EP0597138B1 - Gasturbinen-Brennkammer - Google Patents

Gasturbinen-Brennkammer Download PDF

Info

Publication number
EP0597138B1
EP0597138B1 EP92119124A EP92119124A EP0597138B1 EP 0597138 B1 EP0597138 B1 EP 0597138B1 EP 92119124 A EP92119124 A EP 92119124A EP 92119124 A EP92119124 A EP 92119124A EP 0597138 B1 EP0597138 B1 EP 0597138B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
segments
cooling
burners
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92119124A
Other languages
English (en)
French (fr)
Other versions
EP0597138A1 (de
Inventor
Manfred Dr. Aigner
Raphael Urech
Hugo Wetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Priority to DE59208715T priority Critical patent/DE59208715D1/de
Priority to EP92119124A priority patent/EP0597138B1/de
Priority to US08/132,185 priority patent/US5373695A/en
Priority to KR1019930021695A priority patent/KR940011862A/ko
Priority to JP27936693A priority patent/JP3397858B2/ja
Publication of EP0597138A1 publication Critical patent/EP0597138A1/de
Application granted granted Critical
Publication of EP0597138B1 publication Critical patent/EP0597138B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the invention relates to a gas turbine combustion chamber according to the preamble of patent claim 1.
  • Combustion chambers of the type mentioned at the outset are known from EP-A1-387 532.
  • the front plate is formed by a single wall on which premixing burners of the double-cone type are arranged.
  • Gas turbine combustion chambers with air-cooled flame tubes are also known, for example from US 4,077,205 or US 3,978,662.
  • the flame tube is essentially constructed from wall parts which overlap in the turbine axial direction. On their side facing away from the combustion chamber, the wall parts each have a plurality of inlet openings distributed over the circumference, via which air is introduced into a distribution chamber arranged in the flame tube and communicating with the combustion chamber.
  • the respective flame tube In the cooling system there, the respective flame tube has a lip which extends over the slot through which the cooling air film emerges. This cooling air film should adhere to the wall of the flame tube in order to form a cooling barrier layer for it.
  • a combustion chamber for a rocket engine in which the combustion chamber inlet is equipped with a plurality of burners which are attached to a front plate, is known from FR-A-2570129.
  • damping chambers which are open on both sides and which communicate with the combustion chamber via passage pipes are arranged in each case in the area of the fuel injection.
  • the invention has for its object to significantly increase the soundproofing of a combustion chamber in a gas turbine combustion chamber of the type mentioned with minimal cooling air consumption by damping the thermo-acoustically fanned vibrations.
  • the advantage of the invention can be seen, inter alia, in the fact that the proximity of the Helmholtz damper to the combustion zones dampens the thermoacoustic vibrations occurring in the flame fronts particularly intensively.
  • the damping tubes in the Helmholtz dampers are designed to be interchangeable, and because the walls of the combustion chamber are provided with a manhole, the dampers can be matched to the vibration to be dampened in the combustion chamber without having to cover the machine.
  • the system essentially consists on the gas turbine side (1) of the rotor 11 bladed with rotor blades and the blade carrier 12 equipped with guide blades.
  • the blade carrier 12 is over projections hooked into corresponding receptacles in the turbine housing 13.
  • the exhaust housing 14 is flanged to the turbine housing 13.
  • the turbine housing 13 also includes the collecting space 15 for the compressed combustion air. From this collecting space, part of the combustion air passes through a perforated cover 30 in the direction of the arrow directly into the annular combustion chamber 3, which in turn enters the turbine inlet, i.e. flows upstream of the first guide row.
  • the compressed air arrives in the collecting space from the diffuser 22 of the compressor 2. Only the last four stages of the latter are shown.
  • the blading of the compressor and the turbine sit on the common shaft 11, the central axis of which represents the longitudinal axis 10 of the gas turbine unit.
  • the combustion chamber 3 is equipped at its head end with premix burners 20, as are known, for example, from EP-A1-387 532.
  • a premix burner shown only schematically in FIG. 2, is a so-called double-cone burner. It essentially consists of two hollow, conical partial bodies 26, 27 which are nested one inside the other in the direction of flow. The respective central axes of the two partial bodies are offset from one another. The adjacent walls of the two partial bodies in their longitudinal extent form tangential slots 28 for the combustion air, which in this way reaches the interior of the burner.
  • a fuel nozzle 29 for liquid fuel is arranged there. The fuel is injected into the hollow cone at an acute angle. The resulting conical liquid fuel profile is enclosed by the combustion air flowing in tangentially.
  • the concentration of the fuel is continuously reduced in the axial direction due to the mixing with the combustion air.
  • the burner can also be operated with gaseous fuel.
  • gaseous fuel for this purpose, in the area of the tangential slots in the walls of the two partial bodies provided in the longitudinal direction of the gas inflow openings.
  • the mixture formation with the combustion air thus begins in the zone of the inlet slots 28.
  • mixed operation with both types of fuel is also possible in this way.
  • a fuel concentration that is as homogeneous as possible is established over the loaded cross-section.
  • a defined dome-shaped return flow zone is created at the burner outlet, at the tip of which the ignition takes place.
  • the combustion gases reach very high temperatures, which places special demands on the combustion chamber walls to be cooled.
  • the annular combustion chamber extends downstream of the burner orifices up to the turbine inlet. It is limited both inside and outside by walls to be cooled, which are usually designed as self-supporting structures.
  • the present combustion chamber is equipped with 72 of the said burners 20. 3, which shows a quarter-circle section, shows the arrangement thereof.
  • Two burners are arranged radially one above the other on a front segment 31. 36 of these adjacent front segments form a closed circular ring, which in this way forms a heat shield.
  • the two burners from adjacent front segments are each radially offset. This means that the radially outer burner of every second front segment directly adjoins the outer ring wall of the combustion chamber, as can also be seen in FIG. 3.
  • the radially inner burners of the other front segments are therefore arranged in the immediate vicinity of the inner ring wall. This results in an uneven thermal load on the corresponding ring walls over the circumference.
  • a rinsed Helmholtz resonator 21 is now housed for soundproofing the combustion chamber.
  • a Helmholtz damper essentially consists of the actual resonance volume 50, an air inlet opening to the Helmholz volume, which is designed here as a feed pipe 51, and a damping pipe 52 opening into the combustion chamber interior. The purge air is drawn from the head space 49 by the damper.
  • the feed tubes 51 are dimensioned such that they cause a relatively high pressure drop for the air flow.
  • the damping tubes 52 allow the air to enter the interior of the combustion chamber with a low residual pressure drop.
  • the limitation of the pressure drop in the damping tubes results from the requirement that even with an uneven pressure distribution on the inside of the combustion chamber wall, an adequate air flow into the combustion chamber always remains guaranteed.
  • hot gas must not enter the Helmholtz resonator in the opposite direction at any point.
  • the choice of the size of the Helmholtz volume 50 results from the requirement that the phase angle between the fluctuations in the damping air mass flows through the supply and damping tubes should be greater than or equal to ⁇ / 2.
  • this requirement means that the volume should be at least so large that the Helmholtz frequency of the resonator, which is formed by the volume 50 and the openings 51 and 52, is at least the frequency of the combustion chamber vibration to be damped.
  • the volume of the Helmholtz resonator used is preferably at the lowest natural frequency of the combustion chamber is designed. It is also possible to choose an even larger volume. It is thereby achieved that a pressure fluctuation on the inside of the combustion chamber leads to a strongly opposite-phase fluctuation in the air mass flow, because the fluctuations in the damping air mass flows through the supply pipes and the damping pipes are no longer in phase.
  • the feed pipe 51 determines the pressure drop.
  • the speed at the end of the feed pipe is adjusted so that the dynamic pressure of the jet together with the losses corresponds to the pressure drop across the combustion chamber.
  • the average flow velocity in the damping tube in the present case of a gas turbine combustion chamber can typically be 2 to 4 m / s with an ideal design. So it is very small compared to the vibration amplitude, which means that the air particles move back and forth pulsating in the damping tube. Nevertheless, only enough air is allowed to flow through that a significant heating of the resonator is avoided. Heating by radiation from the area of the combustion chamber would result in the frequency not remaining stable. The flushing should therefore only dissipate the radiated heat.
  • the location of the damping is decisive for the stabilization of a thermoacoustic oscillation.
  • the greatest increase occurs when the reaction rate and the pressure disturbance oscillate in phase.
  • the strongest reaction rate usually occurs near the center of the combustion zone. Therefore, the highest fluctuation in the reaction rate will also be there, if one takes place.
  • the arrangement of the dampers at the radially outer or inner end of the front segments has a favorable effect, since in this way the respective damper is located in the middle of three burners.
  • the housing of the Helmholtz damper is screwed into the respective front segment 31 from the head space 49 by means of a hollow threaded pin 55.
  • the damping tube 52 protruding into the volume 50 is designed to be exchangeable. For this purpose, it penetrates the hollow threaded pin from the combustion chamber and is latched in the front segment by means of a bayonet lock 53.
  • Spring means 54 ensure that the bayonet catch on the front segment is positively locked.
  • the frequency spectrum is measured with Helmholtz dampers sealed with blind flanges.
  • the required length and inner diameter of the damping tubes can be calculated for a given damping volume.
  • the pipes determined in this way are then installed with the combustion chamber turned off. It goes without saying that several critical vibrations of different frequencies can also be damped in this way by installing different damper tubes.
  • the generally cooled walls of the combustion chamber must be provided with a manhole.
  • these walls are of a special kind in order not to impair the cooling.
  • the thermally highly loaded interior of the combustion chamber is divided into two zones, the walls of which are cooled in different ways.
  • a secondary zone 32 lying downstream and opening into the turbine inlet is delimited by a double-walled flame tube. It consists both on its inner ring 33 and on its outer ring 34 from a flangeless, welded sheet metal construction, which is held together by spacers, not shown. Both rings 33 and 34 are open at their turbine end and form the entrance there for the cooling air.
  • the annular space 35 between the double wall of the outer ring 34 draws the air directly from the collecting space 15, as can be seen in FIG. 1. With efficient convection cooling, the air flows in counterflow to the combustion chamber flow in the direction of the primary zone 36.
  • the annular space 37 between the double wall of the inner ring 33 is supplied with air from a hub diffuser 38.
  • This hub diffuser which connects to the compressor diffuser 22, is delimited on the one hand by a drum cover 24 and on the other hand by an annular shell 39.
  • the latter is connected to the drum cover 24 via ribs (not shown).
  • the air flows in the counterflow to the combustion chamber flow in the direction of the primary zone 36.
  • the cooling of the highly stressed primary zone walls is now carried out by means of individually cooled cooling segments 40. These cooling segments lined up in the circumferential direction and in the axial direction form their flow-limiting wall over the entire axial extent of the primary zone 36. Single cooling has the advantage of a low pressure drop.
  • the thermally highly stressed cooling segments 40 consist of a high-temperature, precision cast alloy. They are suspended in the circumferential direction with two feet 42 each provided with supporting teeth in corresponding grooves in a supporting structure, in a manner similar to how guide vane feet are fastened in blade carriers.
  • this support structure hereinafter referred to as segment carrier 43, consists of two cast half-shells with a horizontal parting plane and not shown claws with which it is supported in the turbine housing.
  • cooling segments 40 arranged side by side in the axial direction corresponds to the number of front segments 31, so that each front segment and a cooling segment is assigned to the burner 20 closest to the wall (FIG. 3).
  • a cooling segment is supplied with cooling air via a radially directed opening 46 which penetrates the segment carrier 43 and connects the collecting space 15 to one end of the cooling chamber 44 lying in the circumferential direction.
  • the outlet opening 47 At the opposite end of this same cooling chamber is the outlet opening 47 in the segment carrier. Both the opening 46 and the outlet opening 47 can either be individual bores or elongated holes that extend in the axial direction over a large part of the segment width.
  • the outlet opening 47 opens into a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
  • a channel 48 which penetrates the segment carrier 43 in its entire axial extent and is open on both sides.
  • this outer ring is flanged to the segment carrier, the contour of the inner wall being matched to the contour of the cooling segments.
  • the channel 48 opens against a head space 49, which is delimited by the cover 30 and the front segments 31.
  • the cover 30 is also flanged to the segment carrier 43.
  • These axial channels 43 serve to jointly guide the segment cooling air and the cooling air acting on the secondary zone.
  • a about yourself part 143 of the upper half of the segment carrier 43 which extends several cooling segments and forms the above-mentioned manhole, is designed to be removable together with the cooling segments 40 suspended therein.
  • This detachable part 143 of the segment carrier comprises two cooling segments 40 in the circumferential direction and in the axial direction (shown hatched in FIGS. 2 and 3).
  • the part 143 closing the manhole is screwed to the segment carrier 43 by means of a bracket 45 projecting on all sides. It goes without saying that a part of the turbine housing 13 which corresponds to the size of the manhole must also be opened and is therefore designed as an end cover 113.

