EP0568415B1 - Procédé d'isolation d'un conducteur électrique et fil électrique isolé tel qu'obtenu par la mise en oeuvre du procédé - Google Patents

Procédé d'isolation d'un conducteur électrique et fil électrique isolé tel qu'obtenu par la mise en oeuvre du procédé Download PDF

Info

Publication number
EP0568415B1
EP0568415B1 EP93401042A EP93401042A EP0568415B1 EP 0568415 B1 EP0568415 B1 EP 0568415B1 EP 93401042 A EP93401042 A EP 93401042A EP 93401042 A EP93401042 A EP 93401042A EP 0568415 B1 EP0568415 B1 EP 0568415B1
Authority
EP
European Patent Office
Prior art keywords
layer
varnish
powder
electrical conductor
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93401042A
Other languages
German (de)
English (en)
Other versions
EP0568415A1 (fr
Inventor
René Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UDD-FIM SA
Original Assignee
UDD-FIM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UDD-FIM SA filed Critical UDD-FIM SA
Publication of EP0568415A1 publication Critical patent/EP0568415A1/fr
Application granted granted Critical
Publication of EP0568415B1 publication Critical patent/EP0568415B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/16Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
    • H01B13/165Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying by spraying

Definitions

  • the present invention relates to a method of insulating an electrical conductor and the insulated electrical conductor wire as obtained by the implementation of said method.
  • the present invention relates to the insulation of electrical conductors intended in particular to produce windings of electrical equipment, for example motor windings, in which the insulation is carried out initially on the conductor before it is wound on a support. storage.
  • the conductor thus isolated is then used as an insulated conductor by already known methods.
  • the electrical conductor wires intended to make the windings of electrical equipment are generally previously isolated by enameling or wrapping or else enameling followed by wrapping.
  • Enamelling is generally carried out by depositing synthetic polymers in solution in an organic solvent medium.
  • the deposition is carried out in several calibrated layers, each layer being dried and polymerized before the deposition of the next layer by passage through an oven at high temperature of the order of 400 to 500 ° C.
  • the dielectric strength of the insulation thus deposited varies from 60kV per millimeter to 130kV per millimeter depending on the thickness of the polymer called enamel or varnish.
  • thermal resistance of this insulator also varies according to the nature of the organic polymer used and does not make it possible to respond to uses in the case where the conductor is subjected to very high stresses, at the same time thermal, electrical and mechanical. Indeed, the electro-dynamic forces, the potential gradients or even the centrifugal forces in the case of windings of rotating machines induce significant stresses on the winding wires in contact which, combined with the increase in operating temperature due to overheating by Joule effect and electromagnetic losses, can cause a short circuit between the wires of the winding thus produced.
  • thermoplasticity In the case of significant mechanical stress, this phenomenon is linked to a creep of the enamel under temperature and pressure which can be simulated by a standardized test called thermoplasticity. This consists of exercising a pressure defined at the intersection of two electrically tensioned wires arranged perpendicularly for a determined period and to repeat the test at different temperatures to determine at what temperature a short circuit occurs.
  • Enamel is most often not used alone but combined with other insulating materials.
  • One of the reinforcing methods commonly used to overcome these drawbacks consists in covering the enamelled wire, that is to say in winding in the form of a spiral a sheet of continuous fibers impregnated with a polymer in an organic medium.
  • the fibers commonly used mention may be made, for example, of glass fibers or mixtures of glass fibers and polyester fibers.
  • the covering can also be directly deposited on an unglazed conductor when the operating conditions allow it. It therefore has not only the advantage of improving the connection with the impregnation varnishes of the windings, but, for given specific applications, the presence of a mineral product increases its resistance to high thermal stresses. Compared to enameled winding wire alone, the mineral product increases resistance to intense occasional overloads but limited in duration and increases the safety margin when temperatures occasionally reach 400 to 500 ° C under high mechanical stress.
  • an object of the present invention is to provide a method which effectively allows the production of electrical insulation comprising mineral insulating materials and which is compatible with a process of insulating the electrical conductor continuously.
  • the method according to the invention effectively allows in-line insulation of the electrical conductor.
  • the production of the layer of varnish is made according to conventional means online and the deposition of the mineral insulating powder can conveniently also be carried out in a second step in line in particular using spray nozzles or powder transfer techniques by electrostatic field.
  • the method can be used interchangeably depending on whether the electrical conductor is already insulated with enamel or whether it is bare.
  • steps a), c) and d) are repeated several times until the desired thickness of insulation is obtained.
  • the deposition of the layer of mineral insulation powder is carried out by producing a suspension or a cloud of this powder in an area crossed by the wire to be insulated. This is the meaning to be given to the term spraying in this text as opposed to electrolytic deposition techniques.
  • Another object of the invention is to provide an insulated electrical conductor wire having insulation of the type obtained by implementing the method according to the invention.
