EP0575017B1 - Turbomaschine - Google Patents

Turbomaschine Download PDF

Info

Publication number
EP0575017B1
EP0575017B1 EP93250128A EP93250128A EP0575017B1 EP 0575017 B1 EP0575017 B1 EP 0575017B1 EP 93250128 A EP93250128 A EP 93250128A EP 93250128 A EP93250128 A EP 93250128A EP 0575017 B1 EP0575017 B1 EP 0575017B1
Authority
EP
European Patent Office
Prior art keywords
shaft part
shaft
gear
wheel
expansion screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93250128A
Other languages
English (en)
French (fr)
Other versions
EP0575017A1 (de
Inventor
Ernst Rothstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0575017A1 publication Critical patent/EP0575017A1/de
Application granted granted Critical
Publication of EP0575017B1 publication Critical patent/EP0575017B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/026Shaft to shaft connections

Definitions

  • the invention relates to a transmission turbomachine according to the preamble of claim 1.
  • the gear element in particular is usually made from an alloyed tempering steel, the surface of which is hardened in the flank area.
  • the problem of choosing the right material arises in the already mentioned LNG compressor in that on the back of the impeller, especially during standstill and in the start-up phase, part of the wave range is also acted on by the frozen gas.
  • both the impeller including the subsequent shaft part could be made in one piece from a low-temperature-resistant steel.
  • the production requires a great deal of machining work, since the outer dimensions of the impeller determine the size of the block to be machined.
  • DE-A-2510287 discloses a gas turbine with an autonomous ceramic turbine rotor.
  • the one-piece turbine impeller consisting of impeller and shaft part, is mounted in two separate bearings from the adjacent rotating components and is only connected to it by torque-transmitting shafts.
  • the torque is positively introduced into the intermediate shaft, the positive engagement preferably being a polygonal profile.
  • the axial thrust of the turbine rotor is transmitted either to the compressor rotor or, via helical gears, to the bearing of the slowly rotating output shaft.
  • the disadvantage of this construction is that the separate, double mounting of the turbine rotor takes up a lot of installation space and the double mounting is cost-intensive and the connection area can only transmit torques.
  • the object of the invention is one for high speeds of at least 15,000 rpm. preferably to specify more than 20,000 rpm suitable and a one-piece gear element-heavy-duty pinion shaft for a geared turbocompressor, which is structurally optimal and inexpensive to manufacture the stress with regard to temperature and the type of medium to be conveyed.
  • the optimal adaptation to the stress occurring in the respective area of the pinion shaft is achieved in such a way that the shaft part, at the free end of which the impeller is detachably arranged, is designed as a separate part and is connected to the gear element.
  • the material for the shaft part is chosen so that it meets the stresses that occur.
  • a low-temperature resistant steel would be used for the shaft part.
  • the shaft part would be made from a high-temperature steel. When compressing gases that are mixed with acids, it makes sense to use a particularly corrosion-resistant material for the shaft part.