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Gasturbinenbrennkammer gemäss Oberbegriff des Patentanspruchs 1.
  • Stand der Technik
  • Für die schadstoffarme Verbrennung eines gasförmigen oder flüssigen Brennstoffs hat sich in letzter Zeit die sogenannte "magere Vormischverbrennung" durchgesetzt. Dabei werden der Brennstoff und die Verbrennugsluft möglichst gleichmässig vorgemischt und erst dann der Flamme zugeführt. Wird dies mit hohem Luftüberschuss vollzogen, wie dies bei Gasturbinenanlagen üblich ist, so entstehen relativ niedrige Flammentemperaturen, was wiederum zu der gewünschten, geringen Bildung von Stickoxyden führt.
  • Brennkammern der eingangs genannten Art sind bekannt aus der EP-A1-387 532. Die Frontplatte wird dabei von einer einzigen Wand gebildet, an welcher Vormischbrenner der Doppelkegelbauart angeordnet sind.
  • Moderne hochbelastete Gasturbinen erfordern zunehmend komplexere und wirkungsvollere Kühlmethoden. Um niedrige NOx-Emissionen zu erzielen, wird versucht, einen zunehmenden Anteil der Luft durch die Brenner selbst zu leiten. Dieser Zwang zur Reduktion der Kühlluftströme ergibt sich aber auch aus Gründen, die mit der zunehmenden Heissgastemperatur beim Eintritt einer modernen Gasturbine in Zusammenhang stehen. Weil auch die Kühlung der übrigen Anlagenteile wie Beschaufelung, Maschinenwelle etc. immer schärferen Anforderungen genügen muss, und weil die Heissgastemperaturen, die im Interesse eines hohen thermischen Wirkungsgrades immer weiter gesteigert werden, auch direkt zu einer stark erhöhten thermischen Belastung der Brennkammerwände führen, muss mit der Brennkammerkühllluft sehr sparsam umgegangen werden. Diese Anforderungen führen in aller Regel zu mehrstufigen Kühltechniken, wobei der Druckverlustbeiwert, d.h. der durch die Kühlung verursachte Gesamtdruckabfall dividiert durch einen Staudruck beim Kühllufteintritt in die Brennkammer, recht hoch sein kann.
  • Gasturbinenbrennkammern mit luftgekühlten Flammrohren sind ebenfalls bekannt, bspw. aus der US 4,077,205 oder der US 3,978,662. Das Flammrohr ist im wesentlichen aus sich in Turbinenachsrichtung überlappenden Wandteilen aufgebaut. Die Wandteile weisen an ihrer dem Verbrennungsraum abgewandten Seite jeweils mehrere, über dem Umfang verteilte Einlassöffnungen auf, über die Luft in einen im Flammrohr angeordneten und mit dem Verbrennungsraum kommunizierenden Verteilraum eingeleitet wird. Beim dortigen Kühlsystem weist das jeweilige Flammrohr eine Lippe auf, die sich über den Schlitz erstreckt, durch den der Kühlluftfilm austritt. Dieser Kühlluftfilm soll an der Wand des Flammrohres haften, um für dieses eine kühlende Sperrschicht zu bilden.
  • Die oben erwähnten bekannten Gasturbinenbrennkammern weisen nunmehr den Nachteil auf, dass der Luftverbrauch für Kühlzwecke viel zu hoch ist und dass infolge der Einspeisung der Kühlluft in das Flammrohrinnere stromabwärts der Flamme diese Luft dem eigentlichen Verbrennungsprozess nicht zur Verfügung steht. Die Brennkammer kann demzufolge nicht mit der erforderlichen hohen Luftüberschusszahl gefahren werden.
  • Bei konventionellen Brennkammern spielt die Kühlung in der Regel eine äusserst wichtige Rolle für die Schalldämpfung der Brennkammer. Die oben erwähnte Reduktion des Kühlluftmassenstroms gepaart mit einem stark erhöhten Druckverlustbeiwert der gesamten Brennkammerwandkühlung führt nun zu einer fast völligen Unterdrückung der Schalldämpfung. Die Folge dieser Entwicklung ist ein zunehmender Vibrationspegel in modernen LOW-NOx-Brennkammern.
  • Eine Brennkammer für einen Raketenmotor, bei welcher der Brennkammereintritt mit einer Mehrzahl von Brennern bestückt ist, die an einer Frontplatte befestigt sind, ist bekannt aus der FR-A-2570129. Zur Schwingungsdämpfung sind jeweils im Bereich der Brennstoffeindüsung beidseitig offene Dämpfungskammern angeordnet, die über Durchtrittsrohre mit dem Brennraum kommunizieren.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, bei einer Gasturbinenbrennkammer der eingangs genannten Art bei minimalstem Kühlluftverbrauch durch Dämpfung der thermoakustisch angefachten Schwingungen die Schalldämpfung einer Brennkammer wesentlich zu verstärken.
  • Erfindungsgemäss wird diese Aufgabe mit den Merkmalen der Patentansprüche gelöst.
  • Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass durch die Nähe des Helmholtzdämpfers zu den Verbrennungszonen die in den Flammenfronten entstehenden thermoakustischen Schwingungen besonders intensiv gedämpft werden.
  • Dadurch, dass die Dämpfungsrohre in den Helmholtzdämpfern austauschbar gestaltet sind, und dass hierzu die Wandungen des Verbrennungsraums mit einem Mannloch versehen sind, können die Dämpfer auf die im Brennraum festgestellte, zu dämpfende Schwingung abgestimmt werden, ohne die Maschine abdecken zu müssen.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer einwelligen axialdurchströmten Gasturbine dargestellt.
    Es zeigen:
  • Fig. 1
    einen Teillängsschnitt der Gasturbine;
    Fig. 2
    ein vergrösserter Ausschnitt der Primärzone der Brennkammer;
    Fig. 3
    einen Teilquerschnitt durch die Primärzone der Brennkammer nach Linie 3-3 in Fig. 2;
    Fig. 4
    einen Längsschnitt eines Helmholtzresonators.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt sind von der Anlage beispielsweise das vollständige Abgasgehäuse mit Abgasrohr und Kamin sowie die Eintrittspartien des Verdichterteils. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • Die Anlage, von der in Fig. 1 nur die oberhalb der Maschinenachse 10 liegende Hälfte dargestellt ist, besteht gasturbinenseitig (1) im wesentlichen aus dem mit Laufschaufeln beschaufelten Rotor 11 und dem mit Leitschaufeln bestückten Schaufelträger 12. Der Schaufelträger 12 ist über Vorsprünge in entsprechenden Aufnahmen im Turbinengehäuse 13 eingehängt. An das Turbinengehäuse 13 ist das Abgasgehäuse 14 angeflanscht.
  • Im dargestellten Fall umfasst das Turbinengehäuse 13 ebenfalls den Sammelraum 15 für die verdichtete Brennluft. Aus diesem Sammelraum gelangt ein Teil der Brennluft durch eine gelochte Abdeckung 30 in Pfeilrichtung direkt in die Ringbrennkammer 3 ein, welche ihrerseits in den Turbineneinlass, d.h. stromaufwärts der ersten Leitreihe mündet. In den Sammelraum gelangt die verdichtete Luft aus dem Diffusor 22 des Verdichters 2. Von letzterem sind lediglich die vier letzten Stufen dargestellt. Die Laufbeschaufelung des Verdichters und der Turbine sitzen auf der gemeinsamen Welle 11, Deren Mittelachse stellt die Längsachse 10 der Gasturbineneinheit dar.
