EP0586481B1 - Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer - Google Patents

Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer Download PDF

Info

Publication number
EP0586481B1
EP0586481B1 EP92911285A EP92911285A EP0586481B1 EP 0586481 B1 EP0586481 B1 EP 0586481B1 EP 92911285 A EP92911285 A EP 92911285A EP 92911285 A EP92911285 A EP 92911285A EP 0586481 B1 EP0586481 B1 EP 0586481B1
Authority
EP
European Patent Office
Prior art keywords
die
jet
crucible
chamber
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92911285A
Other languages
German (de)
English (en)
Other versions
EP0586481A1 (fr
Inventor
Denis Bijaoui
Guy Jarrige
Michel Legras
Jean Roche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP0586481A1 publication Critical patent/EP0586481A1/fr
Application granted granted Critical
Publication of EP0586481B1 publication Critical patent/EP0586481B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • B22D11/062Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires the metal being cast on the inside surface of the casting wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles

Definitions

  • the invention relates to methods and devices for obtaining wires of amorphous metal alloys by rapid cooling in a liquid medium, these alloys being based on iron.
  • the INROWASP process makes it possible to obtain fine amorphous wires, very resistant to corrosion, having a tensile breaking load which can reach or even exceed 3200 MPa.
  • Japanese patent application published under number 63-10044 describes a process in which an inert or slightly reducing protective gas is introduced into an envelope surrounding the casting crucible.
  • this protective casing leads to a large bulk, which does not allow the casting orifice to be efficiently heated, and it is therefore not possible to avoid overheating of the amorphizable alloy.
  • the protective gas is not located at the level of the pouring orifice and the protection of the jet is then not satisfactory.
  • Japanese patent application published under No. 1-271040 describes a process in which the heating of the amorphizable alloy in the upper part of the crucible is carried out using a first induction coil supplied with medium frequency current. , and the heating at the bottom of the crucible is provided by a second induction coil supplied with high frequency current.
  • This device is characterized by a great complexity of the heating means, the proximity of the two induction circuits at different frequencies can also cause undesirable effects in the generators due to a phenomenon of coupling between the two circuits.
  • the object of the invention is to avoid these drawbacks.
  • This wire can be used, for example, to reinforce plastic or rubber articles, in particular tire casings, and the invention also relates to these articles.
  • Figures 1 and 2 show a device 1 according to the invention for producing amorphous metal wires in iron-based alloys.
  • This device 1 includes a crucible 2 around which is located the induction coil 3 which makes it possible to melt the amorphizable metallic alloy 4 based on iron placed in the crucible 2, a pressurized gas 5, for example helium, allowing the liquid alloy 4 to flow through the orifice 60 of the die 6 so as to obtain a jet 7, this gas 5 being inert with respect to the alloy 4.
  • a pressurized gas 5 for example helium
  • This jet 7 directed, for example downwards, reaches the layer 8 of coolant 9, this layer being pressed against the internal wall 10 of the drum 11, this liquid 9 being for example water.
  • the jet 7 then solidifies very quickly to give the amorphous metallic wire 12.
  • Figure 3 shows in more detail a portion 14 of the device 1, Figure 3 being a section similar to that of Figure 1, and therefore perpendicular to the axis xx '.
  • This portion 14 shows the lower part of the crucible 2, the die 6 with its orifice 60, and the lower turns of the coil 3, as well as the free surface 80 of the liquid layer 8.
  • the crucible 2 comprises an upper cylindrical part 2A, an intermediate part 2B forming a cone portion, and a lower part 2C also in the form of a cone, terminated by a 2D conical bevelled face which defines an opening 21 at its lower part.
  • the crucible 2 has an axis of revolution, referenced yy ', for example vertical, which is also the axis of revolution of the die 6 and its orifice 60, this axis yy' being included in the plane of Figure 3.
  • L he thickness of the crucible 2 is practically constant for the parts 2A, 2B and the thickness of the part 2C corresponding to the bevelled 2D face decreases downwards.
  • the angles of the conical parts 2B, 2C measured at the external surface of the crucible 2 are referenced respectively ⁇ 2B, ⁇ 2C.
  • the angle of the 2D conical face is referenced ⁇ 2D.
  • the jet 7 flows downwards, along the axis yy ', from the orifice 60, through the opening 21, in the direction of the surface 80 of the layer 8, this flow being shown diagrammatically by the arrow F7, and it makes the acute angle ⁇ 7 with the surface 80, in the plane of FIG. 3, this surface 80 being driven by a rotational movement, shown diagrammatically by the arrow F8.
  • the arrows F7, F8 are located in the plane of FIG. 3 and they form between them the angle ⁇ 7 which is the angle of incidence of the jet 7 relative to the circumferential direction of rotation of the liquid 9.
  • the face upper 6A of the die 6 is planar and forms a crown, and the lower face 6B of the die 6 is also planar, being pierced with the orifice 60.
