap of the elements of neighboring levels (as it appears in Figure 9), and the height dielectric (H1, H2) which separates the elements, as well as the dielectric constant of each substrate (D1, D2, D3, ).
  • Figures 11 and 12 we see in section and in plan respectively an example of an embodiment according to the invention, which comprises a plurality of levels (D2, D3) each comprising a multiplicity of radiating elements (R1, ... R6; P1, ... P1 respectively).
  • the realization of Figures 11 and 12 includes the features of the figures 7.8 and 9.10.
  • the elements P1, ... P6 have a particular shape and layout, those a polarization grid, to improve and control the polarization emitted as in Figures 7 and 8.
  • the lower level of the radiating structure disposed on a dielectric substrate D1, comprises the means excitation (not shown) of an excitation patch E as well that a ground plane (M); the plurality of stacked substrates from above (D2, D3) has multi-element resonators with a larger surface area on each substrate according to the position of the substrate in the structure, according to the normal sense of radiation from the antenna.
  • the geometry of the patches and their relative arrangement, as well as the relative heights H1 / H2 / H3 of the substrates dielectric are important parameters that allow to obtain a variable directivity and a response in frequency, according to rules within the reach of man art.
  • the dielectric constant is a parameter of coupling control and therefore affects all performance of the antenna.
  • the dielectric constants of the different levels can be all the same, or on the contrary, chosen to reduce the thickness of dielectric between two patches on adjoining levels.
  • the examples in the previous figures are based on simple geometries in each level of resonators multi-element, and on three levels of planar substrates.
  • the invention can be used on curved substrates or conformed, with geometries of patches and their more or less complicated relative provision, depending on the design of the radiant element for a mission given.
  • the invention can also use four, see five or more substrates for building a structure radiant with an even wider radiating opening.
  • the total thickness of the structure should remain preferably relatively modest, to meet the needs of the targeted fields of application, notably in space.
  • the results of the measurements carried out on the structure of FIGS. 11 and 12 are given by the curves plotted in FIG. 13 and summarized in the following table.
  • the different curves represent the directivity for the different azimuth angles, that is to say the amplitude measured, relative to an isotropic antenna (in dB / ISO), as a function of the angle d elevation which is given on the abscissa.
  • the levels in cross polarization according to the elevation are plotted in dotted lines.
  • the secondary lobes are absent from these curves because they are smaller than the scale of these graphics.
  • the radiating structure according to the invention provides important advantages in terms of design and implementation antennas, in particular by eliminating the need for complex structures of distribution among the members of a sub-network of radiating elements.
  • the radiating elements are powered only by electromagnetic coupling, and these are the parameters of this coupling which determines the law of illumination.
  • the directivity can thus take intermediate values between the discrete values obtained by the techniques distribution classics.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (12)

