EP0589300A1 - Radialgebläse - Google Patents

Radialgebläse Download PDF

Info

Publication number
EP0589300A1
EP0589300A1 EP93114532A EP93114532A EP0589300A1 EP 0589300 A1 EP0589300 A1 EP 0589300A1 EP 93114532 A EP93114532 A EP 93114532A EP 93114532 A EP93114532 A EP 93114532A EP 0589300 A1 EP0589300 A1 EP 0589300A1
Authority
EP
European Patent Office
Prior art keywords
impeller
radial fan
suction chamber
fan according
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93114532A
Other languages
English (en)
French (fr)
Other versions
EP0589300B1 (de
Inventor
Siegfried W. Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Punker GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6468849&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0589300(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0589300A1 publication Critical patent/EP0589300A1/de
Application granted granted Critical
Publication of EP0589300B1 publication Critical patent/EP0589300B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/02Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal
    • F04D17/04Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps having non-centrifugal stages, e.g. centripetal of transverse-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/166Combinations of two or more pumps ; Producing two or more separate gas flows using fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports

Definitions

  • the invention relates to a radial fan according to the preamble of claim 1.
  • Radial fans in particular with an impeller designed as a drum rotor, are used on a large scale because of their simple construction. In particular, such radial fans are also used for conveying combustion air in oil and gas burners. Simple radial fans, however, operate in an air-volume range which is unfavorable for use with such burners and in which pressure instabilities occur. Modern oil and gas burners, however, require fans with relatively high static pressures and stable, steep P / V characteristics to ensure stable operation.
  • Known radial blowers for example DE-OS 23 62 815) therefore have an annular gap between the wheel cover plate of the impeller and the cover plate merging into the axial inflow opening. A part of the compressed air flows through this annular gap from the pressure chamber of the one surrounding the impeller Housing in the suction chamber inside the impeller and flows through the impeller again radially, so to speak to be compressed in a second stage.
  • a partition wall projecting into the interior of the impeller is provided in a radial fan of the type mentioned in DE 25 40 580 C3 .
  • the partition divides the interior into a first suction chamber, in which the inflow opening opens and the fresh air is sucked in, and into a second suction chamber, in which only air flows back from the pressure chamber of the housing via the annular gap.
  • the second suction chamber thus essentially serves to compress the air flowing back out of the housing via the annular gap. The air flowing back into the second suction space does not mix with the fresh air flowing into the first suction space, so that the post-compression becomes more effective and higher static pressures are achieved.
  • the invention is based on the problem of creating a radial blower which is further improved with regard to the static pressures which can be achieved and the P / V characteristic.
  • the annular gap forms a continuous connection of the housing in front of the axial end face of the impeller, via which the outlet-side end of the housing is "short-circuited" with high static pressure with the initial region of the housing with lower pressure.
  • the invention is based on the idea of closing the axial end face of the impeller against the housing and thus the pressure side and sealing it as far as possible. This prevents air from passing from the high pressure side to the low pressure side of the housing past the impeller and the disadvantageous pressure equalization is minimized.
  • the impeller works as a cross-flow blower, which sucks air from the outlet-side area of the housing with high static pressure into the second suction space and conveys it into the initial area of the housing with low static pressure.
  • the radial fan thus works as a two-stage fan with a first stage acting as a radial fan and a second stage as a cross-flow fan.
  • the tight sealing of the axial end face of the impeller is achieved in a structurally particularly simple manner in that the cover plates are formed by two fixed plane-parallel disks.
  • the clear distance between the two disks is at the same time the clear width of the radial outlet cross section of the impeller.
  • the two disks can merge into the housing enclosing the impeller on its circumference and in particular can be an integral part of the housing wall. This results in an inexpensive manufacture and assembly, so that this version is particularly suitable for the production of large quantities.
  • the impeller with the two discs forms an independent installation module that can be used in different housings.
  • the built-in module can be inexpensively manufactured in large numbers, while the adaptation to the different burner types is ensured by the use of different housings.
  • the impeller Since the discs covering the front of the impeller are fixed and the impeller rotates, a minimal gap between the impeller and the discs is inevitable.
  • the impeller is preferably immersed in recesses in the surface of the disks, so that a labyrinth sealing system is formed between the rotating impeller and the fixed disks.
  • the sealing effect of this labyrinth sealing system can be further improved in that the wheel support disk and the wheel cover disk have an outwardly projecting collar on their outer circumference which runs in a groove pierced into the respective disk.
  • the partition dividing the interior of the impeller is expediently formed on the cover plate that closes the end face.
  • the partition wall is guided axially as close as possible to the wheel support disk of the impeller and laterally to close to the inner contour of the blading.
  • An inclination of the partition against the plane of the wheel support plate favors the intake flow and, if necessary in conjunction with a flank angle of the axial side edges of the partition, reduces the noise formation in relation to the surface line of the blading.
  • the passage cross section of the inflow opening is significantly smaller than the cross section of the first suction chamber and if the volume of the second suction chamber is greater than the volume of the first suction chamber.
  • the housing is designed with a diffuser.
  • the tongue edge of the housing is in the angular range of the second suction chamber, which acts as a cross-flow fan.
  • the housing is designed with two diffusers.
  • the part of the impeller acting as a radial fan sucks the air into the first suction chamber and blows it into the initial area of the first diffuser, which serves as the pressure chamber of the radial fan.
  • the widened end region of the first diffuser lies in the peripheral region of the cross-flow fan part and is separated from the second diffuser by a second tongue edge, which serves as a pressure chamber of the cross-flow fan and leads to the outlet of the housing.
  • the partition is fixed in its angular position.
  • the partition wall adjustable in its angular position with respect to the tongue edge of the housing, whereby in particular the area ratio of the inlet and outlet sections of the crossflow fan separated by the tongue edge can be changed and the compression of the crossflow fan stage can be adjusted.
  • 1 and 2 show a first embodiment of the radial fan.
  • the radial fan is flanged to a motor 12 indicated by dash-dotted lines and is driven by its shaft 14.
  • the radial fan has an impeller 16 designed as a drum rotor, which consists of a wheel support disk 18 seated on the motor shaft 14, a blading 20 attached to the wheel support disk 18 and an annular wheel cover disk 22 holding the free ends of the blading 20.
  • the impeller 16 is thus a drum rotor constructed in a conventional manner, the blading 20 of which has an exit angle greater than 90 °, i.e. the blading 20 is directed in the direction of rotation of the impeller 16 shown by an arrow in FIG.
  • the ratio of inside diameter to outside diameter of the blading is 0.7 to 0.85.
  • the impeller 16 is enclosed on its outer circumference by a housing 24, which is guided with a tongue edge 26 along a surface line to the outer circumference of the impeller 16 and expands in the direction of rotation of the impeller 16 as a diffuser to an outlet 28.
  • the axial end faces of the housing 24 are formed by cover plates which have the shape of plane-parallel disks 30 and 32.
  • the first disc 30 is flanged to the motor 12 and is by the Wave 14 penetrates.
  • the second disk 32 has an annular recess 36 into which the end of the blading 20 with the wheel cover disk 22 is immersed.
  • labyrinth sealing systems are produced on the axial end faces of the impeller 16. These labyrinth sealing systems prevent pressure losses due to pressure equalization from the high pressure side of the housing 24 at the outlet 28 to the low pressure side of the housing 24 behind the tongue edge 26 via the gap between the wheel support plate 18 and the first plate 30 and via the gap between the wheel cover plate 22 and the second disc 32.
  • the labyrinth sealing system prevents air from the housing 24, ie from the pressure side of the radial fan, axially through the gap between the impeller 16 or its wheel cover plate 22 and the second plate 32 flows axially into the interior of the impeller 16.