  • the electrical insulation of the electrical conductor is carried out in three basic steps.
  • Second step, the electrical conductor thus covered with varnish is subjected to a spray of a powder of insulating mineral material. This powder adheres to the varnish which has just been deposited, thus achieving a homogeneous layer of mineral insulator since the maintenance of the mineral insulator on the electrical conductor can only be done in direct contact with the layer of varnish initially deposited.
  • the electrical conductor thus coated with the initial layer of varnish and the layer of mineral insulation is subjected to a drying and polymerization treatment of the varnish in order to stabilize the assembly.
  • a drying and polymerization treatment of the varnish in order to stabilize the assembly.
  • a first layer of insulating varnish 14 in polymer is produced in an organic or aqueous solvent medium or in an active diluent medium.
  • varnish one can use all the varnishes known in the field of the use of insulation of the winding wires. Among these, mention may be made, for example, of varnishes based on modified or unmodified polyester, polyesters, epoxies, polyamide-imides, polyimides, polyurethanes or varnishes based on polyvinyl acetoformal.
  • varnishes can be applied by conventional techniques, that is to say by passing the conductive wire 12 through the varnish bath, then by calibrating the layer.
  • the conductive wire 12 coated with its layer of varnish 14 is made to move in a medium where a powder of mineral insulating material, preferably mica, is present in suspension.
  • the particles adhering to the layer of varnish 14 form a regular uniform layer of particles of mica 16.
  • the mica is in the form of a powder obtained by grinding and it can be of the muscovite or phlogopite type.
  • the average particle size can vary in the particle cleavage plane from 0.05 mm to 0.8 mm and more.
  • the maximum dimension in the cleavage plane is 0.4 mm. This maximum dimension is an average dimension corresponding to the statistical dispersion of the particles actually obtained during the operation for preparing the powder.
  • the final content of the mica can be between 10 and 90% of the insulation part thus produced. Preferably, this content is between 40 and 60%.
  • FIG. 3 illustrates a first mode of implementation.
  • two spray nozzles 24 and 26 connected to sources of mica in the form of powder and thus allowing circulation in the direction F of the conductive wire 12 inside a cloud of mica powder in suspension.
  • only one layer of mica adheres to the varnish 14, the rest of the mica being unable to adhere to the first layer of insulation mica already obtained.
  • FIG. 4 illustrates a second mode of deposition of the layer of mica powder.
  • the conductive wire 12 already covered with the layer of varnish 14 circulates in an area 30 in which an atmosphere saturated with mica powder is created by the following means.
  • the mica powder 32 is placed in a hopper 34 open at its lower end 36.
  • the hopper 34 is associated with a vibration generator 38 constituted for example by a wheel 40 associated with a connecting rod 42 which is connected to the hopper 34 by l 'Intermediate of an elastic damping system 44. This causes the progressive descent of the mica powder 32 towards the outlet 36.
  • the creation of the cloud of mica powder in the zone 30 is obtained by the creation of an electrostatic field.
  • the walls of the hopper 32 which have the general reference 46, are made of an electrically conductive material and the hopper is fixed to an insulating frame 48.
  • a plate opposite the hopper 34 conductive 50 perpendicular to the frame 48 defines the area of creation of the mica cloud 30.
  • the wall 46 of the hopper 34 and the plate 50 are connected to the terminals 52a and 52b of an electric generator 52.
  • the two electrodes formed by the wall 46 and the plate 50 thus define an electric field E which causes displacement of the mica particles in the zone 30.
  • These mica particles adhere to the layer 14 of varnish formed on the conductive wire 12.
  • the deposition installation mica powder comprises two modules identical to those shown in Figure 4 but corresponding to electrostatic fields for driving the particles in two opposite directions.
  • This operation associated with the initial deposition of a layer of varnish can be repeated as many times as necessary to obtain the desired thickness of insulation.
  • the electrical conductor is subjected to a heat treatment in order to dry the varnish and polymerize it. this in order to obtain stabilization of the insulating coating.
  • a heat treatment in order to dry the varnish and polymerize it.
  • stabilization of the insulating coating it is important to note that other techniques for spraying mica powder or other mineral insulators on the conductive wire coated with varnish could be used provided that these techniques allow adhesion on the varnish layer of a layer homogeneous uniform of mica or other equivalent mineral insulation.
  • the electrical conductor can be initially not bare but covered with an initial layer of enamel or a layer covering as shown in FIG. 2.
  • successive depositions of layers of varnish and layers of mica particles are carried out, followed by suitable heat treatment.
  • this process can be used with an enameled conductive wire whose thermal index is preferably greater than or equal to 180 ° C.
  • the method can be implemented on a conducting wire initially covered with a covering layer 60 as defined above. In the latter case, the aim is no longer to provide insulation under preferential economic conditions but to reinforce the proportion of inert materials with a material such as mica known for its good resistance to the corona effect.
  • the outer layer 62 can also be produced by covering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Paints Or Removers (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