  1. Strahlende Mehrschichtenstruktur mit Mikrostreifentechnologie für Gruppenantennen, wobei diese Struktur umfaßt:
    eine Vielzahl von Ebenen, wovon eine untere Ebene und wenigstens eine obere Ebene in einem oberen Teil enthalten sind,
    eine Vielzahl von strahlenden Elementen (R1, R2, R3, R4, R5, R6; R21, R22, R23, R24, R25, R26), die im oberen Teil angeordnet sind,
    und Mittel (E, D1, C, M) zur elektromagnetischen Erregung dieser strahlenen Elemente, die in der unteren Ebene angeordnet sind;
    wobei diese strahlenden Elemente durch eine Verteilung der elekromagnetischen Erregungsenergie zwischen den Elementen erregt werden, wobei die Verteilung durch eine elektromagnetische Kopplung zwischen den Elementen bewirkt wird, wobei der obere Teil wenigstene zwei obere Ebenen umfaßt, wobei die strahlenden Elemente auf einer Vielzahl von dielektrischen Substraten (D2, D3, ...) verteilt sind, die durch aufeinanderfolgende Ebenen zu einer strahlenden Mehrschichtenstruktur gestapelt sind, wobei diese strahlende Mehrschichtenstruktur selbst auf den Erregungsmitteln angeordnet ist, die in der unteren Ebene angeordnet sind,
    dadurch gekennzeichnet, daß jedes dielektrische Substrat (D2, D3, ...) des oberen Teils mehrere strahlende Elemente (R1, ...R6; R21, ....R26) aufweist und daß die Struktur derart zusammengesetzt ist, daß jedes folgende dielektrische Substrat strahlende Elemente auf einer Oberfläche aufweist, die größer als die ist, die von den strahlenden Elementen der vorhergehenden Ebene eingenommen wird, wobei von einer ersten unteren Ebene ausgegangen wird, die die Erregungsmittel (E, D1, C, M) enthält.
  2. Strahlende Struktur nach Anspruch 1, dadurch gekennzeichnet daß sie keine spezifischen Mittel zur Verteilung der elektromagnetischen Erregungsenergie zwischen den Elementen aufweist, wobei diese Verteilung allein durch eine Kopplung der von jedem Element erzeugten magnetischen Ströme bewirkt wird.
  3. Strahlende Struktur nach Anspruch 2, dadurch gekennzeichnet, daß sie keine spezifischen Mittel zur Kopplung der elektromagnetischen Erregungsenergie zwischen den Ebenen umfaßt wobei diese Erregung allein durch eine Kopplung der magnetischen Ströme bewirkt wird, die von den Elementen der direkt darunterliegenden Ebene erzeugt werden, die die Elemente der direkt darüberliegenden Ebene erregen.
  4. Strahlende Struktur nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die untere Ebene einen einzigen strahlenden Pflasterstein (E) aufweist, der von den Erregungsmitteln (C) erregt wird und der wiederum die strahlenden Elemente (R1, ... R6) der nächsten Ebene erregt, und so weiter.
  5. Strahlende Struktur nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der erste strahlende Pflasterstein (E), der sich auf der unteren Ebene der Mehrschichtenstruktur befindet, so gespeist wird, daß er die gewünschte Polarisation abstrahlt.
  6. Strahlende Struktur nach Anspruch 5, dadurch gekennzeichnet, daß die strahlenden Elemente wenigstens einer der oberen Ebenen so angeordnet sind, daß sie eine strahlende Struktur bilden, die fähig ist, die Polarisaticn der ausgesandten Strahlung zu verstärken und zu verfeinern.
  7. Strahlende Struktur nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die strahlenden Elemente (R21, ...R26) einer oberen Ebene die strahlenden Elemente (R1, ... R6) einer direkt darunterliegenden Ebene teilweise überdecken, wenn sie in Projektion gemäß der Stapelrichtung der Ebenen betrachtet wird, und daß die Kopplung zwischen den Elementen von benachbarten Ebenen durch den Prozentsatz der Überdeckung dieser Elemente in den Zonen der magnetischen Ströme sowie durch die Diecke und die dielektrischen Eigenschaften der Separatoren gelenkt wird.
  8. Strahlende Struktur nach einem der Ansprüche 5 bis 6, dadurch gekennzeichnet, daß die Polarisation zirkular ist und daß sie durch Anwendung der Erregung durch sequentielle Drehung in der gekoppelten Struktur erhalten wird.
  9. Strahlende Struktur nach einem der Ansprüche 5 bis 6 oder B, dadurch gekennzeichnet, daß sie mit einem polarisierenden Gitter ausgestattet ist.
  10. Strahlende Struktur nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die dielektrischen Substrate (D1, D2, D3, ...) im wesentlichen eben sind.
  11. Strahlende Struktur nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die dielektrischen Substrate (D1, D2, D3, ...) in 3 Dimensionen gestaltet sind.
  12. Elektromagnetische Antenne mit variabler Richtcharakteristik, die wenigstens eine Vielzahl von strahlenden Elementen umfaßt, die zu einer strahlenden Struktur nach einem der Ansprüche 1 bis 11 gestaltet sind.
EP94401183A 1993-06-03 1994-05-30 Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm Expired - Lifetime EP0627783B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306660A FR2706085B1 (fr) 1993-06-03 1993-06-03 Structure rayonnante multicouches à directivité variable.
FR9306660 1993-06-03

Publications (2)

Publication Number Publication Date
EP0627783A1 EP0627783A1 (de) 1994-12-07
EP0627783B1 true EP0627783B1 (de) 1998-10-14

Family

ID=9447726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94401183A Expired - Lifetime EP0627783B1 (de) 1993-06-03 1994-05-30 Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm

Country Status (5)