  • the sealing effect of the labyrinth sealing systems is further improved in that the wheel support plate 18 and the wheel cover plate 22 each have an axially flared collar 38 on their outer circumference, each of which plunges into a circular groove 40 pierced into the plane of the disk 30 or 32.
  • a partition 42 is arranged, preferably integrally formed, on the second disk 32 that closes the open axial end face of the impeller 16.
  • the partition 42 protrudes axially from the second disc 32 into the impeller 16 and extends with its free end edge as close as possible to the wheel support disc 18.
  • the gap S remaining between the end edge of the partition 42 and the wheel support disc 18 is between 0.2 and 4 by design mm.
  • the partition 42 adjoins the inner circumferential surface of the impeller 16. The partition 42 thus divides the interior of the impeller 16 as tightly as possible into a first suction chamber V1 and a second suction chamber V2.
  • the partition 42 extends transversely, substantially at right angles to the axial plane extending through the axis of the impeller 16 and the tongue edge 26.
  • the partition 42 is arranged eccentrically to the axis of the impeller 16 and divides the inner diameter of the impeller 16 perpendicular to the partition 42 in a ratio H1: H2 of 0.65 to 1.0.
  • the larger diameter section H2 corresponds to the second suction chamber V2 facing the tongue edge 26.
  • the partition 42 runs parallel to the axis of the impeller 16.
  • the partition 42 is at an angle Winkel of up to 30 °, preferably approximately 15 °, with respect to the axial plane slanted, the free end edge of the partition 42 the larger Has distance from the axis of the impeller 16.
  • the axial side edges of the partition wall 42 have a flank angle of up to 15 °, preferably of about 5 °, so that the width of the partition wall 42 tapers towards its free end.
  • the inclination of the partition 42 in the embodiment of Figure 3 has the result that when the impeller 16 rotates the inner edges of the blades 20 do not simultaneously overlap with the side edges of the partition 42 over the entire axial width, but these side edges only in one intersect axially moving point. This reduces the running noise of the radial fan.
  • the second suction chamber V2 is completely covered by the second disk 32, so that it is largely airtight on its two axial end faces.
  • the second disc 32 has an inflow opening 44 through which fresh air can be sucked into the first suction chamber V1.
  • the inflow opening 44 preferably has a circular cross section, its area being substantially smaller than the end face of the first suction space V1.
  • the inflow opening 44 is arranged approximately centrally in relation to the end face of the first suction space V1.
  • the fresh air sucked in when the impeller 16 rotates through the inflow opening 44 is set in the first suction space V1 by the blading 20 into a vortex rotation parallel to the impeller 16.
  • the blades 20 of the rotating impeller 16 take this vortex with it in the direction of rotation, so that this vortex tends to migrate away from the inflow opening 44 in the direction of rotation.
  • This effect is caused by a guide bead 46 counteracted, which is integrally formed on the inner surface of the second disc 32 and adjoins the inflow opening 44 in the direction of rotation of the impeller 16.
  • the approximately triangular guide bead 46 has an axial height which is approximately 0.25 to 0.5 times the axial width B1 of the blading 20.
  • the guide bead 46 prevents the vortex of the incoming fresh air from migrating and holds this vortex at the inflow opening 44. In conjunction with the relatively small cross section of the inflow opening 44, this results in a high suction power of the impeller 16 in the region of the first suction space V1.
  • the impeller 16 When the impeller 16 rotates in the direction of the arrow, the impeller 16 acts as a radial fan in the region of the first suction chamber V1. Fresh air is sucked axially into the first suction chamber V1 through the inflow opening 44 and accelerated radially outward into the housing 24 through the blading 20 over the circumferential region of the first suction chamber V1. In the expanding diffuser of the housing 24, a static pressure builds up against the outlet 28.
  • the impeller 16 In the area of the second suction chamber V2, the impeller 16 is sealed off on its two axial end faces, in the interior the partition 42 forms a tight seal and on the outer circumference opposite the partition 42, the tongue edge 26 seals the impeller 16.
  • the impeller 16 therefore works in the area of the second suction space V2 exclusively as a cross-flow fan, which draws in the air from the pressure space in the area of the outlet 28 and ejects it in the initial area of the diffuser of the housing 24 behind the tongue edge 26.
  • the radial blower thus works as a two-stage blower with a first stage formed by the first suction chamber V1 as a radial blower and a second stage formed by the second suction chamber V2 as a cross-flow blower.
  • the disks 30 and 32 are guided beyond the circumference of the impeller 16 and also form the axial cover plates of the housing 24 in one piece. This enables the entire housing 24 including the disks 30 and 32 to be produced inexpensively from two one-piece injection molded parts. This version is particularly suitable if the blower is manufactured in large numbers.
  • FIGS. 4 and 5 show a further modification which enables the radial fan to be adapted to different mounting configurations.
  • the disks 30 and 32 and the impeller 16 correspond to the designs described above in connection with FIGS. 1 and 2 and 3, respectively, so that reference can be made to the previous description in this respect.
  • the disks 30 and 32 are not formed in one piece with the cover plates of the housing, but only protrude with an edge 48 over the outer circumference of the impeller 16.
  • the disks 30 and 32 are through some Holding pins 50 distributed over the circumference are connected to one another.
  • Guide blades 52 are placed on the holding pins 50 and serve as spacers between the disks 30 and 32.
  • the guide blades 52 are curved in the sense of the blading 20 of the impeller 16, so that they do not impair the flow behavior of the impeller.
  • the impeller 16 with the disks 30 and 32 is mounted to the complete self-supporting built-in module by means of the holding pins 50.
  • This built-in module can be inserted into a corresponding recess in a housing 24 corresponding to the respective requirements and is fastened in the housing, for which purpose, for example, a radially projecting flange 54 of the first disk 30 is used, which has bores 56 for screwing to the housing 24.
  • FIG. 6 shows a fourth embodiment in which the impeller 16 and the disks 30 and 32 receiving and closing the impeller 16 are also formed in one of the embodiments described above.
  • the housing has two diffusers which adjoin one another in the circumferential direction and are each separated from one another by a tongue edge leading to the circumference of the impeller 16.
  • a first tongue edge 58 lies in the region of the partition 42 on the outer circumference of the impeller 16, so that a first pressure chamber 60 is formed which extends along the first suction chamber V1 and extends into the peripheral region of the second suction chamber V2 and approximately in the middle of the peripheral region of the second suction chamber V2 is closed off by a second tongue edge 62.
  • a second pressure chamber 64 widens in the circumferential direction from the second tongue edge 62 to the outlet 28.
  • the operation of the radial fan of this embodiment corresponds essentially to the operation described above.
  • Fresh air is drawn through the inflow opening 44 into the first suction chamber V1 and is conveyed radially into the first pressure chamber 60.
  • the first pressure chamber 60 thus serves as the pressure chamber of the part of the impeller 16 working as a radial fan with the first suction chamber V1.
  • the air compressed by this radial fan stage in the first pressure chamber 60 then flows through the impeller 16 in the region of the second suction chamber V2 and is conveyed to the second pressure chamber 64 after compression.
  • the part of the impeller 16 with the second suction chamber V2 also acts here as a second post-compression fan stage, which works as a cross-flow fan.
  • the partition wall 42 is arranged essentially at right angles to the axial plane which runs through the axis of the impeller 16 and the tongue edge 26 or 62 associated with the second suction chamber V2.
  • the inlet cross section and the outlet cross section are those that act as cross-flow fans second suction chamber V2 essentially the same. If the partition 42 is arranged rotated at an angle with respect to the arrangement shown, so that the inlet cross section of the second suction space V2 increases and its outlet cross section decreases, there is a greater pressure increase by the cross-flow fan.
  • the achievable static pressure can thus be influenced by the angular position of the partition wall 42. It is also possible to fix the second disc 32 with the partition 42 so as to be adjustable in angle in order to enable the static pressure to be set individually.
  • FIG. 7 shows a P / V diagram of the static pressures which can be achieved as a function of the conveyed air volume flow.
  • the characteristic curve of the radial fan according to the invention is designated by I and compared with the characteristic curve of a conventional radial fan designated by II. It can be seen that up to a factor of 4 higher static pressures can be achieved with the radial fan according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Massaging Devices (AREA)
  • Toys (AREA)