  • Die Brennkammer 3 ist an ihrem Kopfende mit Vormischbrennern 20 bestückt, wie sie beispielsweise aus der EP-A1-387 532 bekannt sind. Bei einem solchen in Fig. 2 nur schematisch dargestellten Vormischbrenner handelt es sich um einen sogenannte Doppelkegelbrenner. Im wesentlichen besteht er aus zwei hohlen, kegelförmigen Teilkörpern 26, 27 die in Strömungsrichtung ineinandergeschachtelt sind. Dabei sind die jeweiligen Mittelachsen der beiden Teilkörper gegeneinander versetzt. Die benachbarten Wandungen der beiden Teilkörper bilden in deren Längserstreckung tangentiale Schlitze 28 für die Verbrennungsluft, die auf diese Weise in das Brennerinnere gelangt. Dort ist eine Brennstoffdüse 29 für flüssigen Brennstoff angeordnet. Der Brennstoff wird in einem spitzen Winkel in die Hohlkegel eingedüst. Das entstehende kegelige Flüssigbrennstoffprofil wird von der tangential einströmenden Verbrennungsluft umschlossen. In axialer Richtung wird die Konzentration des Brennstoffes fortlaufend infolge der Vermischung mit der Verbrennungsluft abgebaut. Der Brenner kann ebenfalls mit gasförmigem Brennstoff betrieben werden. Hierzu sind im Bereich der tangentialen Schlitze in den Wandungen der beiden Teilkörper in Längsrichtung verteilte Gaseinströmöffnungen vorgesehen. Im Gasbetrieb beginnt die Gemischbildung mit der Verbrennungsluft somit bereits in der Zone der Eintrittsschlitze 28. Es versteht sich, dass auf diese Weise auch ein Mischbetrieb mit beiden Brennstoffarten möglich ist. Am Brenneraustritt stellt sich eine möglichst homogene Brennstoffkonzentration über dem beaufschlagten kreiringförmigen Querschnitt ein. Es entsteht am Brenneraustritt eine definierte kalottenförmige Rückströmzone, an deren Spitze die Zündung erfolgt.
  • Anlässlich der Verbrennung erreichen die Verbrennungsgase sehr hohe Temperaturen, was besondere Anforderungen an die zu kühlenden Brennkammerwandungen darstellt. Dies gilt umsomehr, wenn sogenannte Low NOx-Brenner, beispielsweise die hier zugrundegelegten Vormischbrenner zur Anwendung gelangen, welche bei relativ bescheidenen Kühlluftmengen grosse Flammrohroberflächen erfordern. Stromabwärts der Brennermündungen erstreckt sich der ringförmige Verbrennungsraum bis zum Turbineneintritt. Er ist sowohl innen als auch aussen begrenzt durch zu kühlende Wandungen, welche in der Regel als selbsttragende Strukturen konzipiert sind.
  • Die vorliegende Brennkammer ist mit 72 der genannten Brenner 20 bestückt. Aus Fig. 3, welches einen Viertelkreisausschnitt zeigt, ist deren Anordnung erkennbar. Je zwei Brenner sind radial übereinanderliegend auf einem Frontsegment 31 angeordnet. 36 von diesen aneinanderliegenden Frontsegmenten bilden einen geschlossenen Kreisring, welcher auf diese Art einen Hitzeschild bildet. Die beiden Brenner von benachbarten Frontsegmenten sind jeweils radial versetzt. Dies bedeutet, dass der radial äussere Brenner jedes zweiten Frontsegmentes unmittelbar an die äussere Ringwand der Brennkammer angrenzt, wie dies auch in Fig. 3 erkennbar ist. Die radial inneren Brenner der andern Frontsegmente sind demnach in unmittelbarer Nähe der inneren Ringwand angeordnet. Hieraus ergibt sich eine ungleichmässige thermische Belastung der entsprechenden Ringwände über dem Umfang.
  • Am freien, nicht mit einem Brenner belegten Ende jedes Frontsegmentes 31 ist nunmehr zur Schalldämpfung der Brennkammer ein gespülter Helmholtzresonator 21 untergebracht. Gemäss Fig. 4 besteht ein socher Helmholtzdämpfer im wesentlichen aus dem eigentichen Resonanzvolumen 50, einer Lufteinlasssöffnung zum Helmholzvolumen, die hier als Zuführrohr 51 ausgebildet ist, sowie einem in das Brennkammerinnere mündenden Dämpfungsrohr 52. Die Spülluft bezieht der Dämpfer aus dem Kopfraum 49.
  • Zur Funktionsfähigkeit des Helmholtzresonator sind die Zuführrohre 51 so dimensioniert, dass sie für die Luftströmung einen relativ hohen Druckabfall verursachen. Durch die Dämpfungsrohre 52 hingegen gelangt die Luft bei niedrigem Restdruckabfall in das Brennkammerinnere. Die Begrenzung des Druckabfalls in den Dämpfungsrohren ergibt sich aus der Forderung, dass auch bei ungleichmässiger Druckverteilung auf der Innenseite der Brennkammerwand stets eine ausreichende Luftströmung in die Brennkammer hinein gewährleistet bleibt. Selbstverständlich darf an keiner Stelle Heissgas in umgekehrter Richtung in das Helmholtzresonator eindringen.
  • Die Wahl der Grösse des Helmholtzvolumens 50 ergibt sich aus der Forderung, dass der Phasenwinkel zwischen den Schwankungen der Dämpfungsluft-Massenströme durch die Zufuhr- und Dämpfungsrohre grösser oder gleich π/2 sein soll. Für eine harmonische Schwingung mit vorgegebener Frequenz auf der Innenseite der Brennkammerwand bedeutet diese Forderung, dass das Volumen mindestens so gross sein soll, dass die Helmholtz-Frequenz des Resonators, der durch das Volumen 50 und die Öffnungen 51 und 52 gebildet wird, mindestens die Frequenz der zu dämpfenden Brennkammerschwingung erreicht. Daraus folgt ausserdem, dass das Volumen des verwendeten Helmholtzresonators vorzugsweise auf die tiefste Eigenfrequenz des Brennraumes ausgelegt wird. Möglich ist auch die Wahl eines noch grösseren Volumens. Dadurch wird erreicht, dass eine Druckschwankung auf der Innenseite des Brennraumes zu einer stark gegenphasigen Schwankung des Luftmassenstromes führt, weil ja jetzt die Schwankungen der Dämpfungsluft-Massenströme durch die Zuführrohre und die Dämpfungsrohre nicht mehr phasengleich sind.
  • Das Zuführrohr 51 bestimmt den Druckabfall. Die Geschwindigkeit am Ende des Zuführrohres stellt sich so ein, dass der dynamische Druck des Strahles zusammen mit den Verlusten dem Druckabfall über der Brennkammer entspricht. Die mittlere Strömungsgeschwindigkeit im Dämpfungsrohr kann im vorliegenden Fall einer Gasturbinenbrennkammer typisch 2 bis 4 m/s betragen bei idealer Auslegung. Sie ist also sehr klein im Vergleich zur Schwingungsamplitude, was bedeutet, dass die Luftteilchen sich im Dämpfungsrohr pulsierend vorwärts und rückwärts bewegen. Dennoch wird nur gerade soviel Luft durchströmen lassen, dass ein nennenswertes Aufheizen des Resonators vermieden wird. Eine Aufheizung durch Strahlung aus dem Bereich der Brennkammer hätte zur Folge, dass die Frequenz nicht stabil bleibt. Die Durchspülung soll deshalb lediglich die eingestrahlte Wärmemenge abführen.
  • Entscheidend für die Stabilisierung einer thermoakustischen Schwingung ist der Ort der Dämpfung. Stärkste Anfachung tritt dann auf, wenn die Reaktionsrate und die Druckstörung in Phase schwingen. Die stärkste Reaktionsrate tritt in der Regel in der Nähe des Zentrums der Verbrennungszone auf. Deshalb wird auch dort die höchste Reaktionsratenschwankung sein, falls eine solche stattfindet. Als günstig wirkt sich hierbei die vorliegende Anordnung der Dämpfer am radial äusseren respektiv inneren Ende der Frontsegmente aus, da auf diese Art der jeweilige Dämpfer sich inmitten von drei Brennern befindet.
  • Das Gehäuse des Helmholtzdämpfers ist vom Kopfraum 49 her mittels eines hohlen Gewindezapfens 55 in dem jeweiligen Frontsegment 31 eingeschraubt. Das in das Volumen 50 hineinragende Dämpfungsrohr 52 ist austauschbar ausgebildet. Hierzu durchdringt es den hohlen Gewindezapfen vom Brennraum her und ist im Frontsegment mittels eines Bajonettverschluss 53 eingeklinkt. Federmittel 54 sorgen für einen kraftschlüssigen Anschlag des Bajonettverschluss am Frontsegment.