  • the advantage of the proposed composite technology can be seen in the fact that the gear element is still made of a known surface hardenable heat-treatable steel and a material that meets the stress is selected for the shaft part that comes into direct contact with the medium to be conveyed, including the impeller arranged on it.
  • the gear element and the entire gear part can continue to be made small, and the shaft part connected to it can also be optimally designed, since there is no restriction with regard to gear technology considerations with regard to the choice of material.
  • Another variant consists in providing both ends of the shaft part with a Hirth connection and the adjoining regions of the gearwheel element and the impeller also with a complementary Hirth toothing.
  • an expansion screw extending through the impeller and the shaft part is anchored in the gear element.
  • the gearwheel element has a threaded bore in the end region, into which the expansion screw can engage.
  • the other free end of the expansion screw also has a threaded section so that a nut that can be screwed onto it can clamp the impeller and the shaft part against the gear element.
  • the proposed arrangement has the disadvantage that the expansion screw in the case of an LNG compressor must also be made of a low-temperature-resistant steel and, because of the lower strength, can only transmit a lower tightening torque.
  • the Hirth connection must be made ready for installation on both sides, which can lead to angular deviations in the axis position if the manufacturing tolerances are taken into account.
  • the expansion screw is also proposed to be further developed.
  • This arrangement has the advantage that the expansion screw connecting the elements shaft part and gear element can be manufactured from a high-strength tempering steel, since this area does not come into contact with the frozen gas.
  • Another advantage is that after connecting the shaft part and gear element Hirth connection between impeller and shaft part can be ground in appropriately. An addition of manufacturing tolerances of the two Hirth connections with regard to shape and position tolerances is excluded.
  • FIG. 1 an embodiment of the pinion shaft according to the invention is shown in a longitudinal section.
  • the shaft part 16 has a Hirth toothing at both ends 17, 18.
  • the end region 19 of the shaft piece 25 of the gear element 20 and the end region 21 of the impeller 22 are of comparable design, so that the Hirth toothing can engage with one another.
  • an expansion screw 23 engages through a bore in the impeller 22 and the shaft part 16.
  • the right-hand threaded section 24 of the expansion screw 23 can be screwed into a threaded bore arranged in the shaft piece 25.
  • the left-hand threaded section 26 of the expansion screw 23 projects beyond the Front region 27 of the impeller 22. By means of one on this end region 27 of the impeller 22.
  • the parts 16, 20, 23 are braced against one another by means of a nut 28 which can be screwed onto this threaded section 26.
  • FIG. 2 shows a similar arrangement as Figure 1, but with a split expansion screw. To simplify matters, the same reference numerals have been used for the same parts.
  • the expansion screw connecting the shaft part 16, impeller 22 and gear element 20 is divided.
  • the one expansion screw 30 made from a conventional tempering steel extends from the gear element 20 via the right-hand Hirth toothing 18 to the shaft part 16.
  • An insulating element 32 for example made of PTFE, is located between the two expansion screws 30, 31.