Abstract

Bei einem Radialgebläse ist das Laufrad (16) zwischen zwei planparallelen Scheiben (30, 32) angeordnet, die das Laufrad (16) an dessen axialen Stirnseiten abschließen. Eine Trennwand (42) teilt den Innenraum des Laufrades 16 in einen ersten Saugraum (V1) und einen zweiten Saugraum (V2). Eine Zuströmöffnung (44) für Frischluft mündet nur in den ersten Saugraum (V1). Das Radialgebläse arbeitet als zweistufiges Gebläse, wobei die erste Stufe mit dem ersten Saugraum (V1) als Radialgebläse arbeitet, während die zweite Stufe mit dem zweiten Saugraum (V2) als Querstromgebläse arbeitet. <IMAGE> <IMAGE>

Description

  • Die Erfindung betrifft ein Radialgebläse gemäß dem Oberbegriff des Anspruchs 1.
  • Radialgebläse, insbesondere mit als Trommelläufer ausgebildetem Laufrad, werden wegen ihres einfachen Aufbaus in großem Umfang verwendet. Insbesondere werden solche Radialgebläse auch für die Verbrennungsluft-Förderung bei Öl- und Gasbrennern eingesetzt. Einfache Radialgebläse arbeiten jedoch in einem für den Einsatz bei solchen Brennern ungünstigen Luft-Volumen-Bereich, in welchem Druckinstabilitäten auftreten. Moderne Öl- und Gasbrenner erfordern aber zur Sicherstellung eines stabilen Betriebes Gebläse mit relativ hohen statischen Drücken und einer stabilen, steilen P/V-Charakteristik.
  • Bekannte Radialgebläse (zum Beispiel DE-OS 23 62 815) weisen daher einen Ringspalt zwischen der Raddeckscheibe des Laufrades und der in die axiale Zuströmöffnung übergehenden Deckplatte auf. Durch diesen Ringspalt strömt ein Teil der verdichteten Luft aus dem Druckraum des das Laufrad umschließenden Gehäuses in den Saugraum im Inneren des Laufrades zurück und durchströmt nochmals das Laufrad radial, um gewissermaßen in einer zweiten Stufe nachverdichtet zu werden.
  • Um zu verhindern, daß die aus dem Gehäuse in den Innenraum des Laufrades zurückströmende Luft sich mit der durch die Zuströmöffnung angesaugten Frischluft vermischt, ist bei einem aus DE 25 40 580 C3 bekannten Radialgebläse der eingangs genannten Gattung eine in den Innenraum des Laufrades ragende Trennwand vorgesehen. Die Trennwand teilt den Innenraum in einen ersten Saugraum, in welchen die Zuströmöffnung mündet und die Frischluft angesaugt wird, und in einen zweiten Saugraum, in welchen nur Luft aus dem Druckraum des Gehäuses über den Ringspalt zurückströmt. Der zweite Saugraum dient somit im wesentlichen zur Nachverdichtung der über den Ringspalt aus dem Gehäuse zurückströmenden Luft. Die in den zweiten Saugraum zurückströmende Luft vermischt sich nicht mit der in den ersten Saugraum zuströmenden Frischluft, so daß die Nachverdichtung effektiver wird und höhere statische Drücke erzielt werden.
  • Der Erfindung liegt das Problem zugrunde, ein Radialgebläse zu schaffen, das bezüglich der erzielbaren statischen Drücke und der P/V-Charakteristik weiter verbessert ist.
  • Dieses Problem wird erfindungsgemäß gelöst durch ein Radialgebläse der eingangs genannten Gattung mit den Merkmalen des kennzeichnenden Teils des Anspruchs 1.
  • Vorteilhafte Ausführungen und Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Bei den bekannten Radialgebläsen erfolgt die Nachverdichtung dadurch, daß ein Teilluftstrom aus dem Gehäuse, d.h. von der Druckseite, durch den Ringspalt in den Innenraum des Laufrades, d.h. auf die Saugseite zurückströmt. Der Ringspalt bildet dabei aber eine durchgehende Verbindung des Gehäuses vor der axialen Stirnfläche des Laufrades, über welche das auslaßseitige Ende des Gehäuses mit hohem statischem Druck mit dem Anfangsbereich des Gehäuses mit niedrigerem Druck "kurzgeschlossen" wird. Es findet somit über den Ringspalt ein unerwünschter Druckausgleich statt. Der Erfindung liegt dagegen die Idee zugrunde, die axiale Stirnseite des Laufrades gegen das Gehäuse und damit die Druckseite abzuschließen und soweit wie möglich abzudichten. Dadurch wird ein Luftdurchtritt von der Hochdruckseite zu der Niederdruckseite des Gehäuses an dem Laufrad vorbei verhindert und der nachteilige Druckausgleich wird minimiert.
  • In den ersten Saugraum des Laufrades strömt nur Frischluft über die Zuströmöffnung. In den von dem ersten Saugraum durch die Trennwand möglichst vollständig abgetrennten zweiten Saugraum kann keine Luft axial zuströmen. Im Bereich des zweiten Saugraumes arbeitet das Laufrad als Querstromgebläse, welches von dem auslaßseitigen Bereich des Gehäuses mit hohem statischen Druck Luft in den zweiten Saugraum saugt und in den Anfangsbereich des Gehäuses mit niedrigem statischen Druck fördert. Das Radialgebläse arbeitet somit als zweistufiges Gebläse mit einer ersten als Radialgebläse und einer zweiten als Querstromgebläse wirkenden Stufe. Da die Abdichtung des Gehäuses gegen die axiale Stirnseite des Laufrades die Druckverluste durch den Spalt zwischen Laufrad und Deckplatte minimiert, wird die Wirkung der zweistufigen Verdichtung nicht durch Druckverluste abgeschwächt. Die durch das Radialgebläse erzielbaren statischen Drücke werden dadurch erheblich erhöht.
  • Es ist offensichtlich, daß eine Abdichtung des Laufrades im Ansaugbereich des als Querstromgebläse wirkenden zweiten Saugraumes nicht notwendig ist. Wesentlich ist, daß zumindest im Ausblasbereich des zweiten Saugraumes eine möglichst vollständige Abdichtung zwischen Laufrad und Gehäuse vorhanden ist.
  • Das dichte Abschließen der axialen Stirnseite des Laufrades wird in einer konstruktiv besonders einfachen Weise dadurch erreicht, daß die Deckplatten durch zwei feststehende planparallele Scheiben gebildet werden. Der lichte Abstand der beiden Scheiben ist dabei gleichzeitig die lichte Weite des radialen Austrittsquerschnitts des Laufrades.
  • Die beiden Scheiben können in das das Laufrad an dessen Umfang umschließende Gehäuse übergehen und insbesondere einstückiger Bestandteil der Gehäusewand sein. Dadurch ergibt sich eine kostengünstige Herstellung und Montage, so daß sich diese Ausführung insbesondere für die Produktion großer Stückzahlen eignet.
  • In einer anderen Ausführung bildet das Laufrad mit den zwei Scheiben ein selbständiges Einbaumodul, das in unterschiedliche Gehäuse eingesetzt werden kann. In dieser Ausführung kann das Einbaumodul in großen Stückzahlen kostengünstig hergestellt werden, während die Anpassung an die unterschiedlichen Brennertypen durch die Verwendung unterschiedlicher Gehäuse gewährleistet ist.