  • the die 6 is arranged inside the conical part 2C of the crucible.
  • a portion of the internal face of the part 2C, referenced 20C, the downstream lower end face 6B of the die 6 where the orifice 60 and the opening 21 are located define a chamber 22 into which opens a thin tube 23 passing through the face 2D beveled.
  • a neutral or reducing gas 24 is made to come through the tube 23.
  • This gas 24 fills the chamber 22, being in contact with the face 6B and therefore the jet 7, at its outlet from the orifice 60.
  • the gas 24 flows slowly out of the chamber 22 through the opening 21.
  • the gas 24 can for example be nitrogen, argon, hydrogen, ammonia cracked, hydrogen or a mixture containing hydrogen being preferred, pure hydrogen being even more preferable.
  • a seal 25 sandwiched between the die 6 and the crucible 2 seals between these two parts.
  • the die 6 and the crucible 2 are made with different materials making it possible to meet the different requirements for the die 6 and the crucible 2.
  • the material of the seal 25 is different from the materials used for the die 6 and the crucible 2.
  • the coil 3 is formed by a single spiral winding around the axis yy 'of a thin copper tube 30, internally cooled by circulation of water, forming turns 30A which are inclined relative to the axis yy '( Figures 2 and 3) and which follow at a short distance the conical parts 2B, 2C and the cylinder 2A.
  • turns 30A are shown in FIG. 3.
  • the turn 30A lower, that is to say the one closest to the surface 80, is for example situated practically in a plane parallel to the surface portion 80 which faces it, this lower turn descending at the level of the orifice 60, following the yy 'axis.
  • the chamber 22 is small compared to the crucible 2 and the die 6.
  • the 2D bevelled face of the lower part 2C makes it possible to have a low height for the chamber 22 and a small distance between the orifice 60 and the surface 80.
  • the angle ⁇ 2D of this 2D beveled face is for example equal to twice the angle ⁇ 7 or close to twice the angle ⁇ 7, for this purpose.
  • the opening 21 preferably has a diameter of between 1 mm and 2 mm.
  • the alloy 4 corresponds to the formula Fe ⁇ Cr ⁇ Si ⁇ B ⁇ Ni ⁇ Co ⁇ Mo ⁇ , this alloy being devoid of other elements, if not unavoidable impurities.
  • ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ are the atomic percentages of the elements to which they relate, these percentages checking the following relationships: ⁇ ⁇ 55; 5 ⁇ ⁇ ⁇ 10; 7.5 ⁇ ⁇ ⁇ 15; 8 ⁇ ⁇ ⁇ 15; 0 ⁇ ⁇ + ⁇ ⁇ 15; 0 ⁇ ⁇ ⁇ 2.
  • This alloy therefore has a very high iron content since it is greater than 60% (atomic%).
  • These alloys are economical, and the invention makes it possible to use them to produce large lengths of amorphous wires, without breakage, these wires having advantageous mechanical properties, while known methods did not allow them to be used because they led to breakages. frequent and to wires with poor mechanical properties.
  • An amorphizable alloy of composition is used Fe 61 Co 10 Cr 7 Si 9 B 13 the subscript figures giving the atomic%.
  • a continuous length of 1760 m of amorphous wire 12 is obtained, having a diameter of 98 ⁇ m and an average tensile breaking load, in the quenched raw state, of 3237 MPa with a standard deviation of 59.
  • An amorphizable alloy of composition is used Fe 71 Cr 7 Si 9 B 13 the subscript figures giving the atomic%.
  • a continuous length of 1145 m of amorphous wire 12 is obtained, having a diameter of 109 ⁇ m and an average tensile breaking load, in the quenched raw state, of 3219 MPa with a standard deviation of 38.
  • Figure 4 shows a portion of another device 40 according to the invention.
  • This device 40 is similar to the device 1 with the following differences.
  • the crucible 41 comprises a cylindrical upper part 41A, similar to the part 2A of the device 1.
  • This part 41A is extended downwards by a conical part 41B whose lower end has a beveled face 41C also conical.
  • the angles of the cones of the part 41B and of the face 41C are represented respectively by ⁇ 41B and ⁇ 41C.
  • the die 42 has a shape similar to the die 6 of the device 1 but it is located in the lower portion of the part 41B so that its orifice 420 is located outside and below the crucible 41, the die 42 forming thus protruding from the conical part 41B, outside the crucible 41.
  • the part of the die 42 which is located under the part 41B of the crucible 41 is surrounded by a ring 44 pierced with a hole 45 into which the tube 43 opens, where the gas 24 arrives in the ring 44.
  • This ring 44 has by example externally the shape of a cylinder portion whose upper end 46 is fixed in sealed manner to the bevelled face 41C by surrounding the orifice 420, while its lower end 47 is practically parallel to the surface portion 80 which faces, and a short distance from that portion.
  • the angle ⁇ 41B is for example smaller than the angle ⁇ 2B of the device 1.
  • the device 40 makes it possible to locate the gas 24 around the lower part of the die 42 against the orifice 420, and around the jet 7, in the chamber formed by the internal face of the ring 44 and by the surface portions 41C and of die 42 which it surrounds.
  • the material of the ring 44 may for example be the same as that of the crucible 41.
  • the invention is not limited to the examples described above.
  • the geometric characteristics given above, in particular for the angles and the thicknesses of the crucible 2 and of the die 6, can vary within wide limits.

