EP0581204A1 - Hochwarmfester Werkstoff - Google Patents

Hochwarmfester Werkstoff Download PDF

Info

Publication number
EP0581204A1
EP0581204A1 EP93111790A EP93111790A EP0581204A1 EP 0581204 A1 EP0581204 A1 EP 0581204A1 EP 93111790 A EP93111790 A EP 93111790A EP 93111790 A EP93111790 A EP 93111790A EP 0581204 A1 EP0581204 A1 EP 0581204A1
Authority
EP
European Patent Office
Prior art keywords
resistant material
material according
highly heat
content
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93111790A
Other languages
English (en)
French (fr)
Inventor
Lorenz Dr. Singheiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0581204A1 publication Critical patent/EP0581204A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the invention relates to a multi-phase, heat-resistant material made of an alloy based on an intermetallic compound of the ⁇ -TiAl type, in particular for use in heat engines, such as internal combustion engines, gas turbines and aircraft engines.
  • thermal engines are increasingly aimed at higher outputs with the same size as possible, whereby the heat load of the individual components increases continuously, so that the materials used are increasingly demanding better heat resistance and strength.
  • alloys based on an intermetallic compound of the type ⁇ -TiAl have found increasing interest for such use in heat engines because of the high melting point and low density.
  • Numerous developments are concerned with trying to improve the mechanical properties of these high-temperature materials.
  • the resistance to corrosion attack at which high operating temperatures play a special role e.g. B. the resistance to the attack of hot combustion gases, gaseous chlorides and sulfur dioxide.
  • the alloying of silicon and niobium leads to the formation of a two-phase structure which, compared to the ⁇ -TiAl base alloy, has a significant improvement in the mechanical heat resistance and the creep rupture strength.
  • dense protective oxide layers is of particular importance for the titanium aluminides, since they prevent the penetration of oxygen and nitrogen into the core matrix and thus prevent their embrittlement.
  • reactive elements such as. As yttrium, hafnium, erbium and lanthanum and other rare earths or combinations of these elements can be provided.
  • these oxides and nitrides are thermodynamically much more stable than those of titanium; on the other hand, these elements simultaneously increase the oxidation resistance of the specified intermetallic compounds.
  • the production and processing of the high-temperature material according to the invention does not present any particular difficulties, but can be carried out by the customary methods, as are used in such materials.
  • a further improvement of the invention provides for the high-temperature material according to the invention to be produced by mechanical alloying with the addition of oxides of the aforementioned reactive elements in order to obtain particularly heat-resistant intermetallic compounds in this way.
  • the addition of boron (0.05 to 5 at%) or carbon or nitrogen (0.05 to 1 at%) or combinations of these elements is provided in order to further improve the mechanical properties and a to achieve fine-grained structure. This is achieved in that stable borides, carbides and nitrides or carbonitrides are formed by the additions of boron, carbon and nitrogen mentioned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft einen mehrphasigen hochwarmfesten Werkstoff mit einer intermetallischen Basislegierung vom Typ γ-TiAl, der insbesondere für den Einsatz in Wärmekraftmaschinen, wie Verbrennungsmotoren, Gasturbinen, Flugtriebwerken vorgesehen ist, mit einem Gehalt an Aluminium von 30 bis 40 At-% sowie an Silicium von 0,1 bis 20 At-% und einem Gehalt an Niob von 0,1 bis 15 At-%, Rest Titan.