  • Da die die Stirnseite des Laufrades abdeckenden Scheiben feststehen und das Laufrad rotiert, ist ein minimaler Spalt zwischen dem Laufrad und den Scheiben unvermeidlich. Um diesen Spalt bestmöglich abzudichten, taucht das Laufrad vorzugsweise in Ausnehmungen in der Fläche der Scheiben ein, so daß zwischen dem rotierenden Laufrad und den feststehenden Scheiben ein Labyrinth-Dichtsystem gebildet wird. Die Dichtwirkung dieses Labyrinth-Dichtsystems kann noch dadurch verbessert werden, daß die Radtragscheibe und die Raddeckscheibe an ihrem Außenumfang einen nach außen vorspringenden Kragen aufweisen, der in einer in die jeweilige Scheibe eingestochenen Rille läuft.
  • Die den Innenraum des Laufrades unterteilende Trennwand ist zweckmäßigerweise an der die Stirnseite abschließenden Deckplatte angeformt. Um eine möglichst vollständige Trennung der beiden Saugräume zu erzielen, ist die Trennwand axial möglichst dicht an die Radtragscheibe des Laufrades und seitlich bis dicht an die Innenkontur der Beschaufelung geführt. Eine Schrägstellung der Trennwand gegen die Ebene der Radtragscheibe begünstigt die Einsaugströmung und reduziert gegebenenfalls in Verbindung mit einem Flankenwinkel der axialen Seitenkanten der Trennwand gegenüber der Mantellinie der Beschaufelung die Geräuschbildung.
  • Für die Erzielung hoher statischer Drücke ist es vorteilhaft, wenn der Durchtrittsquerschnitt der Zuströmöffnung wesentlich kleiner ist als der Querschnitt des ersten Saugraumes und wenn das Volumen des zweiten Saugraumes größer ist als das Volumen des ersten Saugraumes. Bei dieser Dimensionierung ergibt sich die beste Kombination der Wirkungen der Radialgebläse- und der Querstromgebläsestufe.
  • Im allgemeinen ist das Gehäuse mit einem Diffusor ausgebildet. Die Zungenkante des Gehäuses befindet sich im Winkelbereich des als Querstromgebläse wirkenden zweiten Saugraumes. In einer anderen Ausführungsform ist das Gehäuse mit zwei Diffusoren ausgebildet. Der als Radialgebläse wirkende Teil des Laufrades saugt die Luft in den erste Saugraum an und bläst diese in den Anfangsbereich des ersten Diffusors, der als Druckraum des Radialgebläses dient. Der erweiterte Endbereich des ersten Diffusors liegt im Umfangsbereich des Querstromgebläseteils und wird durch eine zweite Zungenkante von dem zweiten Diffusor getrennt, der als Druckraum des Querstromgebläses dient und zum Auslaß des Gehäuses führt.
  • In der Regel ist die Trennwand in ihrer Winkelstellung fest angeordnet. Es ist aber auch möglich, die Trennwand in ihrer Winkelstellung bezüglich der Zungenkante des Gehäuses verstellbar zu machen, wodurch insbesondere das Flächenverhältnis der durch die Zungenkante getrennten Einlauf- und Auslaufabschnitte des Querstromgebläses geändert und die Verdichtung der Querstromgebläsestufe verstellt werden kann.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert, die in der Zeichnung dargestellt sind. Es zeigen
  • Figur 1
    einen Axialschnitt eines Radialgebläses gemäß der Schnittlinie I-I in Figur 2,
    Figur 2
    einen Radialschnitt des Radialgebläses gemäß der Schnittlinie II-II in Figur 1,
    Figur 3
    eine Figur 1 entsprechende Darstellung einer zweiten Ausführung des Radialgebläses,
    Figur 4
    eine Figur 1 entsprechende Darstellung einer dritten Ausführung des Radialgebläses,
    Figur 5
    einen Schnitt gemäß der Linie V-V in Figur 4,
    Figur 6
    eine Figur 2 entsprechende Darstellung einer vierten Ausführung des Radialgebläses und
    Figur 7
    die P/V-Kennlinien von Radialgebläsen gemäß der Erfindung und gemäß dem Stand der Technik.
  • In den Figuren 1 und 2 ist eine erste Ausführungsform des Radialgebläses dargestellt.
  • Das Radialgebläse ist an einen strichpunktier angedeuteten Motor 12 angeflanscht und wird durch dessen Welle 14 angetrieben. Das Radialgebläse weist ein als Trommelläufer ausgebildetes Laufrad 16 auf, welches aus einer auf der Motorwelle 14 sitzenden Radtragscheibe 18, einer auf der Radtragscheibe 18 befestigten Beschaufelung 20 und einer kreisringförmigen, die freien Enden der Beschaufelung 20 haltenden Raddeckscheibe 22 besteht. Das Laufrad 16 ist somit ein in herkömmlicher Weise aufgebauter Trommelläufer, dessen Beschaufelung 20 einen Austrittswinkel größer als 90° aufweist, d.h., die Beschaufelung 20 ist in die in Figur 2 durch einen Pfeil eingezeichnete Drehrichtung des Laufrades 16 gerichtet. Das Verhältnis Innendurchmesser zu Außendurchmesser der Beschaufelung beträgt 0,7 bis 0,85.
  • Das Laufrad 16 ist an seinem Außenumfang von einem Gehäuse 24 umschlossen, welches mit einer Zungenkante 26 längs einer Mantellinie an den Außenumfang des Laufrades 16 geführt ist und sich in Drehrichtung des Laufrades 16 als Diffusor bis zu einem Auslaß 28 erweitert. Die axialen Stirnflächen des Gehäuses 24 werden durch Deckplatten gebildet, die die Form planparalleler Scheiben 30 und 32 aufweisen. Die erste Scheibe 30 ist an den Motor 12 angeflanscht und wird von der Welle 14 durchsetzt. Eine zur Welle 14 konzentrische kreisscheibenförmige Ausnehmung 34 in der Fläche der ersten Scheibe 30 nimmt den axialen Rand des Laufrades 16 mit der Radtragscheibe 18 auf. Die zweite Scheibe 32 weist eine kreisringförmige Ausnehmung 36 auf, in welche das Ende der Beschaufelung 20 mit der Raddeckscheibe 22 eintaucht.
  • Aus der Ausbildung der Deckplatten als planparallele Scheiben 30 und 32 und dem beidseitigen axialen Eintauchen des Laufrades 16 in die Ausnehmungen 34 bzw. 36 ergibt sich, daß die axiale Breite B1 des Austrittsquerschnitts der Beschaufelung 20 gleich der lichten axialen Breite B2 des Gehäuses 24 ist.
  • Durch das Eintauchen des Laufrades 16 mit der Radtragscheibe 18 in die Ausnehmung 34 und der Beschaufelung 20 mit der Raddeckscheibe 22 in die Ausnehmung 36 ergeben sich an den axialen Stirnseiten des Laufrades 16 jeweils Labyrinth-Dichtsysteme. Diese Labyrinth-Dichtsysteme verhindern Druckverluste infolge eines Druckausgleiches von der Hochdruckseite des Gehäuses 24 am Auslaß 28 zu der Niederdruckseite des Gehäuses 24 hinter der Zungenkante 26 über den Spalt zwischen der Radtragscheibe 18 und der ersten Scheibe 30 sowie über den Spalt zwischen der Raddeckscheibe 22 und der zweiten Scheibe 32. Weiter verhindert das Labyrinth-Dichtsystem, daß Luft aus dem Gehäuse 24, d.h. von der Druckseite des Radialgebläses, durch den Spalt zwischen dem Laufrad 16 bzw. seiner Raddeckscheibe 22 und der zweiten Scheibe 32 stirnseitig axial in den Innenraum des Laufrades 16 überströmt.