Abstract

Procédé et dispositif pour obtenir un fil (12) en alliage métallique amorphe à base de fer par réalisation d'un jet (7) d'alliage fondu (4) à travers l'orifice (60) d'une filière (6), et introduction de ce jet (7) dans un liquide de refroidissement (9) plaqué par la force centrifuge contre la paroi interne d'un tambour rotatif. Le creuset (2) contenant l'alliage (4) et la filière (6) sont réalisés avec des matières différentes et sont réunis par un joint (25) dont la matière est différente de celles du creuset (2) et de la filière (6). D'autre part, on utilise des moyens (3) pour chauffer l'alliage (4) à la fois dans le creuset (2) et dans la filière (6) et on fait arriver un gaz inerte ou réducteur directement au contact du jet (7) à la sortie de la filière (6).

Description

  • L'invention concerne les procédés et les dispositifs permettant d'obtenir des fils en alliages métalliques amorphes par refroidissement rapide dans un milieu liquide, ces alliages étant à base de fer.
  • Il est connu de mettre en oeuvre ce procédé d'hypertrempe par projection d'un jet d'alliage fondu amorphisable, à base de fer, dans une couche liquide de refroidissement, par exemple une couche d'eau, plaquée grâce à la force centrifuge contre la paroi interne d'un tambour rotatif. Ce procédé est couramment appelé "in rotating water spinning" (filage dans de l'eau en rotation), bien qu'il ne soit pas limité à l'emploi de l'eau comme fluide de refroidissement, ce dernier procédé étant souvent désigné sous la forme abrégée "INROWASP", forme qui sera utilisée dans la suite, étant donné son emploi très fréquent dans la littérature technique.
  • Le procédé INROWASP permet d'obtenir des fils fins amorphes, très résistants vis-à-vis de la corrosion, ayant une charge de rupture en traction qui peut atteindre ou même dépasser 3200 MPa.
  • Un tel procédé est décrit par exemple dans les brevets US 4 495 691 et US 4 523 626.
  • Cependant ce procédé présente actuellement les inconvénients suivants :
    • il se produit une usure importante de l'orifice de coulée par lequel est filé l'alliage fondu, et ceci même après quelques minutes de coulée seulement ;
    • si l'on veut réduire le nombre de ruptures du jet ou du fil trempé lors de la coulée, il est préférable d'avoir une faible valeur pour l'angle d'incidence du jet par rapport à la direction circonférentielle du liquide de refroidissement, cette valeur étant par exemple comprise entre 40 et 70° ; d'autre part, pour éviter que le jet de métal liquide ne commence à se résoudre en gouttes avant son contact avec le liquide de refroidissement, il est nécessaire que la distance entre ce liquide et l'orifice de la filière soit très faible, par exemple égale à 5 mm, ou même moins ; or ces deux conditions sont très difficiles à réaliser par suite de l'encombrement des dispositifs servant à chauffer l'alliage et à le filer ;
    • pour certaines compositions, l'oxydation du jet liquide est très rapide, à l'instant où il sort de la filière ; cette oxydation conduit à un mouillage important de la partie extérieure de la filière par l'oxyde formé, entraînant des perturbations au niveau de l'écoulement, et, par suite, à des ruptures fréquentes du jet et du fil, et ceci même pour une faible distance entre la sortie de filière et le liquide réfrigérant ;
    • les problèmes d'encombrement précités, et la nécessité d'avoir une distance faible entre l'orifice de coulée et le liquide réfrigérant font qu'il est très difficile de chauffer efficacement le métal liquide au niveau de l'orifice de coulée ; il est alors nécessaire de provoquer une surchauffe de l'alliage liquide, avant son passage dans la filière, pour qu'il reste liquide lors de la projection, mais cette surchauffe peut provoquer des instabilités du jet de nature hydrodynamique, et conduire à un mauvais état de surface du fil obtenu après trempe, ou même à un fil plus sensible à la fragilisation thermique.
  • La demande de brevet japonais publiée sous le n° 63-10044 décrit un procédé dans lequel on fait arriver un gaz de protection inerte ou légèrement réducteur dans une enveloppe entourant le creuset de coulée. Cependant cette enveloppe de protection conduit à un encombrement important, qui ne permet pas de chauffer efficacement l'orifice de coulée, et on ne peut donc pas éviter la surchauffe de l'alliage amorphisable. D'autre part, le gaz protecteur n'est pas localisé au niveau de l'orifice de coulée et la protection du jet n'est alors pas satisfaisante.
  • La demande de brevet japonais publiée sous le n° 1-271040 décrit un procédé dans lequel le chauffage de l'alliage amorphisable dans la partie haute du creuset est effectué à l'aide d'une première bobine d'induction alimentée en courant moyenne fréquence, et le chauffage au niveau du bas du creuset est assuré par une deuxième bobine d'induction alimentée en courant haute fréquence. Ce dispositif se caractérise par une grande complexité des moyens de chauffage, la proximité des deux circuits d'induction à fréquences différentes pouvant aussi entraîner des effets indésirables au niveau des générateurs par suite d'un phénomène de couplage entre les deux circuits.
  • Le but de l'invention est d'éviter ces inconvénients.
  • En conséquence, l'invention concerne un procédé pour obtenir un fil en alliage métallique amorphe à base de fer, ce procédé consistant à réaliser un jet d'un alliage amorphisable fondu à travers l'orifice d'une filière et à introduire le jet dans un liquide de refroidissement plaqué par la force centrifuge contre la paroi interne d'un tambour rotatif, ce procédé étant caractérisé par les points suivants :
    • a) on utilise un creuset contenant l'alliage et une filière disposée à une des extrémités du creuset ; le creuset et la filière sont réalisés avec des matières différentes et sont réunis par un joint dont la matière est différente de celles du creuset et de la filière ;
    • b) on utilise des moyens qui sont les mêmes pour chauffer l'alliage à la fois dans le creuset et dans la filière ;
    • c) on fait arriver un gaz inerte ou réducteur dans une chambre localisée à proximité de la filière, directement au contact du jet à sa sortie de la filière.
  • L'invention concerne également un dispositif pour obtenir un fil en alliage métallique amorphe à base de fer, ce dispositif comportant un creuset susceptible de contenir un alliage amorphisable à l'état liquide, a base de fer, une filière disposée à une extrémité du creuset, des moyens permettant d'appliquer une pression pour faire couler l'alliage liquide à travers l'orifice de la filière, sous forme d'un jet, en direction d'un liquide de refroidissement, un tambour, et des moyens permettant de faire tourner le tambour autour d'un axe de façon à plaquer le liquide de refroidissement sous forme d'une couche contre la paroi interne du tambour, de façon à donner le fil amorphe par solidification rapide du jet, le dispositif étant caractérisé par les points suivants :