  • La présente invention a pour objet un procédé d'isolation d'un conducteur électrique et le fil conducteur électrique isolé tel qu'obtenu par la mise en oeuvre dudit procédé.
  • De façon plus précise, la présente invention concerne l'isolation de conducteurs électriques destinés à réaliser notamment des bobinages d'équipement électrique, par exemple des bobinages de moteur, dans laquelle l'isolation est réalisée initialement sur le conducteur avant son enroulement sur un support de stockage. Le conducteur ainsi isolé est ensuite utilisé comme un conducteur isolé par des procédés déjà connus.
  • Les fils conducteurs électriques destinés à réaliser des bobinages d'équipement électrique sont généralement préalablement isolés par émaillage ou guipage ou encore émaillage suivi de guipage.
  • L'émaillage est en général réalisé par dépôt de polymères synthétiques en solution dans un milieu solvant organique. Le dépôt se fait en plusieurs couches calibrées, chaque couche étant séchée et polymérisée avant le dépôt de la couche suivante par passage dans un four à température élevée de l'ordre de 400 à 500°C. La rigidité diélectrique de l'isolant ainsi déposé varie de 60kV par millimètre à 130kV par millimètre en fonction de la surépaisseur du polymère appelé émail ou vernis.
  • La tenue thermique de cet isolant varie aussi en fonction de la nature du polymère organique utilisé et ne permet pas de répondre à des utilisations dans le cas où le conducteur est soumis à des contraintes très élevées, à la fois thermiques, électriques et mécaniques. En effet, les forces électro-dynamiques, les gradients de potentiel ou encore les forces centrifuges dans le cas des bobinages de machines tournantes induisent des contraintes importantes sur les fils de bobinage en contact qui, combinées à l'accroissement de température de fonctionnement du fait de l'échauffement par effet joule et pertes électromagnétiques, peuvent provoquer un court-circuit entre les fils du bobinage ainsi réalisé.
  • Dans le cas de sollicitation mécanique importante, ce phénomène est lié à un fluage de l'émail sous température et pression qui peuvent être simulées par un test normalisé dit de thermo-plasticité. Celui-ci consiste à exercer une pression définie à l'intersection de deux fils sous tension électrique disposés perpendiculairement pendant une durée déterminée et à répéter l'essai à différentes températures pour déterminer à quelle température se produit un court-circuit.
  • Dans ces conditions de test, les émaux les plus performants à ce jour parmi ceux utilisés couramment permettent d'obtenir une thermo-plasticité de l'ordre de 400°C à 500°C, ce qui, dans des applications à fortes sollicitations thermiques et mécaniques, reste insuffisant en raison de l'absence de matières minérales dans le matériau d'isolation.
  • Dans le cas où il existe de plus de fortes sollicitations électriques correspondant à la moyenne ou à la haute tension. L'émail n'est le plus souvent pas employé seul mais associé à d'autres matériaux isolants.
  • Un des modes de renforcement couramment utilisés pour pallier à ces inconvénients consiste à guiper le fil émaillé, c'est-à-dire à enrouler sous forme de spirale d'une nappe de fibres continues imprégnées par un polymère en milieu organique. Parmi les fibres utilisées de façon courante, on peut citer à titre d'exemple les fibres de verre ou les mélanges fibres de verre et fibres de polyester.
  • Le guipage peut également être directement déposé sur un conducteur non émaillé lorsque les conditions de fonctionnement le permettent. Il présente alors non seulement l'avantage d'améliorer la liaison avec les vernis d'imprégnation des bobinages mais, pour des applications spécifiques données, la présence d'un produit minéral augmente sa tenue aux sollicitations thermiques importantes. Comparativement au fil de bobinage émaillé seul, le produit minéral permet d'accroître la résistance aux surcharges ponctuelles intenses mais limitées en durée et accroît la marge de sécurité lorsque les températures atteignent ponctuellement 400 à 500°C sous forte contrainte mécanique.
  • Une solution pour améliorer l'isolation électrique consisterait à ajouter des produits minéraux isolants dans les vernis d'émaillage par exemple du mica. Cependant cette adjonction comporterait certaines difficultés de mise en oeuvre : en effet, il est techniquement exclu d'incorporer des produits minéraux à forte concentration dans les vernis d'émaillage car les phénomènes de décantation de la charge, d'une part, et les faibles surépaisseurs de dépôts calibrés à chaque couche, d'autre part, (0,01 à 0,02 mm) ne permettraient pas d'obtenir une isolation régulière en composition et en épaisseur selon les différents points de la surface du conducteur à isoler.