  • In einer in Figur 3 dargestellten Abwandlung ist die Dichtwirkung der Labyrinth-Dichtsysteme noch zusätzlich dadurch verbessert, daß die Radtragscheibe 18 und die Raddeckscheibe 22 an ihrem Außenumfang jeweils einen axial nach außen gebördelten Kragen 38 aufweisen, der jeweils in eine kreisförmige in die Ebene der Scheibe 30 bzw. 32 eingestochene Rille 40 eintaucht.
  • An der die offene axiale Stirnseite des Laufrades 16 abschließenden zweiten Scheibe 32 ist eine Trennwand 42 angeordnet, vorzugsweise einstückig angeformt. Die Trennwand 42 ragt von der zweiten Scheibe 32 axial in das Laufrad 16 hinein und reicht mit ihrer freien Stirnkante möglichst dicht an die Radtragscheibe 18. Der zwischen der Stirnkante der Trennwand 42 und der Radtragscheibe 18 verbleibende Spalt S liegt konstruktionsbedingt zwischen 0,2 und 4 mm. Vorzugsweise beträgt das Verhältnis Spaltbreite S zu axialer Breite B1 des Laufrades 16 S:B1 = 0,005 bis 0,1. Mit ihren axialen Seitenkanten schließt sich die Trennwand 42 nahe an die Innenmantelfläche des Laufrades 16 an. Die Trennwand 42 unterteilt damit den Innenraum des Laufrades 16 möglichst dicht in einen ersten Saugraum V1 und einen zweiten Saugraum V2. Die Trennwand 42 verläuft quer, im wesentlichen rechtwinklig zu der durch die Achse des Laufrades 16 und die Zungenkante 26 verlaufende Axialebene. Die Trennwand 42 ist dabei exzentrisch zur Achse des Laufrades 16 angeordnet und teilt den zur Trennwand 42 senkrechten Innendurchmesser des Laufrades 16 in einem Verhältnis H1:H2 von 0,65 bis 1,0. Der größere Durchmesserabschnitt H2 entspricht dabei dem der Zungenkante 26 zugewandten zweiten Saugraum V2.
  • In dem ersten Ausführungsbeispiel der Figuren 1 und 2 verläuft die Trennwand 42 parallel zur Achse des Laufrades 16. In dem in Figur 3 gezeigten zweiten Ausführungsbeispiel ist die Trennwand 42 unter einem Winkel Φ von bis zu 30°, vorzugsweise von etwa 15° gegen die Axialebene schräg gestellt, wobei die freie Stirnkante der Trennwand 42 den größeren Abstand von der Achse des Laufrades 16 aufweist. Die axialen Seitenkanten der Trennwand 42 weisen dabei einen Flankenwinkel von bis zu 15°, vorzugsweise von etwa 5° auf, so daß sich die Breite der Trennwand 42 gegen deren freies Ende hin verjüngt. Die Schrägstellung der Trennwand 42 im Ausführungsbeispiel der Figur 3 hat zur Folge, daß bei der Drehung des Laufrades 16 die Innenkanten der Beschaufelung 20 nicht gleichzeitig über die ganze axiale Breite mit den Seitenkanten der Trennwand 42 zur Deckung kommen, sondern diese Seitenkanten jeweils nur in einem axial wandernden Punkt schneiden. Dadurch werden die Laufgeräusche des Radialgebläses reduziert.
  • Der zweite Saugraum V2 wird durch die zweite Scheibe 32 vollständig abgedeckt, so daß er an seinen beiden axialen Stirnflächen weitestgehend luftdicht abgeschlossen ist. Im Bereich des ersten Saugraumes V1 weist die zweite Scheibe 32 eine Zuströmöffnung 44 auf, durch welche Frischluft in den ersten Saugraum V1 angesaugt werden kann. Die Zuströmöffnung 44 hat vorzugsweise einen kreisförmigen Querschnitt, wobei ihre Fläche wesentlich kleiner ist als die Stirnfläche des ersten Saugraumes V1. Vorzugsweise verhält sich der Durchmesser d der Zuströmöffnung 44 zu der diametralen Höhe H1 des ersten Saugraumes V1 wie d : H1 = 0,5 - 0,9.
  • Die Zuströmöffnung 44 ist in bezug auf die Stirnfläche des ersten Saugraumes V1 etwa mittig angeordnet. Die bei Rotation des Laufrades 16 durch die Zuströmöffnung 44 angesaugte Frischluft wird in dem ersten Saugraum V1 durch die Beschaufelung 20 in eine zu dem Laufrad 16 achsparallele Wirbeldrehung versetzt. Die Beschaufelung 20 des rotierenden Laufrades 16 nimmt diesen Wirbel dabei in Drehrichtung mit, so daß dieser Wirbel dazu neigt, in Drehrichtung von der Zuströmöffnung 44 wegzuwandern. Diesem Effekt wird durch einen Leitwulst 46 entgegengewirkt, der an der Innenfläche der zweiten Scheibe 32 angeformt ist und sich in Drehrichtung des Laufrades 16 an die Zuströmöffnung 44 anschließt. Der etwa dreieckförmige Leitwulst 46 hat eine axiale Höhe, die etwa das 0,25- bis 0,5-fache der axialen Breite B1 der Beschaufelung 20 beträgt. Der Leitwulst 46 verhindert ein Wegwandern des Wirbels der zuströmenden Frischluft und hält diesen Wirbel an der Zuströmöffnung 44. Dadurch ergibt sich in Verbindung mit dem relativ kleinen Querschnitt der Zuströmöffnung 44 eine hohe Saugleistung des Laufrades 16 im Bereich des ersten Saugraumes V1.
  • Die Funktionsweise des Radialgebläses ergibt sich aus der Darstellung der Figur 2.
  • Bei Rotation des Laufrades 16 in Pfeilrichtung wirkt das Laufrad 16 im Bereich des ersten Saugraumes V1 als Radialgebläse. Frischluft wird durch die Zuströmöffnung 44 axial in den ersten Saugraum V1 gesaugt und über den Umfangsbereich des ersten Saugraums V1 durch die Beschaufelung 20 radial nach außen in das Gehäuse 24 beschleunigt. In dem sich erweiternden Diffusor des Gehäuses 24 baut sich dabei gegen den Auslaß 28 hin ein statischer Druck auf.
  • Im Bereich des zweiten Saugraumes V2 ist das Laufrad 16 an seinen beiden axialen Stirnseiten dicht abgeschlossen, im Innenraum bildet die Trennwand 42 einen dichten Abschluß und an dem der Trennwand 42 gegenüberliegenden Außenumfang dichtet die Zungenkante 26 das Laufrad 16 ab. Das Laufrad 16 arbeitet daher im Bereich des zweiten Saugraumes V2 ausschließlich als Querstromgebläse, welches die Luft aus dem Druckraum im Bereich des Auslasses 28 ansaugt und verdichtet in den Anfangsbereich des Diffusors des Gehäuses 24 hinter der Zungenkante 26 auswirft.
  • Es ist offensichtlich, daß die Abdichtung zwichen dem Laufrad 16 und der zweiten Scheibe 32 im Ansaugbereich des Querstromgebläses, d.h. zwischen der Trennwand 42 und der Zungenkante 26 nicht funktionsnotwendig ist. Für die Verdichtung des Querstromgebläses ist nur entscheidend, daß die Abdichtung im Ausblasbereich vorhanden ist und damit der Niederdruckbereich und der Hochdruckbereich des Gehäuses getrennt sind.