  • the tension nut 33 connecting the two expansion screws 30, 31 to one another is only indicated here. The advantages which result from this arrangement have already been pointed out in the description, so that there is no need to repeat them here.
  • arrows 12 and 13 in impeller 22 indicate the direction of flow of the medium to be compressed.
  • the descending arrow 14 is intended to indicate that, in particular when the vehicle is at a standstill and during the start-up phase, when the medium to be conveyed has not experienced any or only a slight increase in temperature, the medium to be conveyed can also get into the shaft part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Getriebe-Turbomaschine gemäß dem Gattungsbegriff des Anspruches 1.
  • Das Vordringen von Radialverdichtern in immer neue Anwendungsgebiete und auch die Integration verschiedener Verdichtungsprozesse in ein gemeinsames Verdichtergehäuse führen dazu, daß die Beanspruchung der Wellenteile, auf denen die Laufräder lösbar angeordnet sind, hinsichtlich Temperatur und Angriff des zu fördernden Mediums sehr unterschiedlich sind zu den Bereichen, die nicht mit damit beaufschlagt werden. Beispielsweise müssen bei einem LNG-Kompressor (LNG = Liquid Natural Gas) die Verdichterschaufeln aus einem zähen Tieftemperaturstahl (z.B. 9 % Nickel stahl) gefertigt werden, damit diese auch bei tiefen Temperaturen noch eine ausreichende Zähigkeit aufweisen. Andererseits muß die das Laufrad antreibende Ritzelwelle den getriebetechnischen Bedingungen genügen. Insbesondere das Zahnradelement wird im Hinblick auf ausreichende Dauer- und Flankenfestigkeit üblicherweise aus einem legierten Vergütungsstahl gefertigt, dessen Oberfläche im Flankenbereich gehärtet wird. Die Problematik der richtigen Werkstoffwahl ergibt sich bei dem schon erwähnten LNG-Kompressor dadurch, daß auf der Rückseite des Laufrades, insbesondere beim Stillstand und in der Anfahrphase auch ein Teil des Wellenbereiches mit dem tiefgekühlten Gas beaufschlagt auch wird. Nun könnte man als Abhilfe sowohl das Laufrad einschließlich des anschließenden Wellenteiles einstückig aus einem tieftemperaturbeständigen Stahl herstellen. Die Herstellung erfordert aber einen großen Zerspanungsaufwand, da die Außenmaße des Laufrades die Größe des zu zerspanenden Blockes bestimmen. Alternativ dazu wäre vorstellbar, das Zahnradelement ebenfalls aus diesem Stahl zu fertigen. Das ergibt aber Schwierigkeiten, da der Tieftemperaturstahl keine ausreichende Festigkeit bzw. Härte hat und die üblichen Härteverfahren wie Flammenhärten oder Nitrieren nicht anwendbar sind. Um die niedrigere Festigkeit in etwa auszugleichen, müßte man das Zahnradelement entsprechend größer bauen und damit würde der gesamte Getriebeteil baumäßig sehr groß werden mit all den Nachteilen, die sich daraus ergeben. Aber auch bei dieser Lösung bleibt das Problem der verminderten Flankentragfähigkeit des aus einem solchen Stahl gefertigten Zahnradelementes infolge des niedrigeren Kohlenstoffgehaltes.
  • In der DE-A-2510287 ist eine Gasturbine mit einem autonomen Keramikturbinenläufer offenbart. Das einstückig ausgebildete Turbinenlaufrad bestehend aus Laufrad und Wellenteil ist von den benachbart mitrotierenden Bauteilen getrennt zweifach gelagert und mit diesem nur durch drehmomentübertragende Wellen verbunden. Das Drehmoment wird formschlüssig in die Zwischenwelle eingeleitet, wobei vorzugsweise der Formschluß ein Polygonalprofil ist. Der Achsschub des Turbinenläufers wird entweder auf den Verdichterläufer oder über schrägverzahnte Stirnräder auf die Lagerung der langsam drehenden Abtriebswelle übertragen. Nachteilig bei dieser Konstruktion ist, daß durch die separate zweifache Lagerung des Turbinenläufers viel Bauraum beansprucht wird und die doppelte Lagerung kostenintensiv ist und der Verbindungsbereich nur Drehmomente übertragen kann.