Description

  • Die Erfindung betrifft einen mehrphasigen hochwarmfesten Werkstoff aus einer Legierung auf der Basis einer intermetallischen Verbindung vom Typ γ-TiAl, insbesondere für den Einsatz in Wärmekraftmaschinen, wie Verbrennungsmotoren, Gasturbinen, Flugtriebwerken.
  • Die Entwicklung der Wärmekraftmaschinen zielt in verstärktem Maße auf höhere Leistungen bei möglichst gleichbleibender Baugröße ab, wodurch sich die Wärmebelastung der einzelnen Komponenten stetig erhöht, so daß von den eingesetzten Werkstoffen in zunehmenden Maße bessere Wärmebeständigkeit als auch Festigkeit gefordert werden.
  • Neben zahlreichen Entwicklungen auf dem Werkstoffgebiet, z. B. Nickelbasislegierungen, haben insbesondere Legierungen auf der Basis einer intermetallischen Verbindung vom Typ γ-TiAl wegen des hohen Schmelzpunktes bei gleichzeitig geringer Dichte zunehmend Interesse gefunden für einen derartigen Einsatz in Wärmekraftmaschinen. Zahlreiche Entwicklungen befassen sich mit dem Versuch, die mechanischen Eigenschaften dieser Hochtemperaturwerkstoffe zu verbessern. Dabei spielt neben der Verbesserung der mechanischen Eigenschaften insbesondere die Beständigkeit gegen den Korrosionsangriff bei denen hohen Einsatztemperaturen eine besondere Rolle, z. B. die Beständigkeit gegenüber dem Angriff heißer Verbrennungsgase, gasförmiger Chloride sowie von Schwefeldioxid.
  • Darüberhinaus wird bei tieferen Temperaturen die Lebensdauer durch kondensierte Alkali- und Erdalkalisulfate begrenzt, wodurch eine Ausnutzung des an sich vorhandenen Festigkeitspotentials dieser Werkstoffe verhindert ist, das heißt die an sich von der Hochwarmfestigkeit her gesehen erreichbare Einsatztemperatur wird aufgrund der beschränkten Oxidationsbeständigkeit reduziert.
  • Es ist hinlänglich bekannt, daß die Oxidationsbeständigkeit der binären Titan-Aluminiumverbindungen völlig unzureichend ist für die zuvor erwähnten Anwendungsfälle, da die Oxidationsgeschwindigkeit um mehrere Zehnerpotenzen über der von heute verwendeten Superlegierungen liegt und ihre Oxidschichten eine geringe Haftfestigkeit besitzen, was zu einem stetigen Korrosionsabtrag führt. Es ist bekannt, daß Verbindungen auf Titan-Aluminidbasis mit nennenswerten Gehalten an Chrom und Vanadin zwar bei Temperaturen oberhalb von 900°C gute Oxidationsbeständigkeit aufweisen, die vergleichbar ist mit der von heute verwendeten Superlegierungen, aber bei tieferen Temperaturen ein völlig unzureichendes Oxidationsverhalten zeigen, vergleichbar mit dem von binären Titan-Aluminiden, z. B. γ-TiAl.
  • In gleicher Weise sind die mechanischen Eigenschaften dieser Verbindungen für technische Anwendungen völlig unzureichend. Bei niedrigen Temperaturen haben sie praktisch keine Duktilität, bei höheren Temperaturen weisen sie eine unzureichende Kriechbeständigkeit bzw. Zeitstandfestigkeit auf.
  • Ausgehend von diesem Stand der Technik ist es daher Aufgabe der Erfindung einen Hochtemperaturwerkstoff der eingangs genannten Art zu schaffen, der sowohl über die gewünschten mechanischen Eigenschaften verfügt als auch die erforderliche Korrosionsbeständigkeit aufweist.