    • a) le creuset et la filière sont réalisés avec des matières différentes et sont réunis par un joint dont la matière est différente de celles du creuset et de la filière ;
    • b) le dispositif comporte des moyens qui sont les mêmes pour chauffer l'alliage à la fois dans le creuset et dans la filière ;
    • c) le dispositif comporte des moyens pour faire arriver un gaz inerte ou réducteur dans une chambre localisée à proximité de la filière, directement au contact du jet à sa sortie de la filière.
  • Ce fil peut être utilisé par exemple pour renforcer des articles en matière plastique ou en caoutchouc, notamment des enveloppes de pneumatiques, et l'invention concerne également ces articles.
  • Les exemples de réalisation qui suivent, ainsi que les figures toutes schématiques du dessin correspondant à ces exemples, sont destinés à illustrer l'invention et à en faciliter la compréhension sans toutefois en limiter la portée.
  • Sur le dessin :
    • La figure 1 représente un dispositif conforme à l'invention, avec un tambour rotatif, selon une coupe effectuée dans un plan perpendiculaire à l'axe du tambour ;
    • La figure 2 représente le dispositif de la figure 1 selon une coupe effectuée dans un plan contenant l'axe au tambour ;
    • La figure 3 représente plus en détail une portion du dispositif représenté aux figures 1 et 2, avec une portion du creuset et la filière utilisés dans ce dispositif, selon une coupe effectuée dans un plan contenant l'axe du creuset et de la filière et perpendiculaire à l'axe du tambour ;
    • La figure 4 représente une portion d'un autre dispositif conforme à l'invention, cette figure étant une coupe analogue à celle de la figure 3.
  • Les figures 1 et 2 représentent un dispositif 1 conforme à l'invention pour la réalisation de fils métalliques amorphes en alliages à base de fer. Ce dispositif 1 comporte un creuset 2 autour duquel se trouve la bobine d'induction 3 qui permet de fondre l'alliage métallique amorphisable 4 à base de fer disposé dans le creuset 2, un gaz sous pression 5, par exemple de l'hélium, permettant de faire couler l'alliage liquide 4 à travers l'orifice 60 de la filière 6 de façon à obtenir un jet 7, ce gaz 5 étant inerte vis-à-vis de l'alliage 4.
  • Ce jet 7 dirigé par exemple vers le bas, parvient à la couche 8 de liquide 9 de refroidissement, cette couche étant plaquée contre la paroi interne 10 du tambour 11, ce liquide 9 étant par exemple de l'eau. Le jet 7 se solidifie alors très rapidement pour donner le fil métallique amorphe 12.
  • Le tambour 11 actionné par le moteur 13 tourne autour de son axe dans le sens de la flèche F11, cet axe étant référencé xx' à la figure 2 et x à la figure 1. La force centrifuge ainsi obtenue applique le liquide 9 sous forme de la couche régulière cylindrique 8 contre la paroi interne 10, comme précédemment indiqué. La figure 1 est une coupe effectuée selon un plan perpendiculaire à l'axe xx', et la figure 2 est une coupe effectuée selon un plan passant par l'axe xx', ce plan étant référencé par les segments de ligne droite II-II à la figure 1.
  • La figure 3 représente plus en détail une portion 14 du dispositif 1, la figure 3 étant une coupe analogue à celle de la figure 1, et donc perpendiculaire à l'axe xx'. On voit sur cette portion 14 la partie inférieure du creuset 2, la filière 6 avec son orifice 60, et les spires inférieures de la bobine 3, ainsi que la surface libre 80 de la couche liquide 8.
  • Le creuset 2 comporte une partie 2A cylindrique supérieure, une partie 2B intermédiaire formant une portion de cône, et une partie 2C inférieure également en forme de cône, terminée par une face biseautée conique 2D qui définit une ouverture 21 à sa partie inférieure.
  • Le creuset 2 comporte un axe de révolution, référencé yy', par exemple vertical, qui est également l'axe de révolution de la filière 6 et de son orifice 60, cet axe yy' étant compris dans le plan de la figure 3. L'épaisseur du creuset 2 est pratiquement constante pour les parties 2A, 2B et l'épaisseur de la partie 2C correspondant à la face biseautée 2D diminue vers le bas. Les angles des parties coniques 2B, 2C mesurés à la surface extérieure du creuset 2 sont référencés respectivement α2B, α2C. L'angle de la face conique 2D est référencé α2D. Le jet 7 s'écoule vers le bas, selon l'axe yy', depuis l'orifice 60, à travers l'ouverture 21, en direction de la surface 80 de la couche 8, cet écoulement étant schématisé par la flèche F7, et il fait l'angle aigu α7 avec la surface 80, dans le plan de la figure 3, cette surface 80 étant animée d'un mouvement de rotation, schématisé par la flèche F8. Les flèches F7, F8 sont situées dans le plan de la figure 3 et elles font entre elles l'angle α7 qui est l'angle d'incidence du jet 7 par rapport à la direction circonférentielle de rotation du liquide 9. La face supérieure 6A de la filière 6 est plane et forme une couronne, et la face inférieure 6B de la filière 6 est également plane, en étant percée de l'orifice 60.
  • La filière 6 est disposée à l'intérieur de la partie conique 2C du creuset. Une portion de la face interne de la partie 2C, référencée 20C, la face extrême inférieure aval 6B de la filière 6 où se trouve l'orifice 60 et l'ouverture 21 définissent une chambre 22 dans laquelle débouche un tube fin 23 traversant la face biseautée 2D. Lors de la coulée de l'alliage 4, on fait arriver un gaz 24 neutre ou réducteur, par le tube 23. Ce gaz 24 remplit la chambre 22, en étant au contact de la face 6B et donc du jet 7, à sa sortie de l'orifice 60. Le gaz 24 s'écoule lentement hors de la chambre 22 par l'ouverture 21. Le gaz 24 peut être par exemple de l'azote, de l'argon, de l'hydrogène, de l'ammoniac craqué, l'hydrogène ou un mélange contenant de l'hydrogène étant préféré, l'hydrogène pur étant encore plus préférable.
  • Un joint 25 pris en sandwich entre la filière 6 et le creuset 2 assure l'étanchéité entre ces deux pièces. La filière 6 et le creuset 2 sont réalisés avec des matières différentes permettant de répondre aux exigences différentes pour la filière 6 et le creuset 2. La matière du joint 25 est différente des matières utilisées pour la filière 6 et le creuset 2.
  • La bobine 3 est formée par un seul enroulement en spirale autour de l'axe yy' d'un tube 30 fin en cuivre, refroidi intérieurement par circulation d'eau, en formant des spires 30A qui sont inclinées par rapport à l'axe yy' (figures 2 et 3) et qui suivent à faible distance les parties coniques 2B, 2C et le cylindre 2A. Pour la simplicité du dessin, seules quatre spires 30A sont représentées à la figure 3. La spire 30A inférieure, c'est-à-dire la plus proche de la surface 80, est par exemple située pratiquement dans un plan parallèle à la portion de surface 80 qui lui fait face, cette spire inférieure descendant au niveau de l'orifice 60, en suivant l'axe yy'. La chambre 22 est petite par rapport au creuset 2 et à la filière 6.