  • Das Radialgebläse arbeitet somit als zweistufiges Gebläse mit einer ersten durch den ersten Saugraum V1 gebildeten als Radialgebläse arbeitenden Stufe und einer zweiten durch den zweiten Saugraum V2 gebildeten als Querstromgebläse arbeitenden Stufe.
  • In den Ausführungsbeispielen der Figuren 1 bis 3 sind die Scheiben 30 und 32 über den Umfang des Laufrades 16 hinaus geführt und bilden einstückig auch die axialen Deckplatten des Gehäuses 24. Dies ermöglicht eine kostengünstige Herstellung des gesamten Gehäuses 24 einschließlich der Scheiben 30 und 32 aus zwei einstückige Spritzgußteilen. Diese Ausführung eignet sich insbesondere, wenn das Gebläse in großen Stückzahlen gefertigt wird.
  • In den Figuren 4 und 5 ist eine weitere Abwandlung dargestellt, die eine Anpassung des Radialgebläses an unterschiedliche Anbaukonfigurationen ermöglicht.
  • In dem Ausführungsbeispiel der Figuren 4 und 5 bilden die beiden planparallelen Scheiben 30 und 32 mit dem zwischen diesen gelagerten Laufrad 16 ein selbständiges Einbaumodul, welches in ein beliebig gestaltetes Gehäuse 24 eingesetzt werden kann. Die Anpassung an den jeweiligen Anwendungsfall und die individuellen Einbaugegebenheiten erfolgt durch das jeweilige Gehäuse 24, während das Einbaumodul in gleicher Ausführung in großer Stückzahl serienmäßig gefertigt werden kann. Die Scheiben 30 und 32 und das Laufrad 16 entsprechen in dieser Ausführung den vorstehend in Verbindung mit den Figuren 1 und 2 bzw. 3 beschriebenen Ausführungen, so daß insoweit auf die vorhergehende Beschreibung verwiesen werden kann. Im Gegensatz zu den vorstehend beschriebenen Ausführungen sind die Scheiben 30 und 32 jedoch nicht einstückig mit den Deckplatten des Gehäuses ausgebildet, sondern ragen nur mit einem Rand 48 über den Außenumfang des Laufrades 16. Im Bereich dieses Randes 48 sind die Scheiben 30 und 32 durch einige über den Umfang verteilte Haltestifte 50 miteinander verbunden. Auf die Haltestifte 50 sind Leitschaufeln 52 aufgesetzt, die als Abstandshalter zwischen den Scheiben 30 und 32 dienen. Die Leitschaufeln 52 sind im Sinne der Beschaufelung 20 des Laufrades 16 gekrümmt, so daß sie das Strömungsverhalten des Laufrades nicht beeinträchtigen.
  • Das Laufrad 16 mit den Scheiben 30 und 32 wird mittels der Haltestifte 50 zu dem kompletten selbsttragenden Einbaumodul montiert. Dieses Einbaumodul kann in eine entsprechende Aussparung eines den jeweiligen Anforderungen entsprechenden Gehäuses 24 eingesetzt werden und wird in dem Gehäuse befestigt, wozu beispielsweise ein radial überstehender Flansch 54 der ersten Scheibe 30 dient, der Bohrungen 56 zum Verschrauben mit dem Gehäuse 24 aufweist.
  • In Figur 6 ist eine vierte Ausführung dargestellt, bei welcher das Laufrad 16 und die das Laufrad 16 aufnehmenden und abschließenden Scheiben 30 und 32 ebenfalls in einer der vorstehend beschriebenen Ausführungen ausgebildet sind.
  • In dem Ausführungsbeispiel der Figur 6 weist das Gehäuse jedoch zwei in Umfangsrichtung aneinander anschließende Diffusoren auf, die jeweils durch eine an den Umfang des Laufrades 16 führende Zungenkante voneinander getrennt sind. Eine erste Zungenkante 58 liegt im Bereich der Trennwand 42 an dem Außenumfang des Laufrades 16 an, so daß ein sich entlang des ersten Saugraumes V1 erstreckender erster Druckraum 60 gebildet wird, der sich bis in den Umfangsbereich des zweiten Saugraumes V2 erstreckt und etwa in der Mitte des Umfangsbereichs des zweiten Saugraums V2 durch eine zweite Zungenkante 62 abgeschlossen wird. Von der zweiten Zungenkante 62 erweitert sich ein zweiter Druckraum 64 in Umfangsrichtung bis zu dem Auslaß 28.
  • Die Funktionsweise des Radialgebläses dieser Ausführungsform entspricht im wesentlichen der oben beschriebenen Funktionsweise. Frischluft wird durch die Zuströmöffnung 44 in den ersten Saugraum V1 angesaugt und radial in den ersten Druckraum 60 gefördert. Der erste Druckraum 60 dient somit als Druckraum des als Radialgebläse arbeitenden Teiles des Laufrades 16 mit dem ersten Saugraum V1. Die durch diese Radialgebläse-Stufe verdichtete Luft im ersten Druckraum 60 durchströmt dann das Laufrad 16 im Bereich des zweiten Saugraums V2 und wird nachverdichtet in den zweiten Druckraum 64 gefördert. Der Teil des Laufrades 16 mit dem zweiten Saugraum V2 wirkt auch hier als zweite nachverdichtende Gebläsestufe, die als Querstromgebläse arbeitet.
  • In den dargestellten Ausführungsbeispielen ist die Trennwand 42 im wesentlichen rechtwinklig zu der Axialebene angeordnet, die durch die Achse des Laufrades 16 und die dem zweiten Saugraum V2 zugeordnete Zungenkante 26 bzw. 62 verläuft. Bei dieser Anordnung sind der Eintrittsquerschnitt und der Austrittsquerschnitt des als Querstromgebläse wirkenden zweiten Saugraumes V2 im wesentlichen gleich. Wird die Trennwand 42 gegenüber der dargestellten Anordnung im Winkel gedreht angeordnet, so daß sich der Eintrittsquerschnitt des zweiten Saugraumes V2 vergrößert und sich sein Austrittsquerschnitt verkleinert, so ergibt sich eine stärkere Druckerhöhung durch das Querstromgebläse.
  • Durch die Winkelstellung der Trennwand 42 kann somit der erzielbare statische Druck beeinflußt werden. Es ist auch möglich, die zweite Scheibe 32 mit der Trennwand 42 im Winkel verstellbar zu befestigen, um eine individuelle Einstellung des statischen Druckes zu ermöglichen.
  • Die durch die erfindungsgemäße Ausbildung des Radialgebläses erzielbaren Vorteile bestehen vor allem in den erzielbaren hohen statischen Drücken und einer stabilen steilen P/V-Charakteristik. Diese Eigenschaften machen das Radialgebläse besonders geeignet für die verbrennungsluft-Förderung bei mordernen Öl- und Gasbrennern, bei welchen diese Gebläsemerkmale einen stabilen Feuerungsbetrieb gewährleisten.
  • In Figur 7 ist in ein P/V-Diagramm der erzielbaren statischen Drücke in Abhängigkeit von dem geförderten Luftvolumenstrom dargestellt. Die Kennlinie des erfindungsgemäßen Radialgebläses ist mit I bezeichnet und der mit II bezeichneten Kennlinie eines herkömmlichen Radialgebläses gegenübergestellt. Es ist erkennbar, daß bis zu einem Faktor 4 höhere statische Drücke mit dem erfindungsgemäßen radialen Gebläse erzielt werden.