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst (Angaben jeweils in Atom-%). Demgemäß wird eine TiAl-Basislegierung mit einem Aluminiumgehalt von 45 - 60 At-% durch Zulegieren von Silicium (0,1 bis 20 At-%) und Niob (0,1 bis 15 At-%) mit Rest Titan in ihrer Oxidationsbeständigkeit erheblich verbessert. Die angegebenen Zusätze an Silicium führen zur Bildung von Ti₅Si₃-Ausscheidungen und dabei zu einer erheblichen Verringerung der Oxidationsgeschwindigkeit bei gleichzeitig erhöhter Haftung der Oxidschicht. Die angegebenen Zusätze an Niob bewirken insbesondere in Kombination mit Silicium eine weitere Erniedrigung der Oxidationsgeschwindigkeit verbunden mit einer erhöhten Oxidhaftung. Die Zusätze von Silicium und Niob führen zu einem verringerten Anteil an Titandioxid (TiO₂) in der Oxidschicht, welches aufgrund seiner hohen Eigenfehlordnung eine hohe Wachstumsgeschwindigkeit aufweist.
  • Gleichzeitig führt das Zulegieren von Silicium und Niob zur Bildung eines zweiphasigen Gefüges, das gegenüber der γ-TiAl-Basislegierung eine deutliche Verbesserung der mechanischen Warmfestigkeit sowie der Zeitstandfestigkeit aufweist.
  • In weiterer Verbesserung der Erfindung kann vorgesehen sein, die genannten Zusätze, Silicium und Niob, durch Zulegieren von Chrom, Tantal, Wolfram, Molybdän oder Vanadin bzw. von Kombinationen dieser Elemente zu ergänzen bzw. zu ersetzen. Als Legierungsgehalte kommen dabei in Betracht, für Chrom 0,1 bis 20 At-%, für Tantal 0,1 bis 10 At-%, für Wolfram, Molybdän und Vanadin 0,1 bis 5 At-%.
  • Die Ausbildung dichter schützender Oxidschichten ist für die Titanaluminide von besonderer Bedeutung, da sie das Eindringen von Sauerstoff und Stickstoff in die Kernmatrix und damit deren Versprödung verhindern. Um die Diffusion von gelöstem Sauerstoff und Stickstoff einzudämmen oder doch zumindest erheblich zu reduzieren, kann die Zugabe sogenannter reaktiver Elemente, wie z. B. Yttrium, Hafnium, Erbium und Lanthan sowie andere seltene Erden oder Kombinationen dieser Elemente vorgesehen sein. Einerseits sind diese Oxide und Nitride thermodynamisch erheblich stabiler als die des Titans; andererseits bewirken diese Elemente gleichzeitig eine Erhöhung der Oxidationsbeständigkeit der angegebenen intermetallischen Verbindungen.
  • Die Herstellung und Verarbeitung des erfindungsgemäßen Hochtemperaturwerkstoffs bereitet keine besonderen Schwierigkeiten, sondern kann nach den üblichen Verfahren, wie sie bei derartigen Werkstoffen zum Einsatz kommen, erfolgen, so z. B. durch Feinguß, gerichtete Erstarrung oder auf pulvermetallurgischem Wege.
  • In weiterer Verbesserung der Erfindung ist vorgesehen, den erfindungsgemäßen Hochtemperaturwerkstoff unter Zusatz von Oxiden der zuvor genannten reaktiven Elemente durch mechanischen Legieren herzustellen, um auf diese Weise besonders warmfeste intermetallische Verbindungen zu erhalten.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist der Zusatz von Bor (0,05 bis 5 At-%) oder Kohlenstoff oder Stickstoff (0,05 bis 1 At-%) oder Kombinationen dieser Elemente vorgesehen, um eine weitere Verbesserung der mechanischen Eigenschaften sowie ein feinkörniges Gefüge zu erzielen. Dies wird dadurch erreicht, daß durch die genannten Zusätze an Bor, Kohlenstoff und Stickstoff stabile Boride, Carbide und Nitride oder Carbonitride gebildet werden.
  • Die letztgenannten Zusätze an Bor, Kohlenstoff und Stickstoff sind insbesondere von Bedeutung im Zusammenhang mit der gerichteten Erstarrung dieser intermetallischen Verbindungen, wodurch die Ausscheidung langgestreckter Verbindungen, wie z. B. von Boriden, Siliciden und ähnlichen Verbindungen, die festigkeitssteigernd wirken.
  • Diese und weitere vorteilhafte Zusammensetzungen sowie Verarbeitungsvorschriften sind Gegenstand der Unteranprüche.

