EP0579670B1 - Werkstoff für elektrische kontakte aus silber mit kohlenstoff - Google Patents
Werkstoff für elektrische kontakte aus silber mit kohlenstoff Download PDFInfo
- Publication number
- EP0579670B1 EP0579670B1 EP92908150A EP92908150A EP0579670B1 EP 0579670 B1 EP0579670 B1 EP 0579670B1 EP 92908150 A EP92908150 A EP 92908150A EP 92908150 A EP92908150 A EP 92908150A EP 0579670 B1 EP0579670 B1 EP 0579670B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- carbon
- silver
- powder
- material according
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 239000000463 material Substances 0.000 title claims abstract description 56
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 28
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 25
- 239000004332 silver Substances 0.000 title claims abstract description 25
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000002245 particle Substances 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 13
- 239000011265 semifinished product Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 24
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 17
- 239000004917 carbon fiber Substances 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 claims 1
- 239000007769 metal material Substances 0.000 abstract 1
- 229910002804 graphite Inorganic materials 0.000 description 14
- 239000010439 graphite Substances 0.000 description 14
- 238000003466 welding Methods 0.000 description 14
- 230000003628 erosive effect Effects 0.000 description 9
- 238000001125 extrusion Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 239000011357 graphitized carbon fiber Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 229910017727 AgNi Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000409201 Luina Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/027—Composite material containing carbon particles or fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12035—Fiber, asbestos, or cellulose in or next to particulate component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12049—Nonmetal component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12049—Nonmetal component
- Y10T428/12056—Entirely inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/1216—Continuous interengaged phases of plural metals, or oriented fiber containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/1216—Continuous interengaged phases of plural metals, or oriented fiber containing
- Y10T428/12167—Nonmetal containing
Definitions
- the invention is based on a contact material with the features specified in the preamble of claim 1.
- a contact material with the features specified in the preamble of claim 1.
- Such a material is disclosed in A. Keil et al., Electrical contacts and their material ", Springer-Verlag (1984), p. 195.
- contact materials based on silver with carbon, in particular with graphite have found widespread use in the field of circuit breakers in low-voltage power engineering because they offer high security against welding of the contacts.
- the contact material contains the carbon in powder form. Since silver and carbon are not soluble in one another in either the solid or the liquid state, such materials can only be produced by powder metallurgy. It is known to mix silver powder and graphite powder with one another, to press individual parts out of the mixture, to sinter and press them, or to cold-isostatically press blocks from the powder mixture, to sinter and to extrude them, whereby the graphite particles are oriented in the extrusion direction to form fiber-like agglomerates (cf.
- the very high welding resistance of the silver graphite materials is offset by an unsatisfactory erosion resistance as a disadvantage.
- With increasing graphite content not only the resistance to welding increases, but also the erosion. High welding resistance and low erosion are therefore mutually exclusive requirements for silver-graphite contact materials.
- the graphite powder causes a kind of dispersion hardening in the contact material, so that the material is not very ductile and subsequent shaping of the contact pieces is very complex.
- EP-A-0 205 897 discloses arc electrodes in which carbon fibers are embedded in a carbon matrix. Such electrodes are intended for switching high voltage, but are not suitable for circuit breakers in low-voltage power engineering.
- DE-A-20 57 618 goes from continuous carbon or graphite threads or from a "wool" of carbon threads which are impregnated with molten silver or copper, optionally with an addition of 0.5 to 4% by weight of platelet-shaped graphite to improve the lubricating properties when used for sliding contacts.
- the invention has for its object to provide a contact material based on silver with carbon or graphite, which is superior to the known contact materials based on silver and graphite powder in terms of erosion and processability, but not in terms of welding resistance has the serious disadvantages of a contact material based on silver and carbon fibers.
- the contact material according to the invention is characterized in that the carbon is present in it in the form of fiber pieces in combination with a portion in the form of a powder.
- the values for the erosion and the welding resistance are considerably more favorable than would result from the selected ratios of carbon fibers to carbon powder using the mixture rule;
- the combined use of carbon fibers and carbon powder leads to an effect that was not foreseeable from the known effect of the individual components.
- the carbon fiber content must not be too low, because otherwise the beneficial effect on the reduction of the burn-up and the increase in ductility is too low. In contrast, the proportion of carbon powder must not be too small, because otherwise the welding strength is insufficient. On the other hand, the content of carbon powder must not be too high, because otherwise the material is too poorly deformable.
- the fiber pieces should be at least twice as long in the contact material as the graphite powder particles are in diameter.
- the length of the fiber pieces is preferably 10 to 100 times the average diameter of the carbon powder particles.