  • Anlässlich der Inbetriebnahme der Brennkammer wird bei mit Blindflanschen verschlossenen Helmholtzdämpfern das Frequenzspektrum gemessen. Anhand der zu dämpfenden Schwingung lässt sich bei vorgegebenem Dämpfungsvolumen die erforderliche Länge und Innendurchmesser der Dämpfungsrohre errechnen. Die derart ermittelten Rohre werden in der Folge bei abgestellter Brennkammer montiert. Es versteht sich, dass auf diese Weise auch mehrere kritische Schwingungen verschiedener Frequenz durch den Einbau von unterschiedlichen Dämpferrohren gedämpft werden können.
  • Um nun von aussen zu den Helmholtzdämpfern zu gelangen, müssen die in der Regel gekühlten Wandungen des Verbrennungsraums mit einem Mannloch versehen sein. Diese Wandungen sind im vorliegenden Fall von besonderer Art, um die Kühlung nicht zu beeinträchtigen.
  • Das thermisch hochbelastete Brennkammerinnere ist nämlich in zwei Zonen unterteilt, deren Wandungen auf unterschiedliche Art gekühlt werden.
  • Eine stromabwärts liegende und in den Turbineneintritt mündende Sekundärzone 32 ist von einem doppelwandigen Flammrohr begrenzt. Es besteht sowohl an seinem Innenring 33 als auch an seinem Aussenring 34 aus einer flanschlosen, geschweissten Blechkonstruktion, welche über nichtgezeigte Distanzstücke zusammengehalten ist. Beide Ringe 33 und 34 sind an ihrem turbinenseitigen Ende offen und bilden dort den Eintritt für die Kühlluft. Der Ringraum 35 zwischen der Doppelwand des Aussenringes 34 bezieht die Luft direkt aus dem Sammelraum 15, wie aus Fig. 1 erkennbar ist. Unter Ausübung einer effizienten Konvektionskühlung strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36. Der Ringraum 37 zwischen der Doppelwand des Innenringes 33 wird mit Luft aus einem Nabendiffusor 38 versorgt. Dieser Nabendiffusor, welcher an den Verdichterdiffusor 22 anschliesst, wird begrenzt einerseits von einer Trommelabdeckung 24 und andererseits von einer Ringschale 39. Letztere ist über nicht dargestellte Rippen mit der Trommelabdeckung 24 verbunden. Auch in diesem Ringraum 37 strömt die Luft im Gegenstrom zur Brennkammerströmung in Richtung Primärzone 36.
  • Die Kühlung der hochbelasteten Primärzonen-Wandungen wird nun mittels einzeln gekühlter Kühlsegmente 40 durchgeführt. Diese in Umfangsrichtung und in Axialrichtung aneinandergereihten Kühlsegmente bilden über die ganze axiale Erstreckung der Primärzone 36 deren strömungsbegrenzende Wandung. Die Einzelkühlung hat den Vorteil des geringen Druckabfalls.
  • Die thermisch hochbelasteten Kühlsegmente 40 bestehen aus einer hochwarmfesten Präzisionsgusslegierung. Sie sind in Umfangsrichtung mit je zwei mit Tragzacken versehenen Füssen 42 in entsprechenden Nuten in einer Tragstruktur eingehängt, ähnlich wie beispielsweise Leitschaufelfüsse in Schaufelträgern befestigt sind. Ebenfalls ähnlich wie Schaufelträger besteht diese Tragstruktur, im folgenden Segmentträger 43 genannt, aus zwei gegossenen Halbschalen mit horizontaler Trennebene und nichtgezeigten Pratzen, mit welchen sie im Turbinengehäuse abgestützt ist.
  • In axialer Richtung sind auf diese Weise drei solche Kühlsegmente nebeneinander angeordnet (Fig.2). In Umfangsrichtung entspricht die Anzahl nebeneinandergereihter Kühlsegmente 40 der Anzahl Frontsegmente 31, so dass jedem Frontsegment und dem der Wand nächstliegendem Brenner 20 ein Kühlsegment zugeordnet ist (Fig. 3).
  • Die Anspeisung eines Kühlsegmentes mit Kühlluft erfolgt über eine radialgerichtete Öffnung 46, welche den Segmentträger 43 durchdringt und den Sammelraum 15 mit einem in Umfangsrichtung liegenden Ende der Kühlkammer 44 verbindet. Am gegenüberliegenden Ende dieser gleichen Kühlkammer befindet sich die Auslassöffnung 47 im Segmentträger. Sowohl die Öffnung 46 als auch die Auslassöffnung 47 können entweder Einzelbohrungen oder Langlöcher sein, die sich in Axialrichtung über einen Grossteil der Segmentbreite erstrecken.
  • Die Auslassöffnung 47 mündet in einen Kanal 48, der den Segmentträger 43 in seiner ganzen axialen Erstreckung durchdringt und beidseitig offen ist. Turbinenseitig öffnet er gegen den Ringraum 35 zwischen der Doppelwand des Aussenringes 34. Wie in Fig. 2 schematisch angedeutet, ist dieser Aussenring am Segmentträger angeflanscht, wobei die Kontur der Innenwand an die Kontur der Kühlsegmente angepasst ist. Brennerseitig öffnet der Kanal 48 gegen einen Kopfraum 49, welcher von der Abdeckung 30, und den Frontsegmenten 31 begrenzt ist. Die Abdeckung 30 ist ebenfalls am Segmentträger 43 angeflanscht.
  • Diese axialen Kanäle 43, von denen je einer einem Segment in Umfangsrichtung zugeordnet ist, dienen somit der gemeinsamen Führung der Segment-Kühlluft und der die Sekundärzone beaufschlagenden Kühlluft.
  • Zur Kühlung der inneren Wandung der Primärzone werden die gleichen Massnahmen getroffen, wie dies in Fig. 3 anhand der Kühlsegmente 140 angedeutet ist.
  • In den Fig. 2 und 3 ist nunmehr dargestellt, wie der Zugang in das Brennkammerinnere und insbesondere zu den Dämpfungsrohren der Helmholzresonatoren ermöglicht ist. Ein sich über mehrere Kühlsegmente erstreckender, das obengenannte Mannloch bildender Teil 143 der oberen Hälfte des Segmentträgers 43 ist zusammen mit den darin eingehängten Kühlsegmenten 40 herausnehmbar gestaltet. Dieser lösbare Teil 143 des Segmentträgers umfasst in Umfangsrichtung und in Axialrichtung je zwei Kühlsegmente 40 (in den Fig. 2 und 3 schraffiert dargestellt). Mittels einem allseits herauskragendem Bügel 45 ist der das Mannloch verschliessende Teil 143 mit dem Segmentträger 43 verschraubt. Es versteht sich, dass ein der Grösse des Mannlochs entsprechender Teil des Turbinengehäuses 13 ebenfalls geöffnet werden muss und demzufolge als Abschlussdeckel 113 gestaltet ist.
  • Bezugszeichenliste
  • 1
    Gasturbine
    2
    Verdichter
    3
    Brennkammer
    10
    Maschinenachse
    11
    Rotor
    12
    Schaufelträger
    13
    Turbinengehäuse
    113
    Abschlussdeckel von 13
    14
    Abgasgehäuse
    15
    Sammelraum
    20
    Brenner
    21
    Helmholtzdämpfer
    22 23
    Diffusor von 2
    24 25
    Trommelabdeckung
    26
    Teilkörper von 20
    27
    Teilkörper von 20
    28
    tangentialer Schlitz
    29
    Brennstoffdüse
    30
    Abdeckung
    31
    Frontsegment
    32
    Sekundärzone
    33
    Innenring von 32
    34
    Aussenring von 32
    35
    Ringraum von 34
    36
    Primärzone
    37
    Ringraum von 33
    38
    Nabendiffusor
    39
    Ringschale
    40, 140
    Kühlsegment
    42
    Fuss
    43
    Segmentträger
    143
    lösbarer Teil von 43
    44
    Kühlkammer
    45
    Bügel
    46
    Öffnung
    47
    Auslassöffnung
    48
    Kanal
    49
    Kopfraum
    50
    Resonanzvolumen
    51
    Zuführrohr
    52
    Dämpfungsrohr
    53
    Bajonettverschluss
    54
    Federmittel
    55
    hohler Gewindezapfen