Claims (8)

  1. Hochwarmfester Werkstoff mit intermetallischen Verbindungen im System Titan-Aluminium, insbesondere für den Einsatz in Wärmekraftmaschinen, wie Verbrennungsmotoren, Gasturbinen, Flugtriebwerken, mit einem Gehalt an Aluminium von 45 bis 60 At-%, an Silicium von 0,1 bis 20 At-% und an Niob von 0,1 bis 15 At-%, Rest Titan.
  2. Hochtemperaturwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß Chrom mit einem Gehalt an 0,1 bis 20 At-% anstelle von Silicium vorgesehen ist.
  3. Hochwarmfester Werkstoff nach Anspruch 1, dadurch gekennzeichnet, daß Tantal mit einem Gehalt von 0,1 bis 10 At-% anstelle von Niob vorgesehen ist.
  4. Hochwarmfester Werkstoff nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß Zusätze von Wolfram, Molybdän und/oder Vanadin in Gehalten von 0,1 bis 5 At-% zuzüglich zu Silicium und/oder Niob und/oder Chrom und/oder Tantal vorgesehen sind, wobei sich die Anteile aller Legierungsbestandteile zu 100 At-% ergänzen.
  5. Hochwarmfester Werkstoff nach einem der vorherigen Ansprüche, dem Yttrium, und/oder Hafnium, und/oder Erbium und/oder Lanthan mit Gehalten von jeweils 0,05 bis 2 At-% jedoch insgesamt maximal 3 At-% zugegeben sind.
  6. Hochwarmfester Werkstoff nach Anspruch 5, der durch mechanisches Legieren hergestellt ist.
  7. Hochwarmfester Werkstoff nach einem der Ansprüche 1 bis 5, der einen Gehalt an Bor von 0,05 bis 5 At-% aufweist.
  8. Hochwarmfester Werkstoff nach Anspruch 7, dem ergänzend oder als Ersatz für Bor Kohlenstoff und/oder Stickstoff mit einem Gehalt von 0,05 bis 1 At-% zugesetzt sind.
EP93111790A 1992-07-28 1993-07-23 Hochwarmfester Werkstoff Withdrawn EP0581204A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4224867A DE4224867A1 (de) 1992-07-28 1992-07-28 Hochwarmfester Werkstoff
DE4224867 1992-07-28

Publications (1)

Publication Number Publication Date
EP0581204A1 true EP0581204A1 (de) 1994-02-02

Family

ID=6464271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93111790A Withdrawn EP0581204A1 (de) 1992-07-28 1993-07-23 Hochwarmfester Werkstoff

Country Status (4)

Country Link
US (1) US5393356A (de)
EP (1) EP0581204A1 (de)
JP (1) JPH06184684A (de)
DE (1) DE4224867A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634496A1 (de) * 1993-07-14 1995-01-18 Honda Giken Kogyo Kabushiki Kaisha Hochfeste und hochduktile auf TIAL basierende intermetallische Verbindung und Verfahren zu deren Herstellung
WO1996030552A1 (en) * 1995-03-28 1996-10-03 Alliedsignal Inc. Castable gamma titanium-aluminide alloy containing niobium, chromium and silicon
EP3333281A1 (de) * 2016-12-08 2018-06-13 MTU Aero Engines GmbH Hochtemperaturschutzschicht für titanaluminid - legierungen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551064B1 (en) 1996-07-24 2003-04-22 General Electric Company Laser shock peened gas turbine engine intermetallic parts
DE19735841A1 (de) * 1997-08-19 1999-02-25 Geesthacht Gkss Forschung Legierung auf der Basis von Titanaluminiden
US6436208B1 (en) 2001-04-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Process for preparing aligned in-situ two phase single crystal composites of titanium-niobium alloys
US6767653B2 (en) 2002-12-27 2004-07-27 General Electric Company Coatings, method of manufacture, and the articles derived therefrom
DE102004056582B4 (de) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Legierung auf der Basis von Titanaluminiden
KR100644880B1 (ko) * 2004-11-30 2006-11-15 한국과학기술원 층상조직의 열적안정성 및 기계적 성질이 매우 우수한 일방향응고 TiAlNbSiC계 합금
DE102007060587B4 (de) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Titanaluminidlegierungen
US8347908B2 (en) * 2009-08-27 2013-01-08 Honeywell International Inc. Lightweight titanium aluminide valves and methods for the manufacture thereof
DE102010042889A1 (de) * 2010-10-25 2012-04-26 Manfred Renkel Turboladerbauteil
US8915708B2 (en) 2011-06-24 2014-12-23 Caterpillar Inc. Turbocharger with air buffer seal
US10597756B2 (en) * 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
KR101614124B1 (ko) * 2014-11-24 2016-04-21 한국기계연구원 타이타늄-알루미늄계 합금
US20180230576A1 (en) * 2017-02-14 2018-08-16 General Electric Company Titanium aluminide alloys and turbine components
US20180230822A1 (en) * 2017-02-14 2018-08-16 General Electric Company Titanium aluminide alloys and turbine components
WO2019191450A1 (en) * 2018-03-29 2019-10-03 Arconic Inc. Titanium aluminide alloys and titanium aluminide alloy products and methods for making the same
WO2020086263A1 (en) * 2018-10-22 2020-04-30 Arconic Inc. New titanium aluminide alloys and methods for making the same
CN113667862B (zh) * 2021-08-05 2022-04-19 贵州贵材创新科技股份有限公司 一种TiAl金属间化合物增强铝硅复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836983A (en) * 1987-12-28 1989-06-06 General Electric Company Silicon-modified titanium aluminum alloys and method of preparation
US4916028A (en) * 1989-07-28 1990-04-10 General Electric Company Gamma titanium aluminum alloys modified by carbon, chromium and niobium
DE4001799A1 (de) * 1989-01-24 1990-07-26 Hagishita Shiro Verfahren zur herstellung einer intermetallischen verbindung
EP0405134A1 (de) * 1989-06-29 1991-01-02 General Electric Company Mit Chrom und Silicium modifizierte Titan-Aluminium-Legierungen des Gamma-Typs und Verfahren zu ihrer Herstellung
EP0406638A1 (de) * 1989-07-03 1991-01-09 General Electric Company Gamma-Titan-Aluminium-Legierungen, modifiziert durch Chrom und Tantal und Verfahren zur Herstellung
EP0455005A1 (de) * 1990-05-04 1991-11-06 Asea Brown Boveri Ag Hochtemperaturlegierung für Maschinenbauteile auf der Basis von dotiertem Titanaluminid
US5076858A (en) * 1989-05-22 1991-12-31 General Electric Company Method of processing titanium aluminum alloys modified by chromium and niobium
US5149497A (en) * 1991-06-12 1992-09-22 General Electric Company Oxidation resistant coatings of gamma titanium aluminum alloys modified by chromium and tantalum
EP0521516A1 (de) * 1991-07-05 1993-01-07 Nippon Steel Corporation Auf TiAl basierende intermetallische Verbindung, Legierungen und Verfahren zur Herstellung dieser