- the diameter of the fibers should be at least twice as large as the powder particles on average.
- the fiber diameter is expediently in the range from 1 to 50 »m, preferably in the range from 4 to 25» m.
- Fibers with an average particle diameter of 0.2 to 40 »m, preferably of 1 to 10» m can be used as carbon or graphite powder.
- the carbon fibers or the graphite fibers can after known methods can be produced.
- the length in which they are used must be so small that the fibers can be mixed with the silver powder evenly.
- Fibers with a length of 30 to 6000 »m are suitable, preferably the fibers are used in lengths of not more than 500» m.
- the fibers are broken up into smaller pieces by the pressing process, in particular by the preferably downstream extrusion process, so that the average fiber length in the finished contact material is less than the average initial length of the fibers.
- the coarse fiber content in the contact material ensures its ductility and erosion resistance;
- the desired welding strength in combination with the fiber portion is ensured by the powdery fine portion of the carbon, which for this purpose can be significantly lower than in a material that contains no carbon fibers, but only carbon or graphite powder.
- the metal matrix of the material according to the invention expediently consists of silver; it can also consist of a silver-based alloy, ie an alloy consisting predominantly of silver, the other alloy partner of which is selected in terms of type and quantity in such a way that it does not reduce the electrical conductivity too much. Copper and nickel are particularly suitable as alloy metals of silver. Instead of alloying this metal, it can also be powder metallurgically combined with the silver.
- the carbon content in the material should not exceed 10% by weight. It should be noted that the density of carbon is only about 2 g / cm3 less than that of silver, so that the volume fraction of carbon is significantly higher than its weight fraction . With a content of more than 10% by weight of carbon, the material becomes too brittle, with a content of less than 0.5% by weight of carbon, its effect on improving the welding safety is too small.
- the material according to the invention preferably contains no more than 2% by weight of one or more additional metals, namely bismuth, calcium, lead, antimony and / or tellurium.
- additional metals namely bismuth, calcium, lead, antimony and / or tellurium.
- Metallic additives to a silver graphite material are already disclosed in US Pat. No. 4,699,763; However, there is nickel, iron, cobalt, copper and / or gold, with which the burn-up is not to be reduced, but rather the sintering together of the powder particles is to be facilitated (they serve as a wetting aid).
- the additive metal is preferably used in an amount of at least 0.05%. Smaller additions show no significant effect. More than 2% by weight of the additive metal should not be added because otherwise the electrical conductivity of the contact material will drop too much.
- the optimal carbon content is between 2 and 7% by weight, the optimal mass ratio of carbon fibers to carbon powder is between 1: 1 and 3: 1.
- the carbon can be used in different modifications, the powder e.g. in the form of soot.
- the material behaves most favorably if both the carbon powder and the carbon fibers consist of graphite.
- the contact material according to the invention not only has the advantage of optimally combining welding resistance and low erosion, its ductility also makes it easier to process, in particular to deform subsequently, which makes the manufacture of contact pieces and their connection to contact carriers easier and cheaper.
- the material according to the invention is so ductile, semifinished products can even be produced in a simple manner from the material according to the invention, which have a silver backing from the outset, which they need in order to be soldered or welded onto contact carriers.
- conventional silver-graphite contact materials are bonded to a silver sintered layer using single-press technology, or extruded contact materials are provided with a solderable backside by burning out the graphite on one side (DE-B: "Electrical contacts and their materials", A. Keil et al., Springer-Verlag 1984, pp.
- a semifinished product according to the invention with a silver back can be produced simply by composite extrusion molding, by sheathing a preferably cylindrical block made of the material according to the invention with silver and then inserting it into a reverse extrusion press, which produces a composite extrusion that is still in the die of the extrusion press or is divided lengthways thereafter.
- the block can also be coated with an AgNi material.
- FIGS. 1 and 2 show that the welding forces in the semifinished product according to the invention are much closer to those of the comparative semifinished product which only contains carbon powder than in the comparative semifinished product which only contains carbon fibers.