  • La face biseautée 2D de la partie inférieure 2C permet d'avoir une hauteur faible pour la chambre 22 et une distance faible entre l'orifice 60 et la surface 80. L'angle α2D de cette face biseautée 2D est par exemple égal au double de l'angle α7 ou voisin du double de l'angle α7, dans ce but.
  • L'ouverture 21 a de préférence un diamètre compris entre 1 mm et 2 mm.
  • L'invention permet les avantages suivants :
    • a) L'utilisation de matières différentes pour le creuset 2 et la filière 6 permet de répondre aux diverses exigences posées par ces éléments.
      • Le creuset 2, étant donné son volume, doit être réalisé avec une matière dont le coût ne soit pas élevé, et qui permette de résister aux chocs thermiques et à de forts gradients thermiques, tout en étant inerte vis-à-vis de l'alliage liquide. Une telle matière est par exemple la silice vitreuse, le creuset étant réalisé notamment par étirage à chaud.
      • La filière 6 doit être très inerte vis-à-vis de l'alliage liquide, c'est-à-dire qu'elle doit résister à une érosion mécanique due à l'alliage liquide, donc à sa dissolution dans cet alliage, et qu'elle doit d'autre part résister à la réduction par les éléments actifs de l'alliage liquide. Pour des alliages amorphisables à forte teneur en silicium et en bore, ce qui est un cas fréquent, la matière de la filière peut être par exemple une zircone stabilisée sous forme cubique, notamment une zircone stabilisée avec au moins un des composés suivants : oxyde d'yttrium, magnésie, chaux, ce qui garantit ainsi une longue période d'utilisation. Il est d'autre part possible de réaliser la filière par moulage et frittage de façon à assurer une parfaite reproductibilité de son profil intérieur.
      • Ces matières étant de natures différentes, il est nécessaire de les réunir par un joint 25 qui peut être réalisé avec une matière suffisamment fluide à la température de travail pour encaisser les problèmes de dilatation différentielle entre le creuset 2 et la filière 6, mais suffisamment visqueuse à la température de travail pour assurer l'étanchéité vis-à-vis de l'alliage 4 liquide sous pression. La matière du joint 25 est par exemple une poudre constituée par un mélange de silice et d'oxyde de bore.
    • b) La forme générale de la portion 14 de coulée, avec l'encastrement de la filière 6 à la partie inférieure du creuset 2, permet d'obtenir simultanément les avantages suivants :
      • . il est possible de chauffer la filière 6 au niveau même de l'orifice 60, ce qui permet d'éviter une surchauffe de l'alliage 4 ;
      • . la distance parcourue par le jet 7 entre l'orifice 60 et la surface 80 du liquide 9 peut être faible, de préférence au plus égale à 15 mm, et avantageusement au plus égale à 5 mm, cette distance étant au minimum égale à 2 mm, la présence du gaz protecteur 24 permettant cependant plus de souplesse pour le réglage de cette distance que s'il n'y avait pas ce gaz. Cette faible distance évite tout début de résolution du jet en gouttes et ceci tout en permettant de travailler si on le désire avec une valeur relativement faible pour l'angle α7, ce qui garantit souvent une bonne continuité du fil 12. La valeur de α7 est de préférence comprise entre 40° et 90°, cette valeur étant plus préférentiellement comprise entre 50° et 70°.
      • . la localisation du gaz 24 au contact de la filière 6, autour de l'orifice 60 et du jet 7, permet de protéger efficacement la face 6B de la filière 6 contre un mouillage par l'oxyde qui se formerait sur le jet 7 en l'absence de cette protection, et donc d'augmenter sa durée de vie, tout en évitant l'oxydation de l'alliage 4 du jet 7, et ceci avec un débit très faible de gaz 24. De préférence ce débit est compris entre 0,5 cm3/s et 5 cm3/s.
    • c) Toutes ces caractéristiques ont l'avantage de permettre l'utilisation d'alliages 4 amorphisables riches en fer, c'est-à-dire économiques et donnant des fils très résistants, alors que de tels alliages n'étaient pas utilisables jusqu'ici.
  • De préférence, l'alliage 4 répond à la formule Feα Crβ Siγ Bδ Niε Coζ Moη, cet alliage étant dépourvu d'autres éléments, si ce n'est des impuretés inévitables.
  • α, β, γ, δ, ε, ζ, η sont les pourcentages atomiques des éléments auxquels ils se rapportent, ces pourcentages vérifiant les relations suivantes : α ≧ 55 ; 5 ≦ β ≦ 10 ; 7,5 ≦ γ ≦ 15 ; 8 ≦ δ ≦ 15 ; 0 ≦ ε + ζ ≦ 15 ; 0 ≦ η ≦ 2.
    Figure imgb0001
  • On a encore plus préférentiellement au moins une des relations : α ≧ 60 ; 5 ≦ β ≦ 7 ; 0 ≦ ε + ζ ≦ 10.
    Figure imgb0002
  • Cet alliage a donc une très forte teneur en fer puisqu'elle est supérieure à 60 % (% atomiques). Ces alliages sont économiques, et l'invention permet de les utiliser pour réaliser des longueurs importantes de fils amorphes, sans casse, ces fils ayant des propriétés mécaniques intéressantes, alors que les procédés connus ne permettaient pas de les utiliser car ils conduisaient à des casses fréquentes et à des fils présentant de mauvaises propriétés mécaniques.
  • Exemples
  • Dans les deux exemples conformes à l'invention qui suivent, le dispositif 1 est utilisé pour réaliser des fils amorphes 12 à l'aide de deux alliages amorphisables. Pour la réalisation de ces deux exemples, le dispositif 1 a les caractéristiques suivantes :
    • diamètre intérieur du tambour 11 : 470 mm ;
    • fluide 9 utilisé : eau ; épaisseur de la couche 8 : 20 mm ; température de l'eau : 5°C ; la surface 80 de la couche 8 est à la pression atmosphérique ;
    • angle α7 : 52° ;
    • gaz 5 : hélium, pression de ce gaz : 4,5 bars (450 000 Pa) ;
    • distance entre l'orifice 60 de la filière 6 et la surface libre 80 en suivant l'axe yy' : 3 mm ;
    • gaz 24 de protection : hydrogène ; débit de ce gaz 24 à une pression de 1 bar et à la température ambiante (environ 20°C), 2,22 cm3/s, soit une vitesse de 280 cm/s dans le tube 23 ;
    • creuset 2 réalisé en silice vitreuse transparente ; épaisseur du creuset 2 dans les parties 2A, 2B et 2C (avant la face biseautée 2D), environ 3 mm; angle α2B : environ 90° ; angle α2C : environ 35° ; angle α2D : environ 120° ;
    • filière 6 réalisée en zircone stabilisée à l'oxyde d'yttrium par technique de moulage par compression uniaxiale et de frittage, épaisseur de cette filière : environ 1 mm ; hauteur selon l'axe yy' : environ 5 mm ; cette filière a intérieurement et extérieurement la forme d'un cône dont l'angle (non référencé) est égal à α2C, soit environ 35° ;
    • joint 25 réalisé avec un mélange de silice et d'oxyde de bore ;
    • hauteur de la chambre 22 selon l'axe yy' : environ 2 mm ; diamètre de l'ouverture 21 : environ 1 mm.
    Exemple 1
  • On utilise un alliage amorphisable de composition