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1094616A (de) * 1955-05-23
US4891184A (en) * 1988-12-23 1990-01-02 Mikkola Donald E Low density heat resistant intermetallic alloys of the Al3 Ti type
JP2510141B2 (ja) * 1989-08-18 1996-06-26 日産自動車株式会社 Ti―Al系軽量耐熱材料
JP2520971B2 (ja) * 1990-05-18 1996-07-31 住友電気工業株式会社 ボンディングツ―ル
US5098653A (en) * 1990-07-02 1992-03-24 General Electric Company Tantalum and chromium containing titanium aluminide rendered castable by boron inoculation
US5080860A (en) * 1990-07-02 1992-01-14 General Electric Company Niobium and chromium containing titanium aluminide rendered castable by boron inoculations
JP2678083B2 (ja) * 1990-08-28 1997-11-17 日産自動車株式会社 Ti―Al系軽量耐熱材料
US5204058A (en) * 1990-12-21 1993-04-20 General Electric Company Thermomechanically processed structural elements of titanium aluminides containing chromium, niobium, and boron
US5264051A (en) * 1991-12-02 1993-11-23 General Electric Company Cast gamma titanium aluminum alloys modified by chromium, niobium, and silicon, and method of preparation
JP3320760B2 (ja) * 1991-12-06 2002-09-03 大陽工業株式会社 チタニウム・アルミニウム合金
US5213635A (en) * 1991-12-23 1993-05-25 General Electric Company Gamma titanium aluminide rendered castable by low chromium and high niobium additives
US5226985A (en) * 1992-01-22 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836983A (en) * 1987-12-28 1989-06-06 General Electric Company Silicon-modified titanium aluminum alloys and method of preparation
DE4001799A1 (de) * 1989-01-24 1990-07-26 Hagishita Shiro Verfahren zur herstellung einer intermetallischen verbindung
US5076858A (en) * 1989-05-22 1991-12-31 General Electric Company Method of processing titanium aluminum alloys modified by chromium and niobium
EP0405134A1 (de) * 1989-06-29 1991-01-02 General Electric Company Mit Chrom und Silicium modifizierte Titan-Aluminium-Legierungen des Gamma-Typs und Verfahren zu ihrer Herstellung
EP0406638A1 (de) * 1989-07-03 1991-01-09 General Electric Company Gamma-Titan-Aluminium-Legierungen, modifiziert durch Chrom und Tantal und Verfahren zur Herstellung
US4916028A (en) * 1989-07-28 1990-04-10 General Electric Company Gamma titanium aluminum alloys modified by carbon, chromium and niobium
EP0455005A1 (de) * 1990-05-04 1991-11-06 Asea Brown Boveri Ag Hochtemperaturlegierung für Maschinenbauteile auf der Basis von dotiertem Titanaluminid
US5149497A (en) * 1991-06-12 1992-09-22 General Electric Company Oxidation resistant coatings of gamma titanium aluminum alloys modified by chromium and tantalum
EP0521516A1 (de) * 1991-07-05 1993-01-07 Nippon Steel Corporation Auf TiAl basierende intermetallische Verbindung, Legierungen und Verfahren zur Herstellung dieser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 16, no. 351 (C-968)29. Juli 1992 & JP-A-04 107233 ( NISSAN MOTOR CO LTD ) 8. April 1992 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634496A1 (de) * 1993-07-14 1995-01-18 Honda Giken Kogyo Kabushiki Kaisha Hochfeste und hochduktile auf TIAL basierende intermetallische Verbindung und Verfahren zu deren Herstellung
US5514333A (en) * 1993-07-14 1996-05-07 Honda Giken Kogyo Kabushiki Kaisha High strength and high ductility tial-based intermetallic compound and process for producing the same
WO1996030552A1 (en) * 1995-03-28 1996-10-03 Alliedsignal Inc. Castable gamma titanium-aluminide alloy containing niobium, chromium and silicon
EP3333281A1 (de) * 2016-12-08 2018-06-13 MTU Aero Engines GmbH Hochtemperaturschutzschicht für titanaluminid - legierungen
US10590527B2 (en) 2016-12-08 2020-03-17 MTU Aero Engines AG High-temperature protective layer for titanium aluminide alloys