  • Aufgabe der Erfindung ist es, eine für hohe Drehzahten von mindestens 15.000 U/min. vorzugsweise mehr als 20.000 U/min geeignete und ein einteilig ausgebildetes Zahnradelement aufweisende hochbelastbare Ritzelwelle für einen Getriebe-Turboverdichter anzugeben, die konstruktriv optimal und in der Herstellung kostengünstig der Beanspruchung hinsichtlich Temperatur und der Art des zu fördernden Mediums angepaßt ist.
  • Diese Aufgabe wird mit dem im kennzeichnenden Teil des Anspruches 1 angegebenen Merkmal gelöst. Vorteilhafte Weiterbildungen sind Bestandteil von Unteransprüchen.
  • Die optimale Anpassung an die im jeweiligen Bereich der Ritzelwelle auftretende Beanspruchung wird in der Weise erreicht, daß das Wellenteil, an dessen freiem Ende das Laufrad lösbar angeordnet ist, als separates Teil ausgebildet und mit dem Zahnradelement verbunden ist. Dabei wird der Werkstoff für das Wellenteil so gewählt, daß es der auftretenden Beanspruchung gerecht wird. Im Falle des bereits erwähnten LNG-Kompressors würde ein tieftemperaturbeständiger Stahl für das Wellenteil verwendet werden. Im Falle der Verdichtung von stark erwärmten Gasen würde man das Wellenteil aus einem hochwarmfesten Stahl fertigen. Bei einer Verdichtung von Gasen, die mit Säuren durchsetzt sind, bietet es sich an, einen besonders korrosionsbeständigen Werkstoff für das Wellenteil einzusetzen.
  • Der Vorteil der vorgeschlagenen Verbundtechnik ist darin zu sehen, daß das Zahnradelement weiterhin aus einem bekannten oberflächenhärtbaren Vergütungsstahl gefertigt wird und für das mit dem zu fördernden Medium direkt in Berührung kommende Wellenteil einschließlich des darauf angeordneten Laufrades ein der Beanspruchung gerecht werdender Werkstoff gewählt wird. Bei dieser Lösung kann das Zahnradelement und das gesamte Getriebeteil weiterhin klein gebaut werden und das damit verbundene Wellenteil kann ebenfalls optimal ausgelegt werden, da bezüglich der Wahl des Werkstoffes keine Einschränkung hinsichtlich getriebetechnischer Überlegungen erforderlich ist.
  • Für die Verbindung Wellenteil mit Zahnradelement gibt es verschiedene Lösungsmöglichkeiten. Beispielsweise kann eine Schrumpfverbindung und/oder Polygonverbindung vorgesehen werden. Das Laufrad könnte in diesem Falle über einen kegeligen Preßverband mit dem Wellenteil verbunden werden.
  • Eine weitere Variante besteht darin, beide Enden des Wellenteils mit einer Hirth-Verbindung und die daran anschließenden Bereiche des Zahnradelementes und des Laufrades ebenfalls mit einer komplementär dazu ausgebildeten Hirth-Verzahnung zu versehen. Zur Verspannung der Elemente gegeneinander wird eine durch das Laufrad und das Wellenteil sich erstreckende Dehnschraube im Zahnradelement verankert. Das Zahnradelement weist dazu im Endenbereich eine Gewindebohrung auf, in die die Dehnschraube eingreifen kann. Das andere freie Ende der Dehnschraube hat ebenfalls einen Gewindeabschnitt, so daß eine darauf aufschraubbare Mutter das Laufrad und das Wellenteil gegen das Zahnradelement verspannen kann.