Country Link
US (1) US5497164A (de)
EP (1) EP0627783B1 (de)
DE (1) DE69413882T2 (de)
ES (1) ES2125420T3 (de)
FR (1) FR2706085B1 (de)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683952A1 (fr) * 1991-11-14 1993-05-21 Dassault Electronique Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.
NL9301677A (nl) * 1993-09-29 1995-04-18 Hollandse Signaalapparaten Bv Multipatch antenne.
JP2957473B2 (ja) * 1996-05-15 1999-10-04 静岡日本電気株式会社 マイクロストリップアンテナ装置
US5745079A (en) * 1996-06-28 1998-04-28 Raytheon Company Wide-band/dual-band stacked-disc radiators on stacked-dielectric posts phased array antenna
US6271792B1 (en) * 1996-07-26 2001-08-07 The Whitaker Corp. Low cost reduced-loss printed patch planar array antenna
US5835062A (en) * 1996-11-01 1998-11-10 Harris Corporation Flat panel-configured electronically steerable phased array antenna having spatially distributed array of fanned dipole sub-arrays controlled by triode-configured field emission control devices
SE508356C2 (sv) * 1997-02-24 1998-09-28 Ericsson Telefon Ab L M Antennanordningar
US5867130A (en) * 1997-03-06 1999-02-02 Motorola, Inc. Directional center-fed wave dipole antenna
US6002368A (en) * 1997-06-24 1999-12-14 Motorola, Inc. Multi-mode pass-band planar antenna
US5880694A (en) * 1997-06-18 1999-03-09 Hughes Electronics Corporation Planar low profile, wideband, wide-scan phased array antenna using a stacked-disc radiator
US6046707A (en) * 1997-07-02 2000-04-04 Kyocera America, Inc. Ceramic multilayer helical antenna for portable radio or microwave communication apparatus
FR2767970B1 (fr) * 1997-09-01 1999-10-15 Alsthom Cge Alcatel Structure rayonnante
CA2225677A1 (en) * 1997-12-22 1999-06-22 Philippe Lafleur Multiple parasitic coupling to an outer antenna patch element from inner path elements
US6011522A (en) * 1998-03-17 2000-01-04 Northrop Grumman Corporation Conformal log-periodic antenna assembly
US6018323A (en) * 1998-04-08 2000-01-25 Northrop Grumman Corporation Bidirectional broadband log-periodic antenna assembly
US6140965A (en) * 1998-05-06 2000-10-31 Northrop Grumman Corporation Broad band patch antenna
US6181279B1 (en) 1998-05-08 2001-01-30 Northrop Grumman Corporation Patch antenna with an electrically small ground plate using peripheral parasitic stubs
EP0957535B1 (de) * 1998-05-15 2005-12-28 SES Astra S.A. Elektromagnetisch gekoppelte Mikrostreifenleiterantenne
FR2778802B1 (fr) * 1998-05-15 2000-09-08 Alsthom Cge Alcatel Dispositif d'emission et de reception d'ondes hyperfrequences polarisees circulairement
DK1227545T3 (da) * 1999-10-26 2003-10-27 Fractus Sa Interlacede flerbåndsantennearrangementer
FR2803694A1 (fr) * 2000-01-12 2001-07-13 Univ Rennes Antenne a cavite resonante ayant un faisceau conforme selon un diagramme de rayonnement predetermine
US6842148B2 (en) 2001-04-16 2005-01-11 Skycross, Inc. Fabrication method and apparatus for antenna structures in wireless communications devices
US6741212B2 (en) 2001-09-14 2004-05-25 Skycross, Inc. Low profile dielectrically loaded meanderline antenna
FR2830131B1 (fr) * 2001-09-24 2005-06-24 Centre Nat Rech Scient Antenne a large bande ou multi-bandes
WO2003034545A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Multifrequency microstrip patch antenna with parasitic coupled elements
AU2002350102A1 (en) * 2001-11-02 2003-05-19 Skycross, Inc. Dual band spiral-shaped antenna
US6597321B2 (en) 2001-11-08 2003-07-22 Skycross, Inc. Adaptive variable impedance transmission line loaded antenna
GB0204748D0 (en) * 2002-02-28 2002-04-17 Nokia Corp Improved antenna
US7436360B2 (en) * 2002-04-19 2008-10-14 Skycross, Inc. Ultra-wide band monopole antenna
US6917334B2 (en) * 2002-04-19 2005-07-12 Skycross, Inc. Ultra-wide band meanderline fed monopole antenna
AU2003273548A1 (en) * 2002-06-04 2003-12-19 Skycross, Inc. Wideband printed monopole antenna
US6812891B2 (en) * 2002-11-07 2004-11-02 Skycross, Inc. Tri-band multi-mode antenna
WO2004066437A1 (en) * 2003-01-24 2004-08-05 Fractus, S.A. Broadside high-directivity microstrip patch antennas
EP1593178A1 (de) * 2003-02-01 2005-11-09 Qinetiq Limited Phasengesteuerte gruppenantenne und verfahren zur gegenseitigen kopplungssteuerung zwischen elementen
JP2004320115A (ja) * 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd 複合アンテナ
DE10353686A1 (de) * 2003-11-17 2005-06-16 Robert Bosch Gmbh Symmetrische Antenne in Schichtbauweise
JP4169709B2 (ja) * 2004-02-16 2008-10-22 株式会社国際電気通信基礎技術研究所 アレーアンテナ装置
WO2005117202A1 (en) 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) An antenna panel, a mounting arrangement and an arrangement for compensating an array of several antenna panels
WO2005116686A2 (en) * 2004-05-28 2005-12-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for determining the spatial frequency of a signal