Claims (13)

  1. Radialgebläse, mit einem Laufrad, mit einem das Laufrad an seinem Umfang umschließenden Gehäuse, das sich in Drehrichtung des Laufrades von einer Zungenkante zu einem Auslaß erweitert, mit einer an einer axialen Stirnseite des Laufrades angeordneten feststehenden ersten Deckplatte, mit einer an der anderen axialen Stirnseite des Laufrades angeordneten feststehenden zweiten Deckplatte, mit einer von der zweiten Deckplatte in den Innenraum des Laufrades ragenden Trennwand, die den Innenraum in einen ersten und einen zweiten Saugraum unterteilt, wobei die Zungenkante im Umfangsbereich des zweiten Saugraumes angeordnet ist und mit einer in der zweiten Deckplatte angeordneten, in den ersten Saugraum mündenden Zuströmöffnung, dadurch gekennzeichnet, daß die zweite Deckplatte (zweite Scheibe 32) so dicht an die axiale Stirnseite des Laufrades (16) angrenzt, daß die Hochdruckseite des Gehäuses (24) gegen dessen Niederdruckseite an den axialen Stirnseiten des Laufrades (16) abgedichtet ist.
  2. Radialgebläse nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Deckplatte (zweite Scheibe 32) die axiale Stirnseite des Laufrades (16) im Bereich des zweiten Saugraumes (V2) zumindest in dessen Ausblasbereich vollständig abdeckt, so daß das Laufrad (16) im Bereich des zweiten Saugraumes (V2) als Querstromgebläse arbeitet.
  3. Radialgebläse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erste und die zweite Deckplatte durch zwei planparallele Scheiben (30, 32) gebildet sind, deren lichter Abstand (B2) der axialen Breite (B1) des Laufrades (16) entspricht.
  4. Radialgebläse nach Anspruch 3, dadurch gekennzeichnet, daß das Laufrad (16) axial zumindest in eine Ausnehmung (34) der radtragscheibenseitigen Scheibe (30), vorzugsweise in Ausnehmungen (34 und 36) beider Scheiben (30 und 32), eintaucht, so daß zwischen dem Laufrad (16) und zumindest der einen Scheibe (30), vorzugsweise beiden Scheiben (30 und 32), ein Labyrinth-Dichtsystem gebildet ist.
  5. Radialgebläse nach Anspruch 4, dadurch gekennzeichnet, daß das Laufrad (16) zumindest an einer axialen Stirnseite, vorzugsweise an der Radtragscheibe (18), einen axial nach außen vorspringenden Kragen (38) aufweist, der in eine Rille (40) der entsprechenden Scheibe (30 bzw. 32) eintaucht.
  6. Radialgebläse nach Anspruch 3, dadurch gekennzeichnet, daß die Scheiben (30, 32) einstückig mit den axialen Deckplatten des Gehäuses (24) ausgebildet sind.
  7. Radialgebläse nach Anspruch 3, dadurch gekennzeichnet, daß die Scheiben (30, 32) das Laufrad (16) nur mit einem Rand (48) radial überragen und miteinander verbunden sind, so daß das Laufrad (16) mit den Scheiben (30, 32) ein selbständiges in das Gehäuse (24) einsetzbares Einbaumodul bildet.
  8. Radialgebläse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennwand (42) den Innenraum des Laufrades (16) asymmetrisch teilt, wobei der zur Trennwand (42) rechtwinklig verlaufende Innendurchmesser des Laufrades (16) im Verhältnis 0,65 bis 1,0 geteilt wird und der kleinere Durchmesserabschnitt (H1) im ersten Saugraum (V1) und der größere Durchmesserabschnitt (H2) im zweiten Saugraum (V2) liegt.
  9. Radialgebläse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Querschnittsfläche der Zuströmöffnung (44) wesentlich kleiner ist als die Querschnittsfläche des ersten Saugraumes (V1).
  10. Radialgebläse nach Anspruch 9, dadurch gekennzeichnet, daß die Zuströmöffnung (44) einen kreisförmigen Querschnitt mit einem Durchmesser (d) aufweist, der das 0,5 bis 0,9-fache des auf den ersten Saugraum (V1) entfallenden Abschnittes (H1) der zur Trennwand (42) senkrechten Diametralen des Laufrades (16) beträgt.
  11. Radialgebläse nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß an der Innenfläche der zweiten Scheibe (32) in Drehrichtung des Laufrades (16) anschließend an die Zuströmöffnung (44) ein erhabener Leitwulst (46) ausgebildet ist.
  12. Radialgebläse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (24) zwei im Umfangswinkel annähernd diametral gegeneinander versetzte Zungenkanten (58, 62) aufweist und dadurch in einen ersten zwischen den beiden Zungenkanten (58, 62) verlaufenden Druckraum (60) und einen von der zweiten Zungenkante (62) zum Auslaß (28) verlaufenden zweiten Druckraum (64) unterteilt ist, und daß der erste Druckraum (60) dem als Radialgebläse wirkenden Teil des Laufrades (16) mit dem ersten Saugraum (V1) und der zweite Druckraum (64) dem als Querstromgebläse wirkenden Teil des Laufrads (16) mit dem zweiten Saugraum (V2) zugeordnet ist.
  13. Radialgebläse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trennwand (42) in ihrem Winkel zu der durch die Zungenkante (26 bzw. 62) und die Achse des Laufrades (16) definierte Axialebene verstellbar ist.
EP93114532A 1992-09-25 1993-09-10 Radialgebläse Expired - Lifetime EP0589300B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4232178A DE4232178C1 (de) 1992-09-25 1992-09-25 Radialgebläse
DE4232178 1992-09-25

Publications (2)

Publication Number Publication Date
EP0589300A1 true EP0589300A1 (de) 1994-03-30
EP0589300B1 EP0589300B1 (de) 1996-12-11

Family

ID=6468849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114532A Expired - Lifetime EP0589300B1 (de) 1992-09-25 1993-09-10 Radialgebläse

Country Status (4)