            Fe61 Co10 Cr7 Si9 B13

    les chiffres en indice donnant les % atomiques.
  • Le filage est effectué dans les conditions suivantes :
    • température de l'alliage liquide : 1250°C ;
    • diamètre de l'orifice 60 : 110 µm ;
    • vitesse linéaire de la paroi interne 10 du tambour 11 : 9,04 m/s.
  • On obtient une longueur continue de 1760 m de fil amorphe 12 ayant un diamètre de 98 µm et une charge de rupture moyenne en traction, à l'état brut de trempe, de 3237 MPa avec un écart type de 59.
  • Exemple 2
  • On utilise un alliage amorphisable de composition

            Fe71 Cr7 Si9 B13

    les chiffres en indice donnant les % atomiques.
  • Le filage est effectué dans les conditions suivantes :
    • température de l'alliage liquide : 1260°C ;
    • diamètre de l'orifice 60 : 118 µm ;
    • vitesse linéaire de la paroi interne 10 du tambour 11 : 9,33 m/s.
  • On obtient une longueur continue de 1145 m de fil amorphe 12 ayant un diamètre de 109 µm et une charge de rupture moyennes en traction, à l'état brut de trempe, de 3219 MPa avec un écart type de 38.
  • La figure 4 représente une portion d'un autre dispositif 40 conforme à l'invention. Ce dispositif 40 est semblable au dispositif 1 avec les différences suivantes. Dans ce dispositif 40 le creuset 41 comporte une partie 41A supérieure cylindrique, analogue à la partie 2A du dispositif 1. Cette partie 41A se prolonge vers le bas par une partie conique 41B dont l'extrémité inférieure présente une face biseautée 41C également conique. Les angles des cônes de la partie 41B et de la face 41C sont représentés respectivement par α41B et α41C.
  • La filière 42 a une forme semblable à la filière 6 du dispositif 1 mais elle est située dans la portion inférieure de la partie 41B de telle sorte que son orifice 420 soit situé à l'extérieur et au dessous du creuset 41, la filière 42 faisant ainsi saillie hors de la partie conique 41B, à l'extérieur du creuset 41.
  • La partie de la filière 42 qui se trouve sous la partie 41B du creuset 41 est entourée par une bague 44 percée d'un trou 45 dans lequel débouche le tube 43 par où arrive le gaz 24 dans la bague 44. Cette bague 44 a par exemple extérieurement la forme d'une portion de cylindre dont l'extrémité supérieure 46 se fixe de façon étanche à la face biseautée 41C en entourant l'orifice 420, tandis que son extrémité inférieure 47 est pratiquement parallèle à la portion de surface 80 qui lui fait face, et à une faible distance de cette portion. Dans cette disposition, l'angle α41B est par exemple plus petit que l'angle α2B du dispositif 1.
  • Le dispositif 40 permet de localiser le gaz 24 autour de la partie inférieure de la filière 42 contre l'orifice 420, et autour du jet 7, dans la chambre formée par la face interne de la bague 44 et par les portions de surface 41C et de filière 42 qu'elle entoure.
  • Le matériau de la bague 44 peut être par exemple le même que celui du creuset 41.
  • Bien entendu, l'invention n'est pas limitée aux exemples décrits précédemment. C'est ainsi par exemple que les caractéristiques géométriques données précédemment notamment pour les angles et les épaisseurs du creuset 2 et de la filière 6, peuvent varier dans des larges limites.

Claims (28)

  1. Procédé pour obtenir un fil (12) en alliage métallique amorphe à base de fer, ce procédé consistant à réaliser un jet (7) d'un alliage amorphisable (4) fondu à travers l'orifice (60, 420) d'une filière (6, 42) et à introduire le jet (7) dans un liquide ce refroidissement (9) plaqué par la force centrifuge contre la paroi interne (10) d'un tambour rotatif (11), ce procédé étant caractérisé par les points suivants :
    a) on utilise un creuset (2, 41) contenant l'alliage (4) et une filière (6, 42) disposée à une des extrémités du creuset ; le creuset (2, 41) et la filière (6, 42) sont réalisés avec des matières différentes et sont réunis par un joint (25) dont la matière est différente de celles du creuset (2, 41) et de la filière (6, 42) ;
    b) on utilise des moyens (3) qui sont les mêmes pour chauffer l'alliage (4) à la fois dans le creuset (2, 41) et dans la filière (6, 42) ;
    c) on fait arriver un gaz (24) inerte ou réducteur dans une chambre (22) localisée à proximité de la filière (6, 42), directement au contact du jet à sa sortie de la filière (6, 42).
  2. Procédé selon la revendication 1, caractérisé en ce que le creuset (2, 41) comporte au moins une partie conique (2C, 41B) avec une ouverture (21) par où passe le jet (7), la filière étant disposée au moins en partie dans cette partie conique.
  3. Procédé selon la revendication 2, caractérisé en ce que la filière (6) est disposée en totalité dans la partie conique (2C), cette partie conique et la face extrême (6B) aval de la filière, où se trouve l'orifice (60) de celle-ci, définissant une chambre (22) dans laquelle débouche un tube (23) par où l'on fait arriver le gaz (24) dans la chambre (22), cette chambre comportant une ouverture (21) par où passe le jet (7), en direction du liquide de refroidissement (9).
  4. Procédé selon la revendication 2, caractérisé en ce que la filière (42) n'est disposée qu'en partie dans la partie conique (41B) et fait saillie, avec son orifice, hors de cette partie conique, à l'extérieur du creuset (41) ; un tube (43) permettant de faire arriver le gaz (24), directement au contact du jet (7), à la sortie de la filière (42), débouche dans une chambre entourant l'orifice de la filière, cette chambre comportant une ouverture par où passe le jet en direction du liquide de refroidissement.
  5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le creuset (2, 41) est réalisé en silice vitreuse.
  6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la filière (6, 42) est réalisée en zircone stabilisée sous forme cubique.
  7. Procédé selon la revendication 6, caractérisé en ce que la filière (6, 42) est réalisée en zircone stabilisée avec au moins un des composés suivants : oxyde d'yttrium, magnésie, chaux.
  8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le joint (25) est réalisé avec un mélange de silice et d'oxyde de bore.
  9. Procédé selon la revendication 4, caractérisé en ce que la chambre est réalisée en partie avec de la silice vitreuse.
  10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'on utilise un alliage (4) de formule

            Fα Crβ Siγ Bδ Niε Coζ Moη

    α, β, γ, δ, ε, ζ, η étant les poucentages atomiques des éléments auxquels ils se rapportent, ces pourcentages vérifiant les relations suivantes : α ≧ 55 ; 5 ≦ β ≦ 10 ; 7,5 ≦ γ ≦ 15 ; 8 ≦ δ ≦ 15 ; 0 ≦ ε + ζ ≦ 15 ; 0 ≦ η ≦ 2.
    Figure imgb0003
  11. Procédé selon la revendication 10, caractérisé en ce que l'on a au moins une des relations : α ≧ 60 ; 5 ≦ β ≦ 7 ; 0 ≦ ε + ζ ≦ 10.
    Figure imgb0004
  12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la distance parcourue par le jet (7) entre l'orifice (60, 420) de la filière (6, 42) et le liquide de refroidissement (9) est au moins égal à 2 mm et au plus égale à 15 mm.
  13. Procédé selon la revendication 12, caractérisé en ce que cette distance est au moins égale à 2 mm et au plus égale à 5 mm.
  14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le contact du jet (7) avec le liquide de refroidissement (9) s'effectue selon un angle d'incidence (α7) compris entre 40° et 90° par rapport à la direction circonférentielle de rotation du liquide.
  15. Procédé selon la revendication 14, caractérisé en ce que cet angle d'incidence (α7) est compris entre 50° et 70°.
  16. Dispositif (1, 40) pour obtenir un fil (12) en alliage métallique amorphe à base de fer, ce dispositif (1, 40) comportant un creuset (2, 41) susceptible de contenir un alliage amorphisable (4) à l'état liquide, à base de fer, une filière (6, 42) disposée à une extrémité du creuset (2, 41), des moyens (5) permettant d'appliquer une pression pour faire couler l'alliage liquide (4) à travers l'orifice (60, 420) de la filière (6, 42), sous forme d'un jet (7), en direction d'un liquide de refroidissement (9), un tambour (11), et des moyens (13) permettant de faire tourner le tambour (11) autour d'un axe (x, x') de façon à plaquer le liquide de refroidissement (9) sous forme d'une couche (8) contre la paroi interne (10) du tambour (11), de façon à donner le fil amorphe (12) par solidification rapide du jet (7), le dispositif étant caractérisé par les points suivants :
    a) le creuset (2, 41) et la filière (6, 42) sont réalisés avec des matières différentes et sont réunis par un joint (25) dont la matière est différente de celles du creuset et de la filière ;
    b) le dispositif (1, 40) comporte des moyens (3) qui sont les mêmes pour chauffer l'alliage (4) à la fois dans le creuset et dans la filière ;
    c) le dispositif comporte des moyens (23, 43) pour faire arriver un gaz (24) inerte ou réducteur dans une chambre (22) localisée à proximité de la filière (6, 42), directement au contact du jet (7) à sa sortie de la filière (6, 42).
  17. Dispositif (1, 40) selon la revendication 16, caractérisé en ce que le creuset (2, 41) comporte au moins une partie conique (2C, 41B) avec une ouverture (21) par où passe le jet (7), la filière étant disposée au moins en partie dans cette partie conique.
  18. Dispositif (1) selon la revendication 17, caractérisé en ce que la filière (6) est disposée en totalité dans la partie conique (2C), cette partie conique et la face extrême (6B) aval de la filière (6) où se trouve l'orifice (60) de celle-ci, définissant une chambre (22), les moyens pour faire arriver le gaz comprenant un tube (23) qui débouche dans cette chambre de façon à faire arriver le gaz (24) dans la chambre (22), la chambre (22) comportant une ouverture (21) pour le passage du jet (7), en direction du liquide de refroidissement (9).
  19. Dispositif (40) selon la revendication 17, caractérisé en ce que la filière (42) n'est disposée qu'en partie dans la partie conique (41B) et fait saillie, avec son orifice, hors de cette partie conique, à l'extérieur du creuset (41), les moyens pour faire arriver le gaz comprenant un tube (43) qui débouche dans une chambre entourant l'orifice (420) de la filière (42), la chambre comportant une ouverture pour le passage du jet, en direction du liquide de refroidissement.
  20. Dispositif (1, 40) selon l'une quelconque des revendications 16 à 19, caractérisé en ce que le creuset (2, 41) est en silice vitreuse.
  21. Dispositif (1, 40) selon l'une quelconque des revendications 16 à 20, caractérisé en ce que la filière (6, 42) est en zircone stabilisée sous forme cubique.
  22. Dispositif (1, 40) selon la revendication 21, caractérisé en ce que la filière (6, 42) est en zircone stabilisée avec au moins un des composés suivants : oxyde d'yttrium, magnésie, chaux.
  23. Dispositif (1, 40) selon l'une quelconque des revendications 16 à 22, caractérisé en ce que le joint (25) est un mélange de silice et d'oxyde de bore.
  24. Dispositif (40) selon la revendication 19 caractérisé en ce que la chambre est en partie en silice vitreuse.
  25. Dispositif (1, 40) selon l'une quelconque des revendications 16 à 24, caractérisé en ce qu'il est agencé de telle sorte que la distance susceptible d'être parcourue par le jet (7) entre l'orifice (60, 420) de la filière (6, 42) et le liquide de refroidissement (9) est au moins égale à 2 mm et au plus égale à 15 mm.
  26. Dispositif (1, 40) selon la revendication 25, caractérisé en ce que cette distance est au moins égale à 2 mm et au plus égale à 5 mm.
  27. Dispositif (1, 40) selon l'une quelconque des revendications 16 à 26, caractérisé en ce qu'il est agencé pour que le contact du jet (7) avec le liquide de refroidissement (9) s'effectue selon un angle d'incidence (α7) compris entre 40° et 90° par rapport à la direction circonférentielle de rotation du liquide.
  28. Dispositif (1, 40) selon la revendication 27 caractérisé en ce que cet angle d'incidence (α7) est compris entre 50 et 70°.
EP92911285A 1991-05-27 1992-05-22 Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer Expired - Lifetime EP0586481B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9106370 1991-05-27
FR9106370A FR2676946A1 (fr) 1991-05-27 1991-05-27 Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer.
PCT/FR1992/000458 WO1992021460A1 (fr) 1991-05-27 1992-05-22 Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer

Publications (2)

Publication Number Publication Date
EP0586481A1 EP0586481A1 (fr) 1994-03-16
EP0586481B1 true EP0586481B1 (fr) 1996-08-21

Family

ID=9413172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92911285A Expired - Lifetime EP0586481B1 (fr) 1991-05-27 1992-05-22 Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer

Country Status (10)

Country Link
US (1) US5477910A (fr)
EP (1) EP0586481B1 (fr)
JP (1) JPH06508066A (fr)
BR (1) BR9206035A (fr)
CA (1) CA2109512A1 (fr)
DE (1) DE69213005T2 (fr)
ES (1) ES2093260T3 (fr)
FR (1) FR2676946A1 (fr)
RU (1) RU2090303C1 (fr)
WO (1) WO1992021460A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716129A1 (fr) * 1994-02-14 1995-08-18 Unimetall Sa Réservoir de métal liquide pour une installation de coulée continue de fils métalliques très minces.
RU2539892C1 (ru) * 2013-11-12 2015-01-27 Федеральное Государственное Унитарное Предприятие "Научно-Производственное Объединение "Техномаш" Способ литья проволоки и установка для его осуществления
CN105935748B (zh) * 2016-04-05 2018-05-08 江苏国能合金科技有限公司 一种非晶薄带设备喷嘴快速加热装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0039169B1 (fr) * 1980-04-17 1985-12-27 Tsuyoshi Masumoto Filaments de métal amorphe et procédé pour leur fabrication
EP0055827B1 (fr) * 1980-12-29 1985-01-30 Allied Corporation Creuset extracteur de chaleur pour la coulée à solidification rapide d'alliages métalliques
JPS57160513A (en) * 1981-03-31 1982-10-02 Takeshi Masumoto Maunfacture of amorphous metallic fine wire
CA1191015A (fr) * 1981-09-29 1985-07-30 Tsuyoshi Masumoto Methode de fabrication de fil metallique mince
FR2519892A1 (fr) * 1982-01-21 1983-07-22 Pont A Mousson Perfectionnements aux dispositifs de trempe rapide sur bande d'un metal ou d'un alliage metallique
JPS58213857A (ja) * 1982-06-04 1983-12-12 Takeshi Masumoto 疲労特性に優れた非晶質鉄基合金
FR2533208B1 (fr) * 1982-09-22 1986-08-01 Produits Refractaires Composition refractaire moulable a base de zircone partiellement stabilisee et d'un liant hydraulique alumineux, sa preparation et pieces fabriquees a partir de cette composition
US4566525A (en) * 1983-05-04 1986-01-28 Allied Corporation Nozzle assembly
US4741464A (en) * 1986-05-23 1988-05-03 General Motors Corporation Multiple orifice nozzle for jet casting rapidly solidified molten metal
JPH0620595B2 (ja) * 1986-07-01 1994-03-23 ユニチカ株式会社 金属細線の製造方法
JPH01150449A (ja) * 1987-12-09 1989-06-13 Kawasaki Steel Corp 急冷金属薄帯製造用ノズル
JPH01271040A (ja) * 1988-04-25 1989-10-30 Nippon Steel Corp 金属細線の製造方法
FR2636552B1 (fr) * 1988-09-21 1990-11-02 Michelin & Cie Procedes et dispositifs pour obtenir des fils en alliages metalliques amorphes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 411 (M-869)(3759) 11 Septembre 1989;& JP A 01 150449 (KAWASAKI STEEL CORP) 16 June 1989, *

Also Published As

Publication number Publication date
DE69213005T2 (de) 1996-12-19
RU2090303C1 (ru) 1997-09-20
DE69213005D1 (de) 1996-09-26
JPH06508066A (ja) 1994-09-14
US5477910A (en) 1995-12-26
CA2109512A1 (fr) 1992-11-28
FR2676946A1 (fr) 1992-12-04
ES2093260T3 (es) 1996-12-16
BR9206035A (pt) 1994-08-02
EP0586481A1 (fr) 1994-03-16
WO1992021460A1 (fr) 1992-12-10

Similar Documents

Publication Publication Date Title
EP0057651B1 (fr) Procédé de solidification et de refroidissement rapides par coulée continue de produits fondus à base d'oxydes métalliques
FR2590189A1 (fr) Procede de coulee continue d'un ruban metallique
EP0408453B1 (fr) Dispositif de busette électro-magnétique pour le contrôle d'un jet de metal liquide
CA2284880C (fr) Procede d'enduction metallique de fibres par voie liquide
FR2688516A1 (fr) Dispositif pour la fabrication de metaux et d'alliages de metaux de grande purete.
EP0586481B1 (fr) Procede et dispositif pour obtenir un fil en alliage metallique amorphe a base de fer
FR2580207A1 (fr) Busette de coulee de recipient metallurgique et procedes de fabrication et d'utilisation de cette busette
EP0360104B1 (fr) Procédés et dispositifs pour obtenir des fils en alliages métalliques amorphes
EP0682575B1 (fr) Procede de fabrication d'un organe chauffant de transfert de metal liquide, organe chauffant, son application et son utilisation
FR2490983A1 (fr) Procede de soudage en bout par etincelage et produits soudes obtenus par ledit procede
FR2554829A1 (fr) Procede d'affinage d'un metal par refusion sous laitier electro-conducteur
FR2814097A1 (fr) Procede de preparation de particules de metal ou d'alliage de metal nucleaire
EP0242347A2 (fr) Dispositif pour la coulée d'un métal en phase pâteuse
BE1000490A4 (fr) Procede de coulee continue d'un ruban metallique.
EP0240482B1 (fr) Dispositif pour la coulée de l'acier
EP0457674B1 (fr) Dispositif et procédé pour la préparation d'alliages en poudre, par solidification rapide
FR2499964A1 (fr) Procede permettant de reduire les striures dans la silice fondue
EP0691192B1 (fr) Procédé et dispositif de fabrication de polymères
BE1011970A3 (fr) Procede d'elaboration d'une enveloppe metallique sur un arbre.
JPS61135460A (ja) フイラメント状無秩序材料の形成方法
JPS6043406A (ja) 金属短繊維の製造方法
BE1001804A6 (fr) Procede et dispositif de coulee d'un metal en phase pateuse.
FR2525131A1 (fr) Procede et dispositif de fabrication d'un lingot d'acier creux
FR2670145A1 (fr) Procede de coulage d'un fluide dans un moule, dispositif et piece pour le procede et le dispositif.
WO1989010904A1 (fr) Procede de realisation d'un revetement metallique sur une fibre optique et fibre optique en resultant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI LU

17Q First examination report despatched

Effective date: 19940524

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI LU

REF Corresponds to:

Ref document number: 69213005

Country of ref document: DE

Date of ref document: 19960926

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960930

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093260

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990312

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990524

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS MICHELIN - MICHELIN & CIE

Effective date: 20000531

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020511

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020513

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050522