Claims (4)

  1. Gasturbinenbrennkammer mit einem ringförmigen Verbrennungsraum (32, 36), dessen Wandungen sich vom Brennkammereintritt bis zum Eintritt der Gasturbine (1) erstrecken, und bei der der Brennkammereintritt mit einer Mehrzahl von in Umfangsrichtung gleichmässig verteilten Brennern (20) bestückt ist, die an einer Frontplatte befestigt sind,
    dadurch gekennzeichnet,
    dass im Bereich der Brenner (20) gespülte, aus Zuführrohr (51), Resonanzvolumen (50) und Dämpfungsrohr (52) bestehende Helmholtzdämpfer (21) angeordnet sind, wobei die Dämpfungsrohre (52) in das Brennkammerinnere münden und von dort aus austauschbar gestaltet sind, wozu die Wandungen des Verbrennungsraums mit einem Mannloch versehen sind.
  2. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet,
    dass die Frontplatte aus mehreren in Umfangsrichtung zu einem Kreisring aneinandergereihten Frontsegmenten (31) besteht, dass je zwei Brenner (20) radial übereinanderliegend auf einem Frontsegment (31) befestigt sind, und dass die Brenner von jeweils benachbarten Frontsegmenten in der Radialen gegeneinander versetzt sind, wobei die Helmholtzdämpfer (21) auf der einen Hälfte der Frontsegmente radial oberhalb der Brenner und auf der anderen Hälfte der Frontsegmente radial unterhalb der Brenner angeordnet sind.
  3. Gasturbinenbrennkammer nach Anspruch 1, dadurch gekennzeichnet,
    - dass in einer Primärzone (36) des Verbrennungsraums eine Mehrzahl von einzeln gekühlten Kühlsegmenten (40) die strömungsbegrenzende Wandung bilden, wobei die Kühlsegmente in einem aus zwei Halbschalen mit horizontaler Trennebene bestehendem Segmentträger (43) eingehängt sind, welcher Segmentträger die äussere Begrenzung der Primärzone gegen einen die verdichtete Brennluft führenden Sammelraum (15) bildet,
    - dass eine stromabwärts liegende Sekundärzone (32) von einem doppelwandigen Flammrohr (33, 34) begrenzt ist, dessen turbinenseitiges Ende offen ist und den Eintritt für die Kühlluft der Sekundärzone bildet,
    - und dass die Kühlluft aus der Primärzone (36) und aus der Sekundärzone (32) gemeinsam dem Brennereintritt zugeführt werden, wozu im Segmentträger (43) mit dem Brennereintritt kommunizierende axiale Kanäle (48) angeordnet sind,
    - und dass ein sich über mehrere Kühlsegmente erstreckender, das Mannloch bildende Teil (143) der oberen Hälfte des Segmentträgers (43) mit den darin eingehängten Kühlsegmenten (40) lösbar gestaltet ist.
  4. Gasturbinenbrennkammer nach Anspruch 3,
    - dass in Umfangsrichtung die Anzahl der aneinandergereihten Kühlsegmente (40) der Anzahl Frontsegmente (31) entspricht und dass in Axialrichtung mindestens drei Kühlsegmente nebeneinander angeordnet sind,
    - und dass der lösbare Teil (143) des Segmentträgers (43) in Umfangsrichtung und in Axialrichtung je zwei Kühl segmente umfasst.
EP92119124A 1992-11-09 1992-11-09 Gasturbinen-Brennkammer Expired - Lifetime EP0597138B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59208715T DE59208715D1 (de) 1992-11-09 1992-11-09 Gasturbinen-Brennkammer
EP92119124A EP0597138B1 (de) 1992-11-09 1992-11-09 Gasturbinen-Brennkammer
US08/132,185 US5373695A (en) 1992-11-09 1993-10-06 Gas turbine combustion chamber with scavenged Helmholtz resonators
KR1019930021695A KR940011862A (ko) 1992-11-09 1993-10-19 가스 터빈 연소실
JP27936693A JP3397858B2 (ja) 1992-11-09 1993-11-09 ガスタービンの燃焼室