US7113135B2 (en) * 2004-06-08 2006-09-26 Skycross, Inc. Tri-band antenna for digital multimedia broadcast (DMB) applications
US7038624B2 (en) * 2004-06-16 2006-05-02 Delphi Technologies, Inc. Patch antenna with parasitically enhanced perimeter
US7061431B1 (en) 2004-07-30 2006-06-13 The United States Of America As Represented By The Secretary Of The Navy Segmented microstrip patch antenna with exponential capacitive loading
EP1784894A1 (de) 2004-08-31 2007-05-16 Fractus, S.A. Schlanke mehrbandantennengruppe für zellulare basisstationen
US7446710B2 (en) * 2005-03-17 2008-11-04 The Chinese University Of Hong Kong Integrated LTCC mm-wave planar array antenna with low loss feeding network
US7388556B2 (en) * 2005-06-01 2008-06-17 Andrew Corporation Antenna providing downtilt and preserving half power beam width
US20060284770A1 (en) * 2005-06-15 2006-12-21 Young-Min Jo Compact dual band antenna having common elements and common feed
ATE544194T1 (de) * 2005-10-14 2012-02-15 Fractus Sa Schlankes dreifachband-antennenarray für zellulare basisstationen
FR2894080B1 (fr) * 2005-11-28 2009-10-30 Alcatel Sa Antenne reseau a maillage irregulier et eventuelle redondance froide
JP4620018B2 (ja) * 2006-08-31 2011-01-26 日本電信電話株式会社 アンテナ装置
US20080129635A1 (en) * 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Method of operating a patch antenna in a higher order mode
US8009107B2 (en) * 2006-12-04 2011-08-30 Agc Automotive Americas R&D, Inc. Wideband dielectric antenna
US7834815B2 (en) * 2006-12-04 2010-11-16 AGC Automotive America R & D, Inc. Circularly polarized dielectric antenna
US7505002B2 (en) * 2006-12-04 2009-03-17 Agc Automotive Americas R&D, Inc. Beam tilting patch antenna using higher order resonance mode
US7872606B1 (en) * 2007-02-09 2011-01-18 Marvell International Ltd. Compact ultra wideband microstrip resonating antenna
GB2487019B (en) * 2007-05-08 2012-08-15 Scanimetrics Inc Ultra high speed signal transmission/reception
FR2939568B1 (fr) 2008-12-05 2010-12-17 Thales Sa Antenne a partage de sources et procede d'elaboration d'une antenne a partage de sources pour l'elaboration de multi-faisceaux
US20110159824A1 (en) * 2009-12-31 2011-06-30 Peter Kenington Active antenna array for a mobile communications network employing a first conductive layer and a second conductive layer
KR101124131B1 (ko) * 2010-08-12 2012-03-21 주식회사 에이스테크놀로지 패치 안테나
ITRM20100511A1 (it) * 2010-10-01 2012-04-02 Clu Tech Srl Antenna stampata ibrida ad elementi radianti multipli
EP3033804B1 (de) * 2013-08-16 2020-12-02 Intel Corporation Millimeterwellen-antennenstrukturen mit einem luftspaltschicht oder einer kavität
US9853359B2 (en) * 2013-09-26 2017-12-26 Intel Corporation Antenna integrated in a package substrate
JP2015092658A (ja) * 2013-09-30 2015-05-14 京セラサーキットソリューションズ株式会社 アンテナ基板
US20160104934A1 (en) * 2014-10-10 2016-04-14 Samsung Electro-Mechanics Co., Ltd. Antenna, antenna package, and communications module
TWI563736B (en) * 2015-07-20 2016-12-21 Quanta Comp Inc Mobile device
US10164338B2 (en) * 2015-08-25 2018-12-25 Qualcomm Incorporated Multiple antennas configured with respect to an aperture
JP6723470B2 (ja) * 2017-09-29 2020-07-15 三菱電機株式会社 アンテナ装置
WO2019068317A1 (en) 2017-10-04 2019-04-11 Huawei Technologies Co., Ltd. MULTIBAND ANTENNA SYSTEM
US10461428B2 (en) * 2018-02-23 2019-10-29 Qualcomm Incorporated Multi-layer antenna
US11411316B2 (en) 2018-03-30 2022-08-09 Tallysman Wireless Inc. Anti-jamming and reduced interference global positioning system receiver methods and devices
US10854978B2 (en) * 2018-04-23 2020-12-01 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus and antenna module
US11038283B2 (en) * 2018-09-20 2021-06-15 The Boeing Company Reconfigurable aperture-coupled patch antenna
KR102577295B1 (ko) * 2018-10-23 2023-09-12 삼성전자주식회사 다중 대역의 신호를 송수신하는 안테나 엘리먼트들이 중첩되어 형성된 안테나 및 이를 포함하는 전자 장치
JPWO2021054175A1 (de) * 2019-09-18 2021-03-25
CN112531356B (zh) * 2019-09-18 2022-05-03 北京小米移动软件有限公司 天线结构及移动终端
US11374327B2 (en) * 2020-03-30 2022-06-28 The Boeing Company Microstrip to microstrip vialess transition
WO2022105999A1 (en) * 2020-11-19 2022-05-27 Huawei Technologies Co., Ltd. A low profile device comprising layers of coupled resonance structures
CN118399069A (zh) * 2024-06-24 2024-07-26 中兴通讯股份有限公司 全向天线及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046530B (en) * 1979-03-12 1983-04-20 Secr Defence Microstrip antenna structure
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
FR2648626B1 (fr) * 1989-06-20 1991-08-23 Alcatel Espace Element rayonnant diplexant
US5075691A (en) * 1989-07-24 1991-12-24 Motorola, Inc. Multi-resonant laminar antenna