  • On a également proposé le dépôt par électrophorèse de l'émail charge avec un matériau minéral tel que du mica. Une telle solution est notamment décrite dans les documents US-A-4 058 444, WO-A-89/100765 et FR-A-2 555 599 qui visent tous à isoler des connexions électriques au moyen d'une composition constituée d'un liant et de poudre de mica en milieu aqueux et déposé par électrolyse. Ce procédé qui est difficile à mettre en oeuvre en continu convient bien pour des pièces de forme ou des bobinages déjà réalisés et difficiles à isoler mais il est d'une mise en oeuvre délicate pour l'isolation de conducteurs électriques destinés à être bobinés ultérieurement sur un support de stockage.
  • Pour remédier à ces inconvénients, un objet de la présente invention est de fournir un procédé qui permette effectivement la réalisation d'une isolation électrique comportant des matériaux isolants minéraux et qui soit compatible avec un processus d'isolation du conducteur électrique en continu.
  • Pour atteindre ce but, le procédé d'isolation d'un conducteur électrique , selon l'invention qui comprend l'étape
    • a) de déposer sur ledit conducteur une couche de vernis polymère en milieu solvant et/ou diluant;
         se caractérise en ce qu'il comporte en outre les étapes suivantes :
    • b) on produit un nuage localisé de poudre de particules d'un matériau minéral isolant;
    • c) on déplace de façon continue ledit conducteur revêtu de la couche de vernis à travers ledit nuage de poudre, par quoi lesdites particules adhèrent à ladite couche de vernis pour former une couche isolante;
    • d) on soumet le conducteur électrique ainsi revêtu à une opération de séchage et de polymérisation du vernis.
  • On comprend que le procédé selon l'invention permet effectivement l'isolation en ligne du conducteur électrique. En effet, la réalisation de la couche de vernis est faite selon des moyens classiques en ligne et le dépôt de la poudre d'isolant minéral peut commodément être également réalisée dans une deuxième étape en ligne notamment à l'aide de buses de pulvérisation ou de techniques de transfert de poudre par champ électrostatique. On remarque de plus que, comme le conducteur électrique n'est pas utilisé comme électrode dans le processus d'isolation, le procédé peut être utilisé indifféremment selon que le conducteur électrique est déjà isolé à l'aide d'un émail ou qu'il est nu.
  • De préférence, les étapes a), c) et d) sont répétées plusieurs fois jusqu'à ce qu'on obtienne la surépaisseur d'isolation souhaitée.
  • Le dépôt de la couche de poudre d'isolant minéral est réalisé en produisant une suspension ou un nuage de cette poudre dans une zone traversée par le fil à isoler. C'est le sens qu'il faut donner au terme pulvérisation dans le présent texte par opposition à des techniques de dépôt électrolytiques.
  • Un autre objet de l'invention est de fournir un fil conducteur électrique isolé présentant une isolation du type obtenu par la mise en oeuvre du procédé selon l'invention.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront mieux à la lecture de la description qui suit de plusieurs modes mise en oeuvre de l'invention donnés à titre d'exemples non limitatifs. La description se réfère aux figures annexées sur lesquelles :
    • la figure 1 est une vue en coupe transversale d'un conducteur électrique isolé selon un premier mode de mise en oeuvre de l'invention ;
    • la figure 2 est une vue similaire à celle de la figure 1 mais montrant un deuxième mode de mise en oeuvre du procédé selon l'invention ;
    • la figure 3 illustre un premier mode de réalisation du dépôt de la poudre de matériau isolant ; et
    • la figure 4 illustre un deuxième mode de dépôt de la poudre de matériau isolant selon l'invention.
  • Avant de décrire en détails, différents modes de mise en oeuvre de l'invention, on va en décrire le principe.
  • Selon l'invention, l'isolation électrique du conducteur électrique est réalisée en trois étapes de base. Dans un premier temps, le conducteur électrique est revêtu d'une couche de vernis polymère en milieu solvant organique ou non et/ou encore dans un milieu diluant réactif. Dans une deuxième étape, on soumet le conducteur électrique ainsi recouvert de vernis à une pulvérisation d'une poudre de matériau minéral isolant. Cette poudre adhère au vernis qui vient d'être déposé réalisant ainsi une couche homogène d'isolant minéral puisque le maintien de l'isolant minéral sur le conducteur électrique ne peut se faire qu'au contact direct de la couche de vernis initialement déposée. Dans une troisième étape, on soumet le conducteur électrique ainsi revêtu de la couche initiale de vernis et de la couche d'isolant minéral à un traitement de séchage et de polymérisation du vernis afin de stabiliser l'ensemble. Selon la surépaisseur d'isolation souhaitée et donc les caractéristiques d'isolation recherchées, ces trois opérations sont répétées successivement.