  • Die vorgeschlagene Anordnung hat aber den Nachteil, daß die Dehnschraube im Falle eines LNG-Kompressors ebenfalls aus einem tieftemperaturbeständigen Stahl gefertigt werden muß und wegen der geringeren Festigkeit nur ein geringeres Anzugsmoment übertragen kann. Die Hirth-Verbindung muß auf beiden Seiten einbaufertig hergestellt werden, was bei Berücksichtigung der Herstelltoleranzen zu Winkelabweichungen in der Achslage führen kann. Aus diesem Grunde wird weiterbildend vorgeschlagen auch die Dehnschraube zu teilen. Diese Anordnung hat den Vorteil, daß die die Elemente Wellenteil und Zahnradelement verbindende Dehnschraube aus einem hochfesten Vergütungsstahl gefertigt werden kann, da dieser Bereich mit dem tiefgekühlten Gas nicht in Berührung kommt. Von weiterem Vorteil ist, daß nach dem Verbinden von Wellenteil und Zahnradelement die Hirth-Verbindung zwischen Laufrad und Wellenteil passend eingeschliffen werden kann. Eine Addition von Fertigungstoleranzen der beiden Hirth-Verbindungen hinsichtlich Form- und Lagetoleranzen ist dadurch ausgeschlossen.
  • In der Zeichnung wird anhand einiger Ausführungsbeispiele die erfindungsgemäße Ritzelwelle näher erläutert.
  • Es zeigen:
  • Figur 1
    im Längsschnitt eine erste Ausführungsform der erfindungsgemäßen Ritzelwelle,
    Figur 2
    ähnlich wie Figur 1, jedoch mit einer geteilten Dehnschraube.
  • In Figur 1 ist in einem Längsschnitt eine Ausführungsform der erfindungsgemäßen Ritzelwelle dargestellt. Das Wellenteil 16 weist an beiden Enden 17, 18 eine Hirth-Verzahnung auf. Der Endbereich 19 des Wellenstückes 25 des Zahnradelementes 20 sowie der Endenbereich 21 des Laufrades 22 sind vergleichbar ausgebildet, so daß die Hirth-Verzahnungen ineinander greifen können. Damit die Teile 16, 20, 22 gegeneinander verspannt werden können, greift eine Dehnschraube 23 durch eine Bohrung des Laufrades 22 und des Wellenteiles 16. Der rechtsliegende Gewindeabschnitt 24 der Dehnschraube 23 ist in einer im Wellenstück 25 angeordneten Gewindebohrung einschraubbar. Der linksliegende Gewindeabschnitt 26 der Dehnschraube 23 ragt über den Stirnbereich 27 des Laufrades 22 hinaus. Mittels einer auf diesem Stirnbereich 27 des Laufrades 22 hinaus. Mittels einer auf diesem Gewindeabschnitt 26 aufschraubbaren Mutter 28 werden die Teile 16, 20, 23 gegeneinander verspannt.
  • Figur 2 zeigt eine ähnliche Anordnung wie Figur 1, jedoch mit einer geteilten Dehnschraube. Zur Vereinfachung wurden auch hier für gleiche Teile gleiche Bezugszeichen verwendet. Im Unterschied zur Ausführungsform gemäß Figur 2 ist die das Wellenteil 16, Laufrad 22 und Zahnradelement 20 miteinander verbindende Dehnschraube geteilt. Die eine aus einem üblichen Vergütungsstahl gefertigte Dehnschraube 30 erstreckt sich vom Zahnradelement 20 Uber die rechts angeordnete Hirth-Verzahnung 18 hinweg bis in den Wellenteil 16. Die zweite Dehnschraube 31, die im Falle eines LNG-Kompressors ebenfalls aus einem kaltzähen Stahl gefertigt ist, erstreckt sich vom Wellenteil 16 über die links angeordnete Hirth-Verzahnung 17 hinweg bis in den stirnseitigen Bereich 27 des Laufrades 22.
    Zwischen den beiden Dehnschrauben 30,31 befindet sich ein Isolierelement 32, beispielsweise aus PTFE. Die die beiden Dehnschrauben 30,31 miteinander verbindende Zugmutter 33 ist hier nur andeutungsweise dargestellt. Auf die Vorteile, die sich aus dieser Anordnung ergeben, ist in der Beschreibung schon hingewiesen worden, so daß sich eine Wiederholung hier erübrigt.
  • In beiden Figuren wird durch die Pfeile 12 und 13 im Laufrad 22 die Strömungsrichtung des zu verdichtenden Mediums angedeutet. Der absteigende Pfeil 14 soll andeuten daß insbesondere beim Stillstand und während der Anfahrphase, wenn das zu fördernde Medium noch Keine oder nur eine geringe Temperaturerhöhung erfahren hat das zu fördernde Medium auch in den Wellenteil gelangen Kann.