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP92119124A EP0597138B1 (de) 1992-11-09 1992-11-09 Gasturbinen-Brennkammer

Publications (2)

Publication Number Publication Date
EP0597138A1 EP0597138A1 (de) 1994-05-18
EP0597138B1 true EP0597138B1 (de) 1997-07-16

Family

ID=8210218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92119124A Expired - Lifetime EP0597138B1 (de) 1992-11-09 1992-11-09 Gasturbinen-Brennkammer

Country Status (5)

Country Link
US (1) US5373695A (de)
EP (1) EP0597138B1 (de)
JP (1) JP3397858B2 (de)
KR (1) KR940011862A (de)
DE (1) DE59208715D1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370863B2 (en) 1998-07-27 2002-04-16 Asea Brown Boveri Ag Method of operating a gas-turbine chamber with gaseous fuel
EP1235033A2 (de) 2001-02-22 2002-08-28 ALSTOM (Switzerland) Ltd Verfahren zum Betrieb einer Ringbrennkammer sowie eine Ringbrennkammer
US6694745B2 (en) 2001-06-22 2004-02-24 Alstom Technology Ltd Method for running up a gas turbine plant
EP1655468A2 (de) 2004-11-03 2006-05-10 ALSTOM Technology Ltd Brennstoffdrosselventil zum Betreiben einer Brenneranordnung einer Gasturbine sowie Brenneranordnung mit Brennstoffdrosselventil
DE102006053278A1 (de) * 2006-11-03 2008-05-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
EP2474784A1 (de) 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Verbrennungssystem für eine Gasturbine mit einem Resonator
DE102005062284B4 (de) 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Brennkammer für eine Gasturbine