- FIG. 2 shows that the semi-finished product according to the invention is almost as good when burned up as the comparatively produced semi-finished product which only contained carbon fibers.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Contacts (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Manufacture Of Switches (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4111683 | 1991-04-10 | ||
DE4111683A DE4111683A1 (de) | 1991-04-10 | 1991-04-10 | Werkstoff fuer elektrische kontakte aus silber mit kohlenstoff |
PCT/EP1992/000804 WO1992018995A1 (de) | 1991-04-10 | 1992-04-09 | Werkstoff für elektrische kontakte aus silber mit kohlenstoff |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0579670A1 EP0579670A1 (de) | 1994-01-26 |
EP0579670B1 true EP0579670B1 (de) | 1995-12-06 |
Family
ID=6429280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92908150A Expired - Lifetime EP0579670B1 (de) | 1991-04-10 | 1992-04-09 | Werkstoff für elektrische kontakte aus silber mit kohlenstoff |
Country Status (5)
Country | Link |
---|---|
US (1) | US5445895A (enrdf_load_stackoverflow) |
EP (1) | EP0579670B1 (enrdf_load_stackoverflow) |
JP (1) | JP3138965B2 (enrdf_load_stackoverflow) |
DE (2) | DE4111683A1 (enrdf_load_stackoverflow) |
WO (1) | WO1992018995A1 (enrdf_load_stackoverflow) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19503184C1 (de) * | 1995-02-01 | 1996-05-02 | Degussa | Werkstoff für elektrische Kontakte aus Silber-Kohlenstoff |
FR2731106A1 (fr) * | 1995-02-27 | 1996-08-30 | Schneider Electric Sa | Procede de fabrication d'un materiau de contact electrique composite |
DE10261303B3 (de) * | 2002-12-27 | 2004-06-24 | Wieland-Werke Ag | Verbundmaterial zur Herstellung elektrischer Kontakte und Verfahren zu dessen Herstellung |
JP4005058B2 (ja) * | 2003-07-23 | 2007-11-07 | 日信工業株式会社 | 炭素繊維複合材料及びその製造方法、炭素繊維複合成形品及びその製造方法 |
DE10346206A1 (de) * | 2003-10-06 | 2005-04-28 | Bosch Gmbh Robert | Kontaktoberflächen für elektrische Kontakte |
JP4224438B2 (ja) * | 2004-07-16 | 2009-02-12 | 日信工業株式会社 | 炭素繊維複合金属材料の製造方法 |
FR2877763B1 (fr) | 2004-11-08 | 2007-03-16 | Schneider Electric Ind Sas | Pastille de contact destinee a un contact electrique mobile de disjoncteur, contact electrique mobile possedant une telle pastille et disjoncteur comportant un tel contact |
DE102008056263A1 (de) | 2008-11-06 | 2010-05-27 | Ami Doduco Gmbh | Verfahren zur Herstellung eines Halbzeugs und Halbzeug für elektrische Kontakte sowie Kontaktstück |
DE102008056264A1 (de) * | 2008-11-06 | 2010-05-27 | Ami Doduco Gmbh | Verfahren zur Herstellung eines Halbzeugs und Halbzeug für elektrische Kontakte sowie Kontaktstück |
CN102362326B (zh) | 2009-03-24 | 2015-03-25 | 联合材料公司 | 电触点材料 |
WO2011097438A1 (en) * | 2010-02-04 | 2011-08-11 | Third Millennium Metals, Llc | Metal-carbon compositions |
WO2015031801A2 (en) * | 2013-08-29 | 2015-03-05 | Alpha Metals, Inc. | Composite and multilayered silver films for joining electrical and mechanical components |
US10163584B1 (en) | 2017-06-01 | 2018-12-25 | Siemens Industry, Inc. | Low-silver, low-profile electrical contact apparatus and assembly |
TWI755745B (zh) * | 2019-05-31 | 2022-02-21 | 日商歐姆龍股份有限公司 | 以Ag合金為主要成分的接點用材料, 使用該接點用材料的接點以及電子機器 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3254189A (en) * | 1961-05-15 | 1966-05-31 | Westinghouse Electric Corp | Electrical contact members having a plurality of refractory metal fibers embedded therein |
DE1948345A1 (de) * | 1968-09-25 | 1970-04-02 | Mallory & Co Inc P R | Werkstoff fuer elektrische Kontakte |
DE2057618A1 (de) * | 1970-11-24 | 1972-06-15 | Duerrwaechter E Dr Doduco | Metall-Kohlenstoff-Verbundwerkstoff und Verfahren zu seiner Herstellung |
US4127700A (en) * | 1973-10-12 | 1978-11-28 | G. Rau | Metallic material with additives embedded therein and method for producing the same |
US4999336A (en) * | 1983-12-13 | 1991-03-12 | Scm Metal Products, Inc. | Dispersion strengthened metal composites |
EP0205897B1 (de) * | 1985-06-24 | 1991-10-16 | BBC Brown Boveri AG | Abbrandkontaktstück und Verfahren zur Herstellung eines solchen Abbrandkontaktstückes oder eines vergleichbaren Bauteils |
US4699763A (en) * | 1986-06-25 | 1987-10-13 | Westinghouse Electric Corp. | Circuit breaker contact containing silver and graphite fibers |