Country Link
EP (1) EP0589300B1 (de)
AT (1) ATE146259T1 (de)
DE (3) DE9216709U1 (de)
DK (1) DK0589300T3 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972990A1 (de) * 1998-07-17 2000-01-19 MAN B & W Diesel Aktiengesellschaft Brennersystem zur nahstöchiometrischen Verbrennung von flüssigem oder gasförmigen Brennstoff
FR2794194A1 (fr) * 1999-05-27 2000-12-01 Man B & W Diesel Ag Ventilateur avec carter en deux parties
FR2794192A1 (fr) * 1999-05-27 2000-12-01 Man B & W Diesel Ag Ventilateur avec rondelle-entretoise
EP1002957A3 (de) * 1998-11-20 2002-01-16 PUNKER GmbH &amp; CO. Radialgebläse
EP1178215A2 (de) * 2000-08-04 2002-02-06 Calsonic Kansei Corporation Kreiselgebläse
EP1247988A1 (de) 2001-04-05 2002-10-09 PUNKER GmbH &amp; CO. Gebläseanordnung, insbesondere Brennergebläse für Heizungsanlagen
EP1002958A3 (de) * 1998-11-20 2004-09-29 PUNKER GmbH &amp; CO. Radialgebläse
CN101652572B (zh) * 2006-12-28 2013-08-21 阿尔佛雷德·卡切尔有限责任两合公司 径流式风机以及配有一个径流式风机的高压清洁装置
CN114060319A (zh) * 2020-08-10 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 离心风机和抽油烟机
CN114076122A (zh) * 2020-08-10 2022-02-22 佛山市顺德区美的洗涤电器制造有限公司 导风圈、离心风机和抽油烟机

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501816B4 (de) * 1995-01-21 2004-11-18 Körting Hannover AG Radialgebläse, insbesondere für Gebläsebrenner
IT1288866B1 (it) * 1996-03-22 1998-09-25 F I M Fonderia Ind Meccanich E Bruciatore perfezionato per generatore di calore
ATE278877T1 (de) * 1999-01-20 2004-10-15 Punker Gmbh & Co Radialgebläse
ATE279653T1 (de) * 1999-01-20 2004-10-15 Punker Gmbh & Co Radialgebläse
DE10313054B4 (de) 2003-03-24 2012-10-04 Motoren Ventilatoren Landshut Gmbh Radialgebläse
US20190017515A1 (en) * 2016-01-07 2019-01-17 Denso Corporation Blower

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500168A (de) * 1964-05-08 1965-11-09
DE1808829A1 (de) * 1968-11-14 1970-06-04 Haase Dr Ing Dietrich Radialventilator
FR2164216A5 (de) * 1971-12-03 1973-07-27 Haase Dietrich
DE2362815A1 (de) * 1972-12-29 1974-07-11 Installation Du Chauffage Auto Brennerventilator
DE2540580A1 (de) * 1975-09-11 1977-03-17 Abig Werke Carry Gross Gmbh Radialventilator
FR2511443A1 (fr) * 1981-08-14 1983-02-18 Oertli Ag Ventilateur radial a rotor en forme de tambour

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH411207A (de) * 1962-05-25 1966-04-15 Helmbold Theodor Ing Dr Gebläse mit trommelförmigem Läufer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500168A (de) * 1964-05-08 1965-11-09
DE1808829A1 (de) * 1968-11-14 1970-06-04 Haase Dr Ing Dietrich Radialventilator
FR2164216A5 (de) * 1971-12-03 1973-07-27 Haase Dietrich
DE2362815A1 (de) * 1972-12-29 1974-07-11 Installation Du Chauffage Auto Brennerventilator
DE2540580A1 (de) * 1975-09-11 1977-03-17 Abig Werke Carry Gross Gmbh Radialventilator
FR2511443A1 (fr) * 1981-08-14 1983-02-18 Oertli Ag Ventilateur radial a rotor en forme de tambour

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972990A1 (de) * 1998-07-17 2000-01-19 MAN B & W Diesel Aktiengesellschaft Brennersystem zur nahstöchiometrischen Verbrennung von flüssigem oder gasförmigen Brennstoff
EP1002957A3 (de) * 1998-11-20 2002-01-16 PUNKER GmbH &amp; CO. Radialgebläse
EP1002958A3 (de) * 1998-11-20 2004-09-29 PUNKER GmbH &amp; CO. Radialgebläse
FR2794194A1 (fr) * 1999-05-27 2000-12-01 Man B & W Diesel Ag Ventilateur avec carter en deux parties
FR2794192A1 (fr) * 1999-05-27 2000-12-01 Man B & W Diesel Ag Ventilateur avec rondelle-entretoise
EP1178215A2 (de) * 2000-08-04 2002-02-06 Calsonic Kansei Corporation Kreiselgebläse
EP1178215A3 (de) * 2000-08-04 2003-04-09 Calsonic Kansei Corporation Kreiselgebläse
EP1247988A1 (de) 2001-04-05 2002-10-09 PUNKER GmbH &amp; CO. Gebläseanordnung, insbesondere Brennergebläse für Heizungsanlagen
CN101652572B (zh) * 2006-12-28 2013-08-21 阿尔佛雷德·卡切尔有限责任两合公司 径流式风机以及配有一个径流式风机的高压清洁装置
CN114060319A (zh) * 2020-08-10 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 离心风机和抽油烟机
CN114076122A (zh) * 2020-08-10 2022-02-22 佛山市顺德区美的洗涤电器制造有限公司 导风圈、离心风机和抽油烟机

Also Published As

Publication number Publication date
DE9216709U1 (de) 1993-02-11
DK0589300T3 (da) 1997-04-14
ATE146259T1 (de) 1996-12-15
DE59304734D1 (de) 1997-01-23
DE4232178C1 (de) 1993-12-23
EP0589300B1 (de) 1996-12-11

Similar Documents

Publication Publication Date Title
EP0589300B1 (de) Radialgebläse
DE69216938T2 (de) Verdichtergehäuse für Turbolader
DE69113616T2 (de) Seitenkanalpumpe.
DE69024820T2 (de) Ringanordnung für axiallüfter
EP0786597B1 (de) Radialgebläse
EP1455094A1 (de) Radiallüfterrad
EP3824190B1 (de) Ventilator und leiteinrichtung für einen ventilator
DE1428191A1 (de) Kreiselgeblaese
EP0118769A2 (de) Mehrstufige Deckbandturbine
DE102015100215A1 (de) Seitenkanalgebläse für eine Verbrennungskraftmaschine
DE1728379A1 (de) Schleuderpumpe
DE20016769U1 (de) Radialgebläse, insbesondere für Beatmungsgeräte
DE102006061756A1 (de) Radialgebläse und mit einem Radialgebläse versehenes Hochdruck-Reinigungsgerät
EP0070529A1 (de) Peripheralkanalpumpe
EP0401397B1 (de) Flüssigkeitsringverdichter
DE19629220B4 (de) Hochdruck-Gebläse
DE4141106A1 (de) Radialgeblaese
DE10335260A1 (de) Sekundärluftfördereinrichtung für eine Brennkraftmaschine
EP0450272B1 (de) Radialgebläse mit Innenspirale
EP2100041B1 (de) Motorkreiselpumpe
EP0499166A1 (de) Axiallüftereinheit
DE3236154C2 (de) Radialventilator
WO2019057482A1 (de) Teilesatz und verfahren für die fertigung eines radiallüfters
DE19510553A1 (de) Radialgebläse
EP0763661B1 (de) Seitenkanalverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19940916

17Q First examination report despatched

Effective date: 19950726

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 146259

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

ET Fr: translation filed
ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59304734

Country of ref document: DE

Date of ref document: 19970123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970226

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000922

Year of fee payment: 8

Ref country code: BE

Payment date: 20000922

Year of fee payment: 8

Ref country code: AT

Payment date: 20000922

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010910

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010910

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

BERE Be: lapsed

Owner name: SCHILLING SIEGFRIED W.

Effective date: 20010930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010910

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: PUNKER GMBH & CO. KG

Effective date: 20080807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090924

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090929

Year of fee payment: 17

Ref country code: FR

Payment date: 20091016

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100910

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20110929

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121129

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120911

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59304734

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130911