Claims (7)

  1. Getriebe-Turbomaschine mit einer Ritzelwelle bestehend aus einem einteilig ausgebildeten und aus einem oberflächenhärtbaren Vergütungsstahl hergestellten Zahnradelement (20), dessen in eine Welle (25) übergehender anschließender Bereich als Lagerstelle ausgebildet ist und einem daran anschließenden als separates Teil ausgebildetes und eine Bohrung aufweisendes Wellenteil (16), an dessen freiem Ende ein Laufrad (22) anordenbar ist,
    dadurch gekennzeichnet,
    daß die Getriebe-Turbomaschine als Turboverdichter ausgebildet ist und daß das Wellenteil (16) mit dem Wellenbereich (25) des Zahnradelementes (20) über eine Dehnschraube (23) verbunden ist und das Wellenteil (16) an beiden Enden eine an sich bekannte Hirth-Verzahnung (17,18) aufweist, die in entsprechende Hirth-Verzahnungen der Endenbereiche (19,21) des Wellenbereiches (25) des Zahnradelementes (20) und des in Form einer fliegenden Lagerung lösbar mit dem Wellenteil (16) verbundenen Radiallaufrad (22) eingreifen, wobei der für das Wellenteil (16) verwendete Werkstoff der auftretenden Beanspruchung hinsichtlich Temperatur und Art des zu verdichtenden Mediums angepaßt ist.
  2. Getriebe-Turbomaschine nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Wellenteil (5, 16) aus einem tieftemperaturbeständigen Werkstoff besteht.
  3. Getriebe-Turbomaschine nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Wellenteil (5, 16) aus einem hochwarmfesten Werkstoff besteht.
  4. Getriebe-Turbomaschine nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Wellenteil (5, 16) aus einem besonders korrosionsbestäntigen Werkstoff besteht.
  5. Getriebe-Turbomaschine nach den Ansprüchen 1 bis 4,
    dadurch gekennzeichnet,
    daß das Wellenteil (5) eine Bohrung aufweist, durch die eine das Wellenteil (5) mit dem Wellenbereich (3, 25) des Zahnradelementes (1, 20) verbindende Dehnungsschraube (23) hindurch greift.
  6. Getriebe-Turbomaschine nach den Ansprüchen 1 bis 4,
    dadurch gekennzeichnet,
    daß die durch das Radiallaufrad (22) und das Wellenteil (16) sich erstreckende und zwei Gewindeabschnitte (24,26) aufweisende Dehnschraube (23) im Wellenbereich (25) des Zahnradelementes (20) verankert ist und mittels einer auf der Radiallaufradseite (27) auf dem Gewindeteil (26) der Dehnschraube aufschraubbare Mutter (28) das Wellenteil (16) und das Radiallaufrad (22) gegen den Wellenbereich (25) des Zahnradelementes (20) verspannbar ist.
  7. Getriebe-Turbomaschine nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die Dehnschraube geteilt (30,31) ist und die eine Dehnschraube (30) vom Zahnradelement (20) bis in den Wellenteil (16) und die zweite (31) vom Wellenteil (16) bis zum Stirnbereich (27) des Laufrades (22) sich erstreckt und die Verspannung des Wellenteiles (16) gegen das Zahnradelement (20) durch eine Zugmutter (33) erfolgt, die mit den beiden einander gegenüberliegenden Gewindeabschnitten der beiden Dehnschrauben (30,31) im Eingriff ist und deren äußerer Durchmesser etwas geringer ist als der innere Durchmesser des Wellenteiles (16).
EP93250128A 1992-06-17 1993-05-06 Turbomaschine Expired - Lifetime EP0575017B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4220127A DE4220127C1 (de) 1992-06-17 1992-06-17
DE4220127 1992-06-17