IT1198172B (it) * | 1986-11-26 | 1988-12-21 | Maria Polvara | Struttura di elettrodo,particolarment eper saldatura eletrica a resistenza,eseguita a punti,e procedimento di fabbricazione relativo |
US4810289A (en) * | 1988-04-04 | 1989-03-07 | Westinghouse Electric Corp. | Hot isostatic pressing of high performance electrical components |
US5127969A (en) * | 1990-03-22 | 1992-07-07 | University Of Cincinnati | Reinforced solder, brazing and welding compositions and methods for preparation thereof |
-
1991
- 1991-04-10 DE DE4111683A patent/DE4111683A1/de active Granted
-
1992
- 1992-04-09 US US08/129,200 patent/US5445895A/en not_active Expired - Lifetime
- 1992-04-09 DE DE59204610T patent/DE59204610D1/de not_active Expired - Lifetime
- 1992-04-09 JP JP04507644A patent/JP3138965B2/ja not_active Expired - Fee Related
- 1992-04-09 EP EP92908150A patent/EP0579670B1/de not_active Expired - Lifetime
- 1992-04-09 WO PCT/EP1992/000804 patent/WO1992018995A1/de active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US5445895A (en) | 1995-08-29 |
DE4111683C2 (enrdf_load_stackoverflow) | 1993-01-28 |
WO1992018995A1 (de) | 1992-10-29 |
DE59204610D1 (de) | 1996-01-18 |
EP0579670A1 (de) | 1994-01-26 |
JPH06506559A (ja) | 1994-07-21 |
JP3138965B2 (ja) | 2001-02-26 |
DE4111683A1 (de) | 1992-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0579670B1 (de) | Werkstoff für elektrische kontakte aus silber mit kohlenstoff | |
DE4106001C2 (de) | Gleit- bzw. Schiebematerial und Verfahren zu seiner Herstellung | |
EP0440620B1 (de) | Halbzeug für elektrische kontakte aus einem verbundwerkstoff auf silber-zinnoxid-basis und pulvermetallurgisches verfahren zu seiner herstellung | |
DE2822956C2 (de) | Verfahren zur Herstellung von Schaltkontakten für einen Vakuumschalter | |
EP0170812A2 (de) | Verfahren zur Herstellung von Sinterkontaktwerkstoffen | |
DE2514237A1 (de) | Verfahren zur herstellung eines als elektrischer kontakt dienenden materials | |
WO1993026021A1 (de) | Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid | |
DE102006031366B3 (de) | Verfahren zur Herstellung von Formteilen aus dispersionsverfestigten Metalllegierungen | |
DE3102155C2 (enrdf_load_stackoverflow) | ||
EP0660964B1 (de) | Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid und verfahren zu seiner herstellung | |
AT399062B (de) | VERBUNDWERKSTOFF FüR ELEKTRISCHE SCHALTKONTAKTSTÜCKE DER ENERGIETECHNIK | |
DE4319137A1 (de) | Werkstoff für elektrische Kontakte auf der Basis von Silber-Zinnoxid oder Siler-Zinkoxid | |
DE19916082C2 (de) | Pulvermetallurgisch hergestellter Verbundwerkstoff, Verfahren zu dessen Herstellung sowie dessen Verwendung | |
DE3421759A1 (de) | Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik | |
EP0311134B1 (de) | Pulvermetallurgisch hergestellter Werkstoff für elektrische Kontakte aus Silber mit Graphit und Verfahren zu seiner Herstellung | |
DE3606664A1 (de) | Verfahren zur herstellung eines elektrischen kontaktmaterials aus einer ag-sno-systemlegierung | |
DE3232627C2 (enrdf_load_stackoverflow) | ||
DE3405218C2 (enrdf_load_stackoverflow) | ||
DD233237A1 (de) | Verfahren zur herstellung eines kontaktwerkstoffes mit faserstruktur | |
DD209317A1 (de) | Kontaktwerkstoff fuer vakuumschalter und verfahren zur herstellung | |
WO1998006119A1 (de) | Verfahren zur herstellung eines erzeugnisses aus einem kontaktwerkstoff auf silberbasis, kontaktwerkstoff sowie erzeugnis aus dem kontaktwerkstoff |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19931109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19940913 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 59204610 Country of ref document: DE Date of ref document: 19960118 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960312 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER TRANSFER- Ref country code: CH Ref legal event code: NV Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080220 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080424 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090409 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100427 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110427 Year of fee payment: 20 Ref country code: DE Payment date: 20110322 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110409 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59204610 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59204610 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120410 |