Also Published As

Publication number Publication date
DE69413882D1 (de) 1998-11-19
FR2706085A1 (fr) 1994-12-09
ES2125420T3 (es) 1999-03-01
DE69413882T2 (de) 1999-06-02
EP0627783A1 (de) 1994-12-07
FR2706085B1 (fr) 1995-07-07
US5497164A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
EP0627783B1 (de) Strahlende Mehrschichtenstruktur mit variabelem Strahlungsdiagramm
EP0598656B1 (de) Elementarstrahler für Gruppenantenne und solche Strahler enthaltende Baugruppe
EP2564466B1 (de) Kompaktes strahlungselement mit hohlraumresonatoren
EP0372451B1 (de) Multifrequenz-Strahlungsvorrichtung
EP2497153A1 (de) Doppelt polarisierte dielektrische resonatorantenne
EP0315141B1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
EP0542595A1 (de) Mikrostreifenleiterantenne, insbesondere für Fernsprechübertragungen von Satelliten
EP1690317B1 (de) Doppeltpolarisierte mehrband-gruppenantenne
FR2810164A1 (fr) Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
WO2001035491A1 (fr) Antenne imprimee bi-bande
EP2710676A1 (de) Strahlenelement für eine aktive gruppenantenne aus elementarfliesen
EP4012839A1 (de) Antennennetz mit gerichteter strahlung
EP0605338B1 (de) Streifenleitungsantenne mit zwei Polarisationen und entsprechende Vorrichtung zum Senden/Empfangen
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
EP4117117B1 (de) Antennenzelle mit sendenetz
WO1991018428A1 (fr) Antenne orientable plane, fonctionnant en micro-ondes
FR2992103A1 (fr) Structure integree tridimensionnelle comportant une antenne
WO1996008055A1 (fr) Antenne plaquee miniaturisee a double polarisation a tres large bande
EP0354076B1 (de) Antenne mit Mikrowellenenergieverteilung über zweiseitig geschirmte Streifenleitungen
EP0617480A1 (de) Strahlende Struktur mit variabler Richtcharakteristik
EP0831550B1 (de) Vielseitige Gruppenantenne
FR2705167A1 (fr) Antenne plaquée large bande à encombrement réduit, et dispositif d'émission/réception correspondant.
EP1475860A1 (de) Vorrichtung, die eine Antenne, einen Sensor oder eine elektromagnetische Sonde bildet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19950512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971014

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ESPACE

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981015

REF Corresponds to:

Ref document number: 69413882

Country of ref document: DE

Date of ref document: 19981119

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125420

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090521

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110512

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120607

Year of fee payment: 19

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130522

Year of fee payment: 20

Ref country code: GB

Payment date: 20130529

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130531

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69413882

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69413882

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140531