Publications (2)

Publication Number Publication Date
EP0575017A1 EP0575017A1 (de) 1993-12-22
EP0575017B1 true EP0575017B1 (de) 1997-06-18

Family

ID=6461399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93250128A Expired - Lifetime EP0575017B1 (de) 1992-06-17 1993-05-06 Turbomaschine

Country Status (3)

Country Link
EP (1) EP0575017B1 (de)
DE (2) DE4220127C1 (de)
NO (1) NO305260B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19627346C1 (de) * 1996-07-01 1997-11-20 Mannesmann Ag Vorrichtung zur lösbaren Befestigung eines Laufrades an einer Turbomaschine
DE10156228B4 (de) * 2001-11-15 2015-02-19 Atlas Copco Energas Gmbh Rotor einer Expansionsturbine für Tieftemperaturanwendungen
DE102009015862A1 (de) 2009-04-01 2010-10-07 Siemens Aktiengesellschaft Getriebeverdichterrotor für Kaltgasanwendungen
DE102010040288A1 (de) * 2010-09-06 2012-03-08 Siemens Aktiengesellschaft Rotor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE892402C (de) * 1940-04-14 1953-10-08 Messerschmitt Boelkow Blohm Lagerung fuer Gasturbinenlaeufer mit Waermeschutz
CH288842A (de) * 1951-02-13 1953-02-15 Sulzer Ag Gasturbine für Arbeitsmittel hoher Temperatur.
GB866710A (en) * 1956-09-06 1961-04-26 Birmingham Small Arms Co Ltd Improvements in or relating to elastic-fluid turbines
DE1199055B (de) * 1961-03-03 1965-08-19 Austin Motor Co Ltd Laeufer fuer Stroemungsmaschinen
AT288102B (de) * 1968-07-24 1971-02-25 Man Turbo Gmbh Vorrichtung zur Übertragung des Drehmomentes zwischen einem Turbinenrotor und einem Getriebe
US3874824A (en) * 1973-10-01 1975-04-01 Avco Corp Turbomachine rotor assembly
DE2436270A1 (de) * 1974-07-27 1976-02-05 Motoren Turbinen Union Wellenverbindung
DE2510287A1 (de) * 1975-03-08 1976-09-16 Motoren Turbinen Union Gasturbine mit autonomen keramikturbinenlaeufer
DE2559172C2 (de) * 1975-12-30 1985-07-25 United Turbine AB & Co. Kommanditbolag, Malmö Gasturbinenanlage
US4934138A (en) * 1988-12-06 1990-06-19 Allied-Signal Inc. High temperature turbine engine structure

Also Published As

Publication number Publication date
DE4220127C1 (de) 1993-09-16
NO305260B1 (no) 1999-04-26
DE59306767D1 (de) 1997-07-24
NO931605D0 (no) 1993-05-03
NO931605L (no) 1993-12-20
EP0575017A1 (de) 1993-12-22

Similar Documents

Publication Publication Date Title
EP2189549B1 (de) Zahnrad und Ausgleichswelle für einen Hubkolbenmotor
DE3619063C2 (de)
WO2000012916A1 (de) Verteilergetriebe für ein kraftfahrzeug
DE102019127242B4 (de) Anordnung eines Getriebes und einer Elektromaschine
DE19513380C2 (de) Abdichtung, Lagerung und Antrieb der Rotoren eines trockenlaufenden Schraubenrotorverdichters
EP1723352B1 (de) Motorhilfsantrieb eines kraftfahrzeuges mit einem zahnradgetriebe
EP3054179A1 (de) Welle eines gasturbinentriebwerks in faserverbundbauweise
DE2157328A1 (de) In eine Anzahl Segmente unterteiltes Zahnrad
EP1320691A2 (de) Maschinengehäuse
DE19736333C1 (de) Befestigung eines Laufrades einer Strömungsmaschine an einer Welle
EP1756426B1 (de) Pumpe
DE102009054007A1 (de) Gasturbine mit hydraulischer Dichtung
EP3483478B1 (de) Rädertrieb
EP0575017B1 (de) Turbomaschine
DE3005058A1 (de) Radialturbinenlaeufer
DE2101646B2 (de) Läufer für den Verdichter eines Gasturbinentriebwerks
DE1775336C3 (de) Lageranordnung
DE602004009244T2 (de) Antriebswelle
DE102019109454A1 (de) Ausgangsteil für einen Riemenscheibenentkoppler sowie entsprechender Riemenscheibenentkoppler
DE4415875A1 (de) Schraubenverdichter
DE102019111153A1 (de) Aktuator für eine Hinterachslenkung eines Fahrzeugs sowie Hinterachslenkung mit einem solchen Aktuator
DE202016008922U1 (de) Elektrische Arbeitsmaschine
EP1043486B1 (de) Kurbelwelle eines Motors
EP1478080B1 (de) Turbomaschine
DE102020201879B4 (de) Gleichlaufgelenkbauteil mit Innenpassverzahnung und Verfahren zur Herstellung eines gehärteten Bauteils mit Innenpassverzahnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19931124

17Q First examination report despatched

Effective date: 19950317

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970618

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59306767

Country of ref document: DE

Date of ref document: 19970724

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19970618

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080516

Year of fee payment: 16

Ref country code: DE

Payment date: 20080721

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080528

Year of fee payment: 16

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080516

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090506