  • En se référant tout d'abord à la figure 1, on va décrire un premier mode de mise en oeuvre de l'invention. A partir d'un conducteur électrique nu 12, qui peut avoir une section circulaire ou rectangulaire et être réalisé en cuivre,en aluminium, etc., on réalise une première couche de vernis isolant 14 en polymère en milieu solvant organique ou aqueux ou encore en milieu diluant actif. Comme vernis, on peut utiliser tous les vernis connus dans le domaine de l'utilisation de l'isolation des fils de bobinage. Parmi ceux-ci, on peut citer à titre d'exemple les vernis à base de polyestérimide modifié ou non, les polyesters, les epoxy, les polyamide-imides, les polyimides, les polyuréthanes ou les vernis à base d'acétoformal de polyvinyle. Ces vernis peuvent être appliqués par les techniques classiques, c'est-à-dire par passage du fil conducteur 12 dans le bain de vernis, puis par calibrage de la couche. Dans une deuxième étape, on fait se déplacer le fil conducteur 12 revêtu de sa couche de vernis 14 dans un milieu où une poudre de matériau isolant minéral, de préférence du mica, est présente en suspension. Les particules en adhérant à la couche de vernis 14 forme une couche uniforme régulière de particules de mica 16. On comprend que, en effet, seule la première couche de particules de mica peut adhérer à la couche de vernis 14, ce qui permet un dépôt uniforme de l'isolant minéral. De préférence, le mica se présente sous la forme d'une poudre obtenue par broyage et elle peut être de type muscovite ou phlogopite. La taille moyenne des particules peut varier dans le plan de clivage des particules de 0,05 mm à 0,8 mm et plus. De préférence, la dimension maximale dans le plan de clivage est de 0,4 mm. Cette dimension maximale est une dimension moyenne correspondant à la dispersion statistique des particules effectivement obtenues lors de l'opération d'élaboration de la poudre. La teneur finale du mica peut se situer entre 10 et 90% de la partie d'isolation ainsi réalisée. De préférence, cette teneur est comprise en 40 et 60%. Une fois que ce premier dépôt a été réalisé, on effectue un deuxième dépôt de couche de vernis 18, comme indiqué précédemment, puis un deuxième dépôt 20 d'une couche de mica, comme cela a déjà également été expliqué. Pour terminer la réalisation de l'isolation, on peut déposer une couche externe d'isolation à l'aide du vernis déjà mentionné, cette couche portant la référence 22. Eventuellement plusieurs couches de vernis peuvent être déposées successivement.
  • Le dépôt de la couche d'isolant minéral, typiquement du mica, sur le conducteur électrique 12 déjà muni d'une couche de vernis 14 peut se réaliser de différentes manières. La figure 3 illustre un premier mode de mise en oeuvre. Sur cette figure, on a représenté deux buses de pulvérisation 24 et 26 raccordées à des sources de mica sous forme de poudre et permettant ainsi la circulation selon la direction F du fil conducteur 12 à l'intérieur d'un nuage de poudre de mica en suspension. Ainsi, comme on l'a déjà expliqué, seule une couche de mica adhère au vernis 14, le reste du mica ne pouvant adhérer à la première couche de mica d'isolation déjà obtenue.
  • La figure 4 illustre un deuxième mode de dépôt de la couche de poudre de mica. Selon ce deuxième mode de mise en oeuvre, le fil conducteur 12 déjà recouvert de la couche de vernis 14 circule dans une zone 30 dans laquelle on crée une ambiance saturée en poudre de mica par les moyens suivants. La poudre de mica 32 est placée dans une trémie 34 ouverte à son extrémité inférieure 36. La trémie 34 est associée à un générateur de vibrations 38 constitué par exemple par une roue 40 associée à une bielle 42 qui est reliée à la trémie 34 par l'intermédiaire d'un système amortisseur élastique 44. On provoque ainsi la descente progressive de la poudre de mica 32 vers la sortie 36. La réalisation du nuage de poudre de mica dans la zone 30 est obtenue par la création d'un champ électrostatique. Pour cela, de préférence, les parois de la trémie 32, qui portent la référence générale 46, sont réalisées en un matériau conducteur de l'électricité et la trémie est fixée sur un bâti isolant 48. En regard de la trémie 34, une plaque conductrice 50 perpendiculaire au bâti 48 définit la zone de création du nuage de mica 30. La paroi 46 de la trémie 34 et la plaque 50 sont reliées aux bornes 52a et 52b d'un générateur électrique 52. Les deux électrodes formées par la paroi 46 et la plaque 50 définissent ainsi un champ électrique E qui provoque un déplacement des particules de mica dans la zone 30. Ces particules de mica viennent adhérer à la couche 14 de vernis formé sur le fil conducteur 12. De préférence, l'installation de dépôt de la poudre de mica comprend deux modules identiques à ceux qui sont représentés sur la figure 4 mais correspondant à des champs électrostatiques d'entraînement des particules selon deux directions opposées. Cette opération associée au dépôt initial d'une couche de vernis peut être répétée autant de fois que nécessaire pour obtenir la surépaisseur d'isolation souhaitée. Comme on l'a déjà indiqué, après chaque étape de dépôt d'une couche de vernis et de formation d'une couche de mica, le conducteur électrique est soumis à un traitement thermique afin d'obtenir le séchage du vernis et la polymérisation de celui-ci en vue d'obtenir la stabilisation du revêtement isolant. Il est important de noter que d'autres techniques de pulvérisation de la poudre de mica ou d'autres isolants minéraux sur le fil conducteur revêtu de vernis pourraient être utilisés à condition que ces techniques permettent l'adhérence sur la couche de vernis d'une couche uniforme homogène de mica ou d'un autre isolant minéral équivalent. On pourrait par exemple utiliser une technique par lit fluidisé.
  • On comprend que, comme le fil conducteur à isoler n'est pas utilisé comme électrode contrairement aux techniques utilisées le plus souvent précédemment, le conducteur électrique peut être initialement non pas nu mais recouvert d'une couche initiale d'émail ou d'une couche de guipage comme cela est représenté sur la figure 2. On effectue ensuite les dépôts successifs de couches de vernis et de couches de particules de mica suivi du traitement thermique convenable. En particulier, ce procédé peut être utilisé avec un fil conducteur émaillé dont l'indice thermique est de préférence supérieur ou égal à 180°C. En variante, on peut mettre en oeuvre le procédé sur un fil conducteur recouvert initialement d'une couche de guipage 60 telle que définie précédemment. Dans ce dernier cas, le but recherché n'est plus de réaliser une isolation dans des conditions économiques préférentielles mais de renforcer la proportion des matières inertes par un matériau tel que du mica connu pour sa bonne tenue à l'effet corona. La couche externe 62 peut également être réalisée par guipage.
  • Dans un exemple particulier de réalisation, le procédé a été mis en oeuvre dans les conditions suivantes. Le conducteur électrique à isoler 12 est un fil de cuivre de section circulaire dont le diamètre est de 2 mm. Ce conducteur est revêtu d'une première couche de vernis du type polyimide puis recouvert de particules de mica de dimensions maximales moyennes dans leur plan de clivage égal à 0,4 mm. Le conducteur entre ensuite dans le four de traitement thermique où il est séché et polymérisé et repasse deux fois dans le même dispositif de dépôt de vernis et de poudre de mica pour une deuxième et une troisième application de vernis suivi de poudre de mica. L'isolation est complétée par un dépôt dans un deuxième dispositif d'une quatrième couche constituée de vernis polyester-imide et de la même poudre de mica séchée et polymérisée à température inférieure, puis par une cinquième et une sixième couches de vernis polyester-imide séchées et polymérisées entre chaque dépôt dans les mêmes conditions que précédemment. Les essais effectués sur le conducteur isolé ainsi obtenu ont donné les résultats suivants :
    • teneur en mica de l'isolation :    48 à 52%
    • surépaisseur d'isolation :    0,16 à 0,20 mm
    • thermoplasticité selon la méthode normalisée CEI supérieure à 500°C
    • tension de claquage :    2,5 à 3,3kV par mm
    • souplesse de l'isolation : on n'a observé aucune fissuration lors du bobinage du fil sur un mandrin dont le diamètre est égal à trois fois le diamètre du conducteur, ou lors de l'allongement du conducteur de 20%.
  • On comprend que, grâce à la mise en oeuvre du procédé, on peut obtenir un conducteur électrique isolé présentant des propriétés d'isolation électrique au moins égales à celles obtenues précédemment. Ce procédé se prête à l'isolation d'un conducteur en continu et il permet ultérieurement des déformations du conducteur sans qu'apparaissent des fissures dans l'isolation de celui-ci.

Claims (16)

  1. Procédé d'isolation d'un conducteur électrique comprenant l'étape
    a) de déposer sur ledit conducteur une couche de vernis polymère en milieu solvant et/ou diluant;
       ledit procédé se caractérisant en ce qu'il comprend en outre les étapes suivantes :
    b) on produit un nuage localisé de poudre de particules d'un matériau minéral isolant;
    c) on déplace de façon continue ledit conducteur revêtu de la couche de vernis à travers ledit nuage de poudre, par quoi lesdites particules adhèrent à ladite couche de vernis pour former une couche isolante;
    d) on soumet le conducteur électrique ainsi revêtu à une opération de séchage et de polymérisation du vernis.
  2. Procédé selon la revendication 1, caractérisé en ce que les étapes a), c) et d) sont répétées plusieurs fois jusqu'à ce qu'on obtienne la surépaisseur d'isolation souhaitée.
  3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ledit nuage de poudre est créé par pulvérisation.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit isolant minéral est du mica.
  5. Procédé selon la revendication 4, caractérisé en ce que la teneur pondérale en mica est comprise entre 40% et 60% du poids de l'isolation réalisée.
  6. Procédé selon l'une quelconque des revendications 4 et 5, caractérisé en ce que les particules de mica ont une plus grande dimension moyenne de l'ordre de 0,4 mm.
  7. Procédé d'isolation selon l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit conducteur électrique est initialement nu.
  8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le conducteur électrique est initialement recouvert d'émail et/ou guipé.
  9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend en outre une étape finale de dépôt d'au moins une couche de vernis.
  10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend en outre une étape finale de réalisation d'au moins une couche de guipage.
  11. Procédé selon la revendication 3, caractérisé en ce que la pulvérisation de ladite poudre minérale est réalisée par un dispositif à buses de pulvérisation.
  12. Procédé selon la revendication 3, caractérisé en ce que la pulvérisation dudit nuage de poudre est réalisé par déplacement électrostatique des particules de poudre, le champ électrique étant créé par des électrodes indépendantes dudit conducteur.
  13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce que ledit vernis comporte un polymère choisi dans le groupe comprenant : le polyesterimide modifié ou non; les polyesters; les epoxy; les polyamide-imides; les polyimides; les polyuréthanes ; l'acétoformal de polyvinyle.
  14. Fil conducteur électrique isolé, caractérisé en ce qu'il comprend une âme conductrice, une pluralité de couche de vernis (14, 18) et une pluralité de couches de poudre isolante (16, 20) alternées, chaque couche de poudre adhérant de façon uniforme sur une couche de vernis.
  15. Fil conducteur électrique isolé selon la revendication 14, caractérisé en ce qu'il comprend en outre au moins une couche d'émail et/ou de guipage (60) réalisée directement sur l'âme conductrice (12).
  16. Fil conducteur électrique isolé selon l'une quelconque des revendications 14 et 15, caractérisé en ce qu'il comprend en outre une isolation externe comportant au moins une couche de vernis (22) et/ou au moins une couche de guipage (62).
EP93401042A 1992-04-27 1993-04-22 Procédé d'isolation d'un conducteur électrique et fil électrique isolé tel qu'obtenu par la mise en oeuvre du procédé Expired - Lifetime EP0568415B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9205180 1992-04-27
FR9205180A FR2690559B1 (fr) 1992-04-27 1992-04-27 Procede d'isolation d'un conducteur electrique et conducteur electrique isole tel qu'obtenu par la mise en óoeuvre du procede.

Publications (2)

Publication Number Publication Date
EP0568415A1 EP0568415A1 (fr) 1993-11-03
EP0568415B1 true EP0568415B1 (fr) 1996-10-30

Family

ID=9429294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93401042A Expired - Lifetime EP0568415B1 (fr) 1992-04-27 1993-04-22 Procédé d'isolation d'un conducteur électrique et fil électrique isolé tel qu'obtenu par la mise en oeuvre du procédé

Country Status (6)

Country Link
EP (1) EP0568415B1 (fr)
JP (1) JPH0668730A (fr)
AT (1) ATE144856T1 (fr)
DE (1) DE69305681T2 (fr)
ES (1) ES2093376T3 (fr)
FR (1) FR2690559B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760123B1 (fr) * 1997-02-24 1999-04-16 Alsthom Cge Alcatel Fil emaille de resistance elevee aux decharges partielles
JP5957539B2 (ja) * 2012-12-26 2016-07-27 株式会社日立製作所 耐熱配線部品とその製造方法
CN111029013B (zh) * 2019-10-17 2021-08-03 东莞宇隆电工材料有限公司 一种耐热循环的漆包线及生产工艺

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1558163A (en) * 1976-06-04 1979-12-19 Norsk Hydro As Insulating coatings
EP0041824A1 (fr) * 1980-06-11 1981-12-16 Associated Electrical Industries Limited Procédé de production d'isolation électrique
JPH04106812A (ja) * 1990-08-27 1992-04-08 Toshiba Corp 絶縁導体の製造方法

Also Published As

Publication number Publication date
FR2690559A1 (fr) 1993-10-29
JPH0668730A (ja) 1994-03-11
DE69305681T2 (de) 1997-03-20
FR2690559B1 (fr) 1997-03-14
ATE144856T1 (de) 1996-11-15
DE69305681D1 (de) 1996-12-05
ES2093376T3 (es) 1996-12-16
EP0568415A1 (fr) 1993-11-03

Similar Documents

Publication Publication Date Title
FR2921511A1 (fr) Cable electrique resistant a la propagation d'arc electrique
CA2312883C (fr) Fil revetu resistant a l'abrasion
FR2508227A1 (fr) Cable electromecanique resistant a des temperatures et pressions elevees et son procede de fabrication
US4388371A (en) Self-bonding acrylic polymer overcoat for coated metal substrates
FR2722330A1 (fr) Cable coaxial
WO2017173081A1 (fr) Fil de bobinage isolé avec revêtements enrobants
EP3443563B1 (fr) Câble électrique présentant une résistance à la corrosion galvanique améliorée
EP0568415B1 (fr) Procédé d'isolation d'un conducteur électrique et fil électrique isolé tel qu'obtenu par la mise en oeuvre du procédé
EP3134906A1 (fr) Conducteur continuellement transposé
GB2046501A (en) Heat-resistant insulated electric wires and coils and methods of making and connecting such wires
EP0500449B1 (fr) Corps allongé isolé au moyen d'une enveloppe isolante
EP3358575B1 (fr) Câble electrique resistant aux decharges partielles
FR2507378A1 (fr) Structure monobloc d'elements conducteurs avec un isolant entre eux
US20020142161A1 (en) Magnet wire having enamel with a boron nitride filler
EP2808874A1 (fr) Câble électrique comprenant au moins une couche électriquement isolante
US20180322980A1 (en) Surface Treating Magnet Wire Enamel Layers To Promote Layer Adhesion
FR2541035A1 (fr) Conducteur electrique isole et son procede de fabrication
FR2932604A1 (fr) Cable electrique a haute tension
EP0538736B1 (fr) Dispositif de traitement de surface par décharge couronne
FR3092432A1 (fr) Procédé d’imprégnation d’une structure bobinée de fils émaillés
EP0192523B1 (fr) Procédé de fabrication d'un matériau isolant électrique souple et matériau isolant électrique souple obtenu par ce procédé
EP0297219B1 (fr) Procédé de fabrication d'un câble électrique souple
EP0271407B1 (fr) Procédé de protection d'un élément d'installation plongé dans un milieu environnant et sensible aux influences électriques, magnétiques et/ou électromagnétiques présentes dans ce milieu
EP0539905B1 (fr) Cable électrique
EP3913643A1 (fr) Câble présentant une résistance à la corrosion améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

17P Request for examination filed

Effective date: 19931206

17Q First examination report despatched

Effective date: 19950411

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES GB IT LI NL SE

REF Corresponds to:

Ref document number: 144856

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIETLIN & CIE S.A.

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961108

REF Corresponds to:

Ref document number: 69305681

Country of ref document: DE

Date of ref document: 19961205

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093376

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000320

Year of fee payment: 8

Ref country code: NL

Payment date: 20000320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000408

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000413

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000414

Year of fee payment: 8

Ref country code: ES

Payment date: 20000414

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000511

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010422

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010423

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010521

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010521

BERE Be: lapsed

Owner name: S.A. UDD-FIM

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

EUG Se: european patent has lapsed

Ref document number: 93401042.2

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050422