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4411624A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
US5644918A (en) * 1994-11-14 1997-07-08 General Electric Company Dynamics free low emissions gas turbine combustor
US5685157A (en) * 1995-05-26 1997-11-11 General Electric Company Acoustic damper for a gas turbine engine combustor
DE19523094A1 (de) * 1995-06-26 1997-01-02 Abb Management Ag Brennkammer
DE19640980B4 (de) * 1996-10-04 2008-06-19 Alstom Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
DE59709276D1 (de) * 1997-07-15 2003-03-13 Alstom Switzerland Ltd Schwingungsdämpfende Brennkammerwandstruktur
DE59709155D1 (de) * 1997-07-15 2003-02-20 Alstom Switzerland Ltd Vorrichtung zur Dämpfung von Brennkammerschwingungen
US6464489B1 (en) * 1997-11-24 2002-10-15 Alstom Method and apparatus for controlling thermoacoustic vibrations in a combustion system
SE9802707L (sv) 1998-08-11 2000-02-12 Abb Ab Brännkammaranordning och förfarande för att reducera inverkan av akustiska trycksvängningar i en brännkammaranordning
EP0990851B1 (de) 1998-09-30 2003-07-23 ALSTOM (Switzerland) Ltd Brennkammer für eine Gasturbine
DE19851636A1 (de) * 1998-11-10 2000-05-11 Asea Brown Boveri Dämpfungsvorrichtung zur Reduzierung der Schwingungsamplitude akustischer Wellen für einen Brenner
US6351947B1 (en) 2000-04-04 2002-03-05 Abb Alstom Power (Schweiz) Combustion chamber for a gas turbine
DE10026121A1 (de) 2000-05-26 2001-11-29 Alstom Power Nv Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer
US6530221B1 (en) * 2000-09-21 2003-03-11 Siemens Westinghouse Power Corporation Modular resonators for suppressing combustion instabilities in gas turbine power plants
DE10058688B4 (de) * 2000-11-25 2011-08-11 Alstom Technology Ltd. Dämpferanordnung zur Reduktion von Brennkammerpulsationen
JP3962554B2 (ja) * 2001-04-19 2007-08-22 三菱重工業株式会社 ガスタービン燃焼器及びガスタービン
CA2399534C (en) * 2001-08-31 2007-01-02 Mitsubishi Heavy Industries, Ltd. Gasturbine and the combustor thereof
KR100804951B1 (ko) * 2001-11-27 2008-02-20 주식회사 포스코 가스터빈 연소기의 충격흡수장치
DE50212743D1 (de) 2002-01-14 2008-10-16 Alstom Technology Ltd Brenneranordnung für die ringförmige brennkammer einer gasturbine
CN100523615C (zh) 2002-01-16 2009-08-05 阿尔斯通技术有限公司 用于燃气轮机的燃烧室
EP1342953A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Gasturbine
EP1342952A1 (de) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Brenner, Verfahren zum Betrieb eines Brenners und Gasturbine
WO2004051063A1 (ja) * 2002-12-02 2004-06-17 Mitsubishi Heavy Industries, Ltd. ガスタービン燃焼器、及びこれを備えたガスタービン
GB2396687A (en) * 2002-12-23 2004-06-30 Rolls Royce Plc Helmholtz resonator for combustion chamber use
GB0305025D0 (en) * 2003-03-05 2003-04-09 Alstom Switzerland Ltd Method and device for efficient usage of cooling air for acoustic damping of combustion chamber pulsations
US7272931B2 (en) * 2003-09-16 2007-09-25 General Electric Company Method and apparatus to decrease combustor acoustics
ITTO20031013A1 (it) 2003-12-16 2005-06-17 Ansaldo Energia Spa Sistema di smorzamento di instabilita' termoacustiche in un dispositivo combustore per una turbina a gas.
EP1730448B1 (de) 2004-03-31 2016-12-14 General Electric Technology GmbH Mehrfachbrenneranordnung zum betrieb einer brennkammer sowie verfahren zum betreiben der mehrfachbrenneranordnung
US7464552B2 (en) * 2004-07-02 2008-12-16 Siemens Energy, Inc. Acoustically stiffened gas-turbine fuel nozzle
US7334408B2 (en) * 2004-09-21 2008-02-26 Siemens Aktiengesellschaft Combustion chamber for a gas turbine with at least two resonator devices
EP1703208B1 (de) * 2005-02-04 2007-07-11 Enel Produzione S.p.A. Dämpfung von thermoakustischen Schwingungen in einer Gasturbinenbrennkammer mit ringförmiger Kammer
US7413053B2 (en) * 2006-01-25 2008-08-19 Siemens Power Generation, Inc. Acoustic resonator with impingement cooling tubes
DE102006007711B4 (de) * 2006-02-14 2008-07-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammer und Verfahren zur Einstellung der akustischen Eigenschaften einer Brennkammer
US7600370B2 (en) * 2006-05-25 2009-10-13 Siemens Energy, Inc. Fluid flow distributor apparatus for gas turbine engine mid-frame section
GB0610800D0 (en) 2006-06-01 2006-07-12 Rolls Royce Plc Combustion chamber for a gas turbine engine
US7788926B2 (en) * 2006-08-18 2010-09-07 Siemens Energy, Inc. Resonator device at junction of combustor and combustion chamber
GB2443838B (en) * 2006-11-16 2009-01-28 Rolls Royce Plc Combustion control for a gas turbine
GB0708459D0 (en) 2007-05-02 2007-06-06 Rolls Royce Plc A temperature controlling arrangement
FR2920525B1 (fr) * 2007-08-31 2014-06-13 Snecma Separateur pour alimentation de l'air de refroidissement d'une turbine
US8516819B2 (en) 2008-07-16 2013-08-27 Siemens Energy, Inc. Forward-section resonator for high frequency dynamic damping
EP2187125A1 (de) 2008-09-24 2010-05-19 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Dämpfung von Verbrennungsschwingungen
CH700799A1 (de) * 2009-04-11 2010-10-15 Alstom Technology Ltd Brennkammer mit Helmholtzdämpfer für eine Gasturbine.
US8408004B2 (en) * 2009-06-16 2013-04-02 General Electric Company Resonator assembly for mitigating dynamics in gas turbines
US8336312B2 (en) * 2009-06-17 2012-12-25 Siemens Energy, Inc. Attenuation of combustion dynamics using a Herschel-Quincke filter
US8789372B2 (en) * 2009-07-08 2014-07-29 General Electric Company Injector with integrated resonator
ES2400267T3 (es) * 2009-08-31 2013-04-08 Alstom Technology Ltd Dispositivo de combustión de una turbina de gas
RU2508506C2 (ru) * 2009-09-01 2014-02-27 Дженерал Электрик Компани Способ и установка для ввода текучей среды в камеру сгорания газотурбинного двигателя
EP2299177A1 (de) * 2009-09-21 2011-03-23 Alstom Technology Ltd Gasturbinenbrennkammer
JP5448762B2 (ja) * 2009-12-02 2014-03-19 三菱重工業株式会社 ガスタービン用燃焼バーナ
CH702594A1 (de) * 2010-01-28 2011-07-29 Alstom Technology Ltd Helmholtzdämpfer für den Einbau in die Brennkammer einer Gasturbine sowie Verfahren zum Einbau eines solchen Helmholtzdämpfers.
FR2958016B1 (fr) * 2010-03-23 2017-03-24 Snecma Methode de reduction des instabilites de combustion par le choix du positionnement d'un prelevement d'air sur une turbomachine
EP2383515B1 (de) 2010-04-28 2013-06-19 Siemens Aktiengesellschaft Brennersystem zur Dämpfung eines solchen Brennersystems
EP2383514A1 (de) 2010-04-28 2011-11-02 Siemens Aktiengesellschaft Brennersystem und Verfahren zur Dämpfung eines solchen Brennersystems
US9127837B2 (en) * 2010-06-22 2015-09-08 Carrier Corporation Low pressure drop, low NOx, induced draft gas heaters
US9546558B2 (en) 2010-07-08 2017-01-17 Siemens Energy, Inc. Damping resonator with impingement cooling
FR2977639B1 (fr) * 2011-07-07 2013-08-09 Snecma Element d'injection
US9341375B2 (en) 2011-07-22 2016-05-17 General Electric Company System for damping oscillations in a turbine combustor
US8469141B2 (en) 2011-08-10 2013-06-25 General Electric Company Acoustic damping device for use in gas turbine engine
EP2559945A1 (de) * 2011-08-17 2013-02-20 Siemens Aktiengesellschaft Brennanordnung und Turbine mit Dämpfeinrichtung
US8966903B2 (en) * 2011-08-17 2015-03-03 General Electric Company Combustor resonator with non-uniform resonator passages
US9400108B2 (en) 2013-05-14 2016-07-26 Siemens Aktiengesellschaft Acoustic damping system for a combustor of a gas turbine engine
EP2816288B1 (de) * 2013-05-24 2019-09-04 Ansaldo Energia IP UK Limited Dämpfer für Gasturbinenbrennkammer mit einem Schwingungsdämpfer
WO2015176887A1 (de) 2014-05-19 2015-11-26 Siemens Aktiengesellschaft Brenneranordnung mit resonator
US9964308B2 (en) 2014-08-19 2018-05-08 General Electric Company Combustor cap assembly
US9890954B2 (en) 2014-08-19 2018-02-13 General Electric Company Combustor cap assembly
US10267523B2 (en) * 2014-09-15 2019-04-23 Ansaldo Energia Ip Uk Limited Combustor dome damper system
EP3227611A1 (de) * 2014-12-01 2017-10-11 Siemens Aktiengesellschaft Resonatoren mit auswechselbaren messrohren für gasturbinen
EP3029377B1 (de) * 2014-12-03 2018-04-11 Ansaldo Energia Switzerland AG Dämpfer für Gasturbine
US9835333B2 (en) * 2014-12-23 2017-12-05 General Electric Company System and method for utilizing cooling air within a combustor
US10220474B2 (en) * 2016-12-02 2019-03-05 General Electricd Company Method and apparatus for gas turbine combustor inner cap and high frequency acoustic dampers
US10221769B2 (en) * 2016-12-02 2019-03-05 General Electric Company System and apparatus for gas turbine combustor inner cap and extended resonating tubes
JP7008722B2 (ja) * 2017-03-30 2022-01-25 シーメンス アクティエンゲゼルシャフト ガスタービンエンジンの燃焼器セクションにおける冷却流体の二重利用のための導管配置を備えたシステム
US20180313540A1 (en) * 2017-05-01 2018-11-01 General Electric Company Acoustic Damper for Gas Turbine Engine Combustors
JP2020056542A (ja) * 2018-10-02 2020-04-09 川崎重工業株式会社 航空機用のアニュラ型ガスタービン燃焼器
US11204204B2 (en) 2019-03-08 2021-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic absorber with integrated heat sink
CN116293795A (zh) * 2021-12-06 2023-06-23 通用电气阿维奥有限责任公司 用于燃气涡轮燃烧器应用的圆顶集成声学阻尼器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881337A (en) * 1957-07-01 1959-04-07 Gen Electric Acoustically treated motor
US4012902A (en) * 1974-03-29 1977-03-22 Phillips Petroleum Company Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850261A (en) * 1973-03-01 1974-11-26 Gen Electric Wide band width single layer sound suppressing panel
US3978662A (en) * 1975-04-28 1976-09-07 General Electric Company Cooling ring construction for combustion chambers
US4077205A (en) * 1975-12-05 1978-03-07 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
GB2036296B (en) * 1978-11-20 1982-12-01 Rolls Royce Gas turbine
DE3432607A1 (de) * 1984-09-05 1986-03-13 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Einrichtung zum daempfen von brennkammerschwingungen bei fluessigkeitsraketentriebwerken
US5082421A (en) * 1986-04-28 1992-01-21 Rolls-Royce Plc Active control of unsteady motion phenomena in turbomachinery
US4944362A (en) * 1988-11-25 1990-07-31 General Electric Company Closed cavity noise suppressor
CH678757A5 (de) * 1989-03-15 1991-10-31 Asea Brown Boveri

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881337A (en) * 1957-07-01 1959-04-07 Gen Electric Acoustically treated motor
US4012902A (en) * 1974-03-29 1977-03-22 Phillips Petroleum Company Method of operating a gas turbine combustor having an independent airstream to remove heat from the primary combustion zone
EP0576717A1 (de) * 1992-07-03 1994-01-05 Abb Research Ltd. Gasturbinen-Brennkammer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FR-A- 2 570 129 *
US-A- 2 881 337 *
US-A- 4 012 902 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370863B2 (en) 1998-07-27 2002-04-16 Asea Brown Boveri Ag Method of operating a gas-turbine chamber with gaseous fuel
EP1235033A2 (de) 2001-02-22 2002-08-28 ALSTOM (Switzerland) Ltd Verfahren zum Betrieb einer Ringbrennkammer sowie eine Ringbrennkammer
US6691518B2 (en) 2001-02-22 2004-02-17 Alstom Technology Ltd Process for the operation of an annular combustion chamber, and annular combustion chamber
US6694745B2 (en) 2001-06-22 2004-02-24 Alstom Technology Ltd Method for running up a gas turbine plant
EP1655468A2 (de) 2004-11-03 2006-05-10 ALSTOM Technology Ltd Brennstoffdrosselventil zum Betreiben einer Brenneranordnung einer Gasturbine sowie Brenneranordnung mit Brennstoffdrosselventil
DE102005062284B4 (de) 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Brennkammer für eine Gasturbine
DE102006053278A1 (de) * 2006-11-03 2008-05-08 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung
EP2474784A1 (de) 2011-01-07 2012-07-11 Siemens Aktiengesellschaft Verbrennungssystem für eine Gasturbine mit einem Resonator
WO2012093011A1 (en) 2011-01-07 2012-07-12 Siemens Aktiengesellschaft Combustion system for a gas turbine comprising a resonator
US8869533B2 (en) 2011-01-07 2014-10-28 Siemens Aktiengesellschaft Combustion system for a gas turbine comprising a resonator

Also Published As

Publication number Publication date
JP3397858B2 (ja) 2003-04-21
US5373695A (en) 1994-12-20
KR940011862A (ko) 1994-06-22
JPH06221563A (ja) 1994-08-09
DE59208715D1 (de) 1997-08-21
EP0597138A1 (de) 1994-05-18

Similar Documents

Publication Publication Date Title
EP0597138B1 (de) Gasturbinen-Brennkammer
EP0781967B1 (de) Gasturbinenringbrennkammer
DE4316475C2 (de) Gasturbinen-Brennkammer
DE19640980B4 (de) Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
DE102005024062B4 (de) Brennerrohr und Verfahren zum Mischen von Luft und Gas in einem Gasturbinentriebwerk
EP0592717B1 (de) Gasbetriebener Vormischbrenner
EP0985882B1 (de) Schwingungsdämpfung in Brennkammern
EP1534997B1 (de) Gasturbinenbrenner
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
EP0576697B1 (de) Brennkammer einer Gasturbine
DE102008037480A1 (de) Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse
EP0687860A2 (de) Brennkammer mit Selbstzündung
DE102011051366A1 (de) Vorrichtung und Verfahren zum Mischen von Brennstoff in einer Gasturbinendüse
DE102008022669A1 (de) Brennstoffdüse und Verfahren für deren Herstellung
DE102014102782A1 (de) Multiinjektor-Mikromischsystem
CH702825B1 (de) Turbinenbrennkammer-Einsatzanordnung.
DE102008002931A1 (de) Vorrichtung/Verfahren zur Kühlung einer Brennkammer/Venturi-Düse in einem Brenner mit niedrigen NOx-Emissionen
EP1481195A1 (de) Brenner, verfahren zum betrieb eines brenners und gasturbine
EP1279898A2 (de) Vormischbrenner mit hoher Flammenstabilität
EP2340397A1 (de) Brennereinsatz für eine gasturbinenbrennkammer und gasturbine
CH701773B1 (de) Brenner mit einem Einlassleitschaufelsystem.
DE112013007579T5 (de) Flüssigbrennstoffpatrone für eine Brennstoffdüse
EP0718558A2 (de) Brennkammer
DE112019000871T5 (de) Brennkammer und damit ausgestattete gasturbine
EP2808611B1 (de) Injektor zum Einbringen eines Brennstoff-Luft-Gemisches in eine Brennkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI NL

17P Request for examination filed

Effective date: 19941031

17Q First examination report despatched

Effective date: 19951218

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59208715

Country of ref document: DE

Date of ref document: 19970821

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970919

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091130

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101109

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101022

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130