Also Published As

Publication number Publication date
DE4224867A1 (de) 1994-02-03
US5393356A (en) 1995-02-28
JPH06184684A (ja) 1994-07-05

Similar Documents

Publication Publication Date Title
EP0581204A1 (de) Hochwarmfester Werkstoff
EP1306454B1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE60030668T2 (de) Hochfeste Aluminiumlegierung
Quadakkers Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000–1100 C
DE1928509A1 (de) Oxydation-erosion-bestaendige Nickel-Superlegierung
DE2817321A1 (de) Korrosionsbestaendige superlegierung auf nickelbasis, daraus hergestellte verbundschaufel und verfahren zum schutz von gasturbinenschaufelspitzen mit einer solchen legierung
AT408665B (de) Nickelbasislegierung für die hochtemperaturtechnik
EP1029100B1 (de) Erzeugnis mit einem schichtsystem zum schutz gegen ein heisses aggressives gas
DE102009010026A1 (de) Bauteil für eine Strömungsmaschine
EP0241807B1 (de) Hochtemperatur-Schutzschicht
EP2796588A1 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung und entsprechend hergestelltes Bauteil
EP3333281A1 (de) Hochtemperaturschutzschicht für titanaluminid - legierungen
DE4215194C2 (de) Hochwarmfester Werkstoff
DE3903682A1 (de) Durch stickstoff verfestigte fe-ni-cr-legierung
EP0760869B1 (de) Intermetallische nickel-aluminium-basislegierung
EP0186046A2 (de) Metallischer Verbindungswerkstoff
EP0845050B1 (de) Erzeugnis zur führung eines heissen, oxidierenden gases
DE10100790A1 (de) Nickel-Basislegierung für die gießtechnische Herstellung einkristallin erstarrter Bauteile
EP2832872A2 (de) Hochwarmfeste Leichtbaulegierung aus NiAl
DE3842300C2 (de)
DE10340132B4 (de) Oxidationsbeständige, duktile CrRe-Legierung, insbesondere für Hochtemperaturanwendungen, sowie entsprechender CrRe-Werkstoff
DE2004546B2 (de) Zwei- und mehrphasige silberbasiswerkstoffe
EP2876177B1 (de) Werkstoff aus laves-phase und ferritischer fe-al-phase
EP1230429B1 (de) Herstellungsverfahren für eine komponente mit schicht
DE19933633A1 (de) Hochtemperaturlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19940627

17Q First examination report despatched

Effective date: 19951205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980531