EP0562296B1 - Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung sowie Spuleinrichtung zur Durchführung des Verfahrens - Google Patents

Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung sowie Spuleinrichtung zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0562296B1
EP0562296B1 EP93102947A EP93102947A EP0562296B1 EP 0562296 B1 EP0562296 B1 EP 0562296B1 EP 93102947 A EP93102947 A EP 93102947A EP 93102947 A EP93102947 A EP 93102947A EP 0562296 B1 EP0562296 B1 EP 0562296B1
Authority
EP
European Patent Office
Prior art keywords
winding
bobbin
drive
speed
thread guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93102947A
Other languages
English (en)
French (fr)
Other versions
EP0562296A1 (de
Inventor
Heinz Hefert
Peter Siebertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Sahm GmbH and Co KG
Original Assignee
Georg Sahm GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Sahm GmbH and Co KG filed Critical Georg Sahm GmbH and Co KG
Publication of EP0562296A1 publication Critical patent/EP0562296A1/de
Application granted granted Critical
Publication of EP0562296B1 publication Critical patent/EP0562296B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/38Arrangements for preventing ribbon winding ; Arrangements for preventing irregular edge forming, e.g. edge raising or yarn falling from the edge
    • B65H54/381Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft
    • B65H54/383Preventing ribbon winding in a precision winding apparatus, i.e. with a constant ratio between the rotational speed of the bobbin spindle and the rotational speed of the traversing device driving shaft in a stepped precision winding apparatus, i.e. with a constant wind ratio in each step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/06Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers for making cross-wound packages
    • B65H54/08Precision winding arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/40Arrangements for rotating packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for winding continuously, preferably at a constant speed, a thread-like winding material fed to a winding device in a graduated precision cross winding, in which the speed of the bobbin detects with a first sensor and the speed of the drive of the traversing thread guide with a second sensor, the speeds with each other compared and depending on which the drive of the traversing thread guide is regulated.
  • Thread-like winding material is understood to mean in particular yarns or tapes.
  • the winding direction for carrying out the method is provided with a drive for the bobbin and a first assigned sensor, with a drive for the traversing thread guide and a second assigned sensor and with a first controller for processing the signals of the two sensors for regulating the drive of the traversing thread guide.
  • the speed of the bobbin and the number of double strokes of the traversing thread guide form a fixed ratio, the so-called bobbin ratio.
  • the crossing angles necessarily change.
  • changing the crossing angle is only possible within certain limits in order not to endanger the stability of the coil. Therefore the achievable diameter ratio between a full and an empty spool is limited.
  • Precision cross-wound coils can however, be optimally adapted to the special requirements of the ware or its use.
  • the change in the bobbin ratio from one stage of the precision cross winding to the next is so small that the resulting change in the winding speed of the yarn or ribbon 3%, Preferably 0.3%, the mean wind speed does not exceed. This limits the change in wind speed. Due to the constant peripheral speed of the bobbin during the winding cycle, the change in the winding speed cannot be eliminated. This requires a very narrow gradation, so that the number of winding phases increases with a constant winding ratio in each case. By an abrupt change in the coil ratio during the coil build-up in several phases, however, the crossing angle can be kept within limits that are favorable for the coil build-up.
  • EP-A-0 150 771 also shows a method and a device of the type described at the outset, that is, the winding of winding material in a graduated precision cross winding, the speed of the bobbin being detected with a first sensor and the speed of the drive of the traversing thread guide with a second sensor , the speeds are compared with one another and the drive of the traversing thread guide is regulated as a function thereof. It is the object of the invention to create a bobbin in a precision cross winding with optimal properties with regard to the bobbin construction, in particular the mass distribution of the thread on the bobbin, and with regard to the bobbin winding. The thread should be wound onto the bobbin at a constant peripheral speed. The winding ratio is changed in many stages so that the crossing angle remains approximately constant.
  • EP-A-195 325 also assumes a constant bobbin circumferential speed when winding threads into cross-wound bobbins and reduces the speed of the traversing thread guide between a predetermined upper limit and a predetermined lower limit proportional to the decreasing spindle speed. When the lower limit is reached, the speed of the traversing thread guide is increased again up to the upper limit. This creates a precision cross winding with winding ratios reduced in steps. To improve the bobbin build-up, the upper and lower limits of the traversing speed are reduced or increased in the same direction during the winding cycle.
  • EP-A-194 524 also shows a method for winding threads in a graduated precision cross winding.
  • the bobbin ratios In order to achieve optimal thread placement on the bobbin, the bobbin ratios not only have to be precalculated with great accuracy, but must also be adhered to exactly. Since the electrical and electronic measurement and control technology, which are limited for the measurement of the rotational speeds and compliance with the proportionality between the spindle drive and the drive of the traversing thread guide, the modulation of the winding ratio in each winding phase is proposed to improve the winding structure.
  • the modulation width should be less than 0.1%.
  • DE-A-26 49 780 describes a winding machine for textile yarns in which the bobbin is driven on its circumference by means of a speed-controlled drive roller and the reverse thread shaft in which the traversing thread guide is moved is also speed-controlled. Both speeds are controlled by electronic control circuits and computers, which take into account, among other things, the mathematical relationships between winding speed, peripheral speed of the bobbin or drive roller and thread laying speed, so that the difference between thread speed and winding speed can be specified. With this device, the production of precision cross-wound bobbins with constant feed speed and constant thread tension during winding is possible.
  • preprogrammed jumps in the winding ratio can be carried out on the computer in order to avoid unfavorable regions of the crossing angles when the bobbin is full and empty.
  • the technical effort for these computer-controlled speeds of the driving roller and the reverse thread shaft is correspondingly high. Changes in the wind-up speed are not completely eliminated because a positive drive always has slippage.
  • the invention is based on the object, starting from a method and a winding device of the type described above, that is to say in a stepped precision cross winding, to avoid the disadvantages which are associated with a constant coil peripheral speed.
  • this is achieved in that the drive of the bobbin is regulated in such a way that the winding speed of the winding material on the bobbin corresponds to the speed of the continuously supplied winding material during the entire winding cycle, in that the drive of the bobbin is regulated in such a way by a thread tension transducer, preferably a dancer that in each winding phase with constant winding ratio, the decreasing winding speed caused by decreasing crossing angle is compensated for by a continuous increase in the speed of the bobbin, and that with every jump between two winding phases with constant winding ratio, the increasing winding speed caused by increasing the crossing angle is caused by a decrease in the winding angle Speed of the coil is compensated.
  • a thread tension transducer preferably a dancer that in each winding phase with constant winding ratio, the decreasing winding speed caused by decreasing crossing angle is compensated for by a continuous increase in the speed of the bobbin, and that with every jump between two winding phases with constant winding ratio, the increasing winding speed caused by increasing the crossing angle
  • the winding speed thus remains the same not only in the individual winding phases with a constant winding ratio, but also during the jumps between the individual winding phases, that is to say in the time in which one winding ratio is left and the other winding ratio is aimed for.
  • the new method is thus ideally suited for winding up items to be delivered continuously at a preferably constant speed, as is the case in particular with spun threads. This does not adversely affect the rinsed material. It always remains under a defined thread tension, so that all advantages of a stepped precision cross winding are achieved.
  • the conditions are due to the change in the crossing angle addressed.
  • the conditions that result from the increase in the diameter of the coil must of course also be taken into account. This influence is greater than the influence of changing the crossing angle.
  • Each updraft phase can be started with a matching starting crossing angle and ending with a matching ending crossing angle.
  • the crossing angle runs through a fixed, constant area in the area of each winding phase, which is decisive for the quality of the coil construction and the further processing properties of the coil.
  • a winding device suitable for carrying out the method is equipped with a drive for the bobbin and a first assigned sensor, with a drive for the traversing thread guide and a second assigned sensor and with a first controller for processing the signals of the two sensors for regulating the drive of the traversing thread guide .
  • a second controller for regulating the drive of the bobbin is designed in the sense of the winding speed of the continuously supplied winding material and connected to the drive of the bobbin.
  • the second controller is preceded by a thread tension transducer, preferably a dancer, which adjusts the rotational speed of the drive of the bobbin in the sense of the winding speed of the continuously supplied winding material via this second controller.
  • the drive of the winding spindle is adjusted so that the z. B. the tension of the thread measured by the dancer arm remains defined.
  • the drive for the coil can preferably consist of an axle drive. But it is also possible for Drive the coil to provide a drive roller, as is known per se.
  • the sensors are usually designed as tachometers
  • the sensors are now designed as pulse generators, with the computer each having a counter for each pulse generator.
  • the speeds of the drives can be recorded exactly, that is, much more precisely than with a tachometer.
  • a motor that can be regulated in terms of its speed can be provided, which is preceded by a control device. It is also possible to provide a motor which can be regulated in terms of its speed for driving the traversing thread guide and which is preceded by a control device. In this way it is possible to determine the speed of the traversing thread guide as a function of the speed of the drive of the bobbin in accordance with the desired winding ratio, and on the other hand to regulate the drive of the bobbin in the sense of the winding speed of the continuously fed winding material, even with changing crossing angles, to reach.
  • a three-phase motor 1 is illustrated in FIG. 1, via which the spindle 2, which is only symbolically indicated, is driven. It can be a direct axle drive or a drive roller drive.
  • a pulse generator 3 is assigned to the three-phase motor 1, with the aid of which the speed of the spindle 2 or the three-phase motor 1 can be determined exactly.
  • a three-phase motor 4 is provided, via which the traversing thread guide 5, which is only indicated, is driven.
  • a second pulse generator 6 is assigned to the traversing thread guide 5 or the three-phase motor 4, so that its speed or rotational speed can also be monitored very precisely.
  • Electrical lines 7 and 8 lead to a computer 9, each having a counter 10 and 11, a comparator 12 and a first controller 13.
  • a second controller 20 is provided, which can be designed as a PID controller. With the counter 11, the pulses of the pulse generator 3 are counted. The counter 10 counts the pulses from the pulse generator 6. The number of pulses is further processed in the comparator 12 and fed to the first controller 13.
  • a dancer 14 with a roller 15, over which the thread of the ware is passed, is connected upstream of the second controller 20.
  • a movement of the dancer 14 leads to a signal change which is fed to the second controller 20.
  • a first electrical line 16 leads from the second regulator 20 to the three-phase motor 1 via a regulator 17 designed as a frequency converter.
  • the second regulator 20 primarily regulates the three-phase motor 1 and thus the drive of the spindle 2 in the sense of the winding speed of the continuously at preferably constant speed supplied ware.
  • an electrical line 18 leads from the first controller 13 via a control device 19 designed as a frequency converter to the three-phase motor 4 of the drive of the traversing thread guide 5.
  • FIG. 2 shows a diagram to illustrate the constant length of winding material per unit of time (winding speed) wound up during the winding cycle.
  • winding speed the amount of the length of the reels per unit time L is always constant.
  • the circumferential speeds v U as well as the traversing speeds v C change in each winding phase with a constant winding ratio, and yet the length of the winding material per unit time L remains constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Winding Filamentary Materials (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Aufspulen kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung, in dem die Drehzahl der Spule mit einem ersten Fühler und die Drehzahl des Antriebs des Changierfadenführers mit einem zweiten Fühler erfaßt, die Drehzahlen miteinander verglichen und abhängig davon der Antrieb des Changierfadenführers geregelt wird. Unter fadenförmigem Spulgut werden insbesondere Garne oder Bändchen verstanden. Die Spulrichtung zur Durchführung des Verfahrens ist mit einem Antrieb für die Spule und einem ersten zugeordneten Fühler, mit einem Antrieb für den Changierfadenführer und einem zweiten zugeordneten Fühler und mit einem ersten Regler zur Verarbeitung der Signale der beiden Fühler zur Regelung des Antriebs des Changierfadenführers versehen.
  • Die Herstellung von Spinnfasergarnen, Filamentgarnen u. dgl. erfolgt üblicherweise mit konstanter Geschwindigkeit, mit der sie der Spuleinrichtung zugeführt werden.
  • Bei der Präzisionskreuzwicklung bildet die Drehzahl der Spule und die Anzahl der Doppelhübe des Changierfadenführers ein festes Verhältnis, das sog. Spulverhältnis. Mit steigendem Durchmesser der Spule ändern sich dabei notwendigerweise die Kreuzungswinkel. Die Änderung des Kreuzungswinkels ist jedoch nur innerhalb gewisser Grenzen möglich, um die Stabilität der Spule nicht zu gefährden. Deshalb ist das erreichbare Durchmesserverhältnis zwischen einer vollen und einer leeren Spule begrenzt. Präzisionskreuzgewickelte Spulen können jedoch optimal an die speziellen Anforderungen des Spulguts bzw. dessen Verwendung angepaßt werden.
  • Bei der wilden Wicklung besteht keine Abhängigkeit, z. B. keine getriebliche Verbindung, zwischen dem Spulspindelantrieb und dem Antrieb des Changierfadenführers. Die Spule wird oft an ihrem Umfang mittels einer Treibwalze mit konstanter Umfangsgeschwindigkeit angetrieben. Die wilde Wicklung besitzt einen konstanten Kreuzungswinkel, der für die Stabilität der Spule förderlich ist. Das Durchmesserverhältnis zwischen voller und leerer Spule ist dabei unkritischer. Allerdings ändert sich bei einer wilden Wicklung laufend das Spulverhältnis. Bei bestimmten Werten für das Spulverhältnis wird das Spulgut in mehreren Lagen übereinander abgelegt, so daß sog. Spiegel oder Bilder entstehen. Die abgelegten Windungen sind vergleichsweise locker und führen Zu Störungen in der Weiterverarbeitung, so daß letztendlich hohe Fadenbruchzahlen entstehen können.
  • Aus der EP-A- 55 849 ist ein Verfahren der eingangs beschriebenen Art und eine Spuleinrichtung zur Durchführung des Verfahrens bekannt, bei denen die gestufte Präzisionskreuzwicklung Anwendung findet. Die Spule wird dabei mittels einer Treibwalze an ihrem Umfang mit konstanter Geschwindigkeit angetrieben. Die Spulenumfangsgeschwindigkeit wird während der gesamten Spulreise konstant gehalten. Durch den sich innerhalb einer Aufwindephase mit konstantem Spulverhältnis ändernden Kreuzungswinkel ändert sich notwendigerweise die Aufwindegeschwindigkeit des Spulguts auf der Spule. Um zu große Unterschiede in der Aufwindegeschwindigkeit und deren nachteilige Auswirkungen auf die Qualität der Garne und des Spulenaufbaus zu vermeiden, wird vorgeschlagen, daß die Änderung der Spulverhältnisse von einer Stufe der Präzisionskreuzwicklung zur nächsten so gering ist, daß die dadurch bedingte Änderung der Aufwindegeschwindigkeit des Garns oder Bändchens 3 %, Vorzugsweise 0,3 %, der mittleren Aufwindegeschwindigkeit nicht überschreitet. Damit wird die Änderung der Aufwindegeschwindigkeit zwar begrenzt. Infolge der konstant gehaltenen Umfangsgeschwindigkeit der Spule während der Spulreise läßt sich jedoch die Änderung der Aufwindegeschwindigkeit nicht beseitigen. Damit wird eine sehr enge Abstufung erforderlich, so daS sich die Anzahl der Aufwindephasen mit jeweils konstantem Spulverhältnis vergrößert. Durch eine sprungweise Änderung des Spulverhältnisses während des Spulenaufbaus in mehreren Phasen kann jedoch der Kreuzungswinkel in für den Spulenaufbau günstigen Grenzen gehalten werden. Beim Sprung von einer Aufwindephase zur nächsten wird der Kreuzungswinkel wieder vergrößert. Dabei erhöht sich notwendigerweise auch die Aufwindegeschwindigkeit, was in nachteiliger Weise zur Veränderung der Fadenspannung führt. Da sich bei der bekannten gestuften Präzisionskreuzwicklung mit konstanter Umfangsgeschwindigkeit der Spule unterschiedliche Aufwindegeschwindigkeiten nicht vermeiden lassen, wird zur Behebung der damit verbundenen Nachteile eine Begrenzung der zulässigen Änderung der Aufwindegeschwindigkeit vorgeschlagen.
  • Die EP-A-0 150 771 zeigt ebenfalls ein Verfahren und eine Vorrichtung der eingangs beschriebenen Art, also das Aufspulen von Spulgut in gestufter Präzisionskreuzwicklung, wobei die Drehzahl der Spule mit einem ersten Fühler und die Drehzahl des Antriebs des Changierfadenführers mit einem zweiten Fühler erfaßt, die Drehzahlen miteinander verglichen und abhängig davon der Antrieb des Changierfadenführers geregelt wird. Es liegt die Aufgabe zugrunde, eine Spule in Präzisionskreuzwicklung mit optimalen Eigenschaften hinsichtlich des Spulenaufbaus, insbesondere der Masseverteilung des Fadens auf der Spule, und hinsichtlich des Spulenablaufs zu schaffen. Der Faden soll mit konstanter Umfangsgeschwindigkeit auf die Spule aufgewickelt werden. Das Spulverhältnis wird in vielen Stufen so geändert, daß der Kreuzungswinkel annähernd konstant bleibt.
  • Auch die EP-A- 195 325 geht beim Aufwickeln von Fäden zu Kreuzspulen von einer konstanten Spulenumfangsgeschwindigkeit aus und vermindert die Geschwindigkeit des Changierfadenführers zwischen einer fest vorgegebenen Obergrenze und einer fest vorgegebenen Untergrenze proportional zur abnehmenden Spindeldrehzahl. Bei Erreichen der Untergrenze wird die Geschwindigkeit des Changierfadenführers wieder bis in den Bereich der Obergrenze erhöht. Dadurch entsteht eine Präzisionskreuzwicklung mit in Stufen verkleinerten Spulverhältnissen. Zur Verbesserung des Spulenaufbaus wird die Ober- und die Untergrenze der Changiergeschwindigkeit im Lauf der Spulreise gleichsinnig vermindert oder vergrößert.
  • Auch die EP-A- 194 524 zeigt ein Verfahren zum Aufwickeln von Fäden in gestufter Präzisionskreuzwicklung. Zur Erzielung einer optimalen Fadenablage auf der Spule müssen die Spulverhältnisse nicht nur mit großer Genauigkeit vorberechnet, sondern auch genau eingehalten werden. Da die elektrische und elektronische Meß- und Regelungstechnik, die für die Messung der Drehzahlen und die Einhaltung der Proportionalität zwischen dem Spindelantrieb und dem Antrieb des Changierfadenführers begrenzt sind, wird zur Verbesserung des Wickelaufbaus die Modulation des Spulverhältnisses in jeder Aufwindephase vorgeschlagen. Die Modulationsbreite soll weniger als 0,1 % betragen.
  • In der DE-A- 26 49 780 wird eine Wickelmaschine für Textilgarne beschrieben, bei der die Spule mittels einer drehzahlgesteuerten Treibwalze an ihrem Umfang angetrieben wird und die Kehrgewindewelle, in der der Changierfadenführer bewegt wird, ebenfalls drehzahlgesteuert ist. Beide Drehzahlen werden über elektronische Steuerschaltungen und Rechner, die u. a. die mathematischen Zusammenhänge zwischen Aufwindegeschwindigkeit, Umfangsgeschwindigkeit der Spule bzw. Treibwalze und Fadenverlegegeschwindigkeit berücksichtigen, so geregelt, daß die Differenz zwischen Fadengeschwindigkeit und Aufwindegeschwindigkeit vorgegeben werden kann. Mit dieser Einrichtung ist die Herstellung von Präzisionskreuzspulen bei konstanter Zuführgeschwindigkeit und konstanter Fadenzugkraft beim Aufwinden möglich. Dabei können über den Rechner vorprogrammierte Sprünge im Spulverhältnis durchgeführt werden, um ungünstige Bereiche der Kreuzungswinkel bei voller und leerer Spule zu vermeiden. Der technische Aufwand für diese rechnergesteuerten Drehzahlen von Treibwalze und Kehrgewindewelle ist entsprechend hoch. Änderungen in der Aufwindegeschwindigkeit sind damit nicht vollständig eliminiert, weil ein kraftschlüssiger Antrieb immer Schlupf aufweist.
  • Der Erfindung liegt die Aufgabe zugrunde, ausgehend von einem Verfahren und einer Spuleinrichtung der eingangs beschriebenen Art, also in gestufter Präzisionskreuzwicklung, die Nachteile zu vermeiden, die mit einer konstanten Spulenumfangsgeschwindigkeit verbunden sind.
  • Erfindungsgemäß wird dies dadurch erreicht, daß der Antrieb der Spule so geregelt wird, daß die Aufwindegeschwindigkeit des Spulguts auf der Spule während der gesamten Spulreise der Geschwindigkeit des kontinuierlich zugeführten Spulguts entspricht, daß der Antrieb der Spule von einem Fadenzugkraftaufnehmer, vorzugsweise Tänzer, derart geregelt wird, daß in jeder Aufwindephase mit konstantem Spulverhältnis die durch abnehmenden Kreuzungswinkel verursachte abnehmende Aufwindegeschwindigkeit durch eine kontinuierliche Erhöhung der Drehzahl der Spule ausgeglichen wird, und daß bei jedem Sprung zwischen zwei Aufwindephasen mit konstanten Spulverhältnissen die durch die Erhöhung des Kreuzungswinkels verursachte zunehmende Aufwindegeschwindigkeit durch eine Erniedrigung der Drehzahl der Spule ausgeglichen wird. Die Aufwindegeschwindigkeit bleibt damit nicht nur in den einzelnen Aufwindephasen mit jeweils konstantem Spulverhältnis gleich, sondern auch während der Sprünge zwischen den einzelnen Aufwindephasen, also in der Zeit, in der das eine Spulverhältnis verlassen und das andere Spulverhältnis angestrebt wird. Damit ist das neue Verfahren ideal geeignet zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit angeliefertem Spulgut, wie es insbesondere bei Spinnfäden der Fall ist. Das Spulgut wird damit nicht negativ beeinflußt. Es verbleibt immer unter definierter Fadenspannung, so daß damit sämtliche Vorteile einer gestuften Präzisionskreuzwicklung erreicht werden. Mit der Erfindung sind auch die Verhältnisse durch die Änderung des Kreuzungswinkels angesprochen. Zusätzlich müssen natürlich auch noch die Verhältnisse berücksichtigt werden, die sich aufgrund der Zunahme des Durchmessers der Spule ergeben. Dieser Einfluß ist größer als der Einfluß über die Änderung des Kreuzungswinkels.
  • Jede Aufwindephase kann mit einem übereinstimmenden Anfangskreuzungswinkel beginnend und mit einem übereinstimmenden Endkreuzungswinkel endend durchgeführt werden. Dabei durchläuft der Kreuzungswinkel im Bereich jeder Aufwindephase einen festgelegten, konstant bleibenden Bereich, der für die Qualität des Spulenaufbaus und die Weiterverarbeitungseigenschaften der Spule maßgeblich ist.
  • Eine zur Durchführung des Verfahrens geeignete Spuleinrichtung ist mit einem Antrieb für die Spule und einem ersten zugeordneten Fühler, mit einem Antrieb für den Changierfadenführer und einem zweiten zugeordneten Fühler und mit einem ersten Regler zur Verarbeitung der Signale der beiden Fühler zur Regelung des Antriebs des Changierfadenführers ausgestattet. Erfindungsgemäß ist ein zweiter Regler zur Regelung des Antriebs der Spule im Sinn der Aufwindegeschwindigkeit des kontinuierlich zugeführten Spulguts ausgebildet und mit dem Antrieb der Spule verbunden. Dem zweiten Regler ist ein Fadenzugkraftaufnehmer, vorzugsweise Tänzer, vorgeschaltet, der über diesen zweiten Regler die Drehzahl des Antriebs der Spule im Sinn der Aufwindegeschwindigkeit des kontinuierlich zugeführten Spulguts anpaßt. Während des Sprungs zwischen einem Spulverhältnis zum nächsten Spulverhältnis bei der gestuften Präzisionswicklung wird der Antrieb der Spulspindel so angepaßt, daß die z. B. vom Tänzerarm gemessene Spannung des Fadens definiert bleibt.
  • Der Antrieb für die Spule kann vorzugsweise aus einem Achsantrieb bestehen. Es ist aber auch möglich, für den Antrieb der Spule eine Treibwalze vorzusehen, wie dies an sich bekannt ist.
  • Während im Stand der Technik die Fühler in der Regel als Tachometer ausgebildet sind, sind jetzt die Fühler als Impulsgeber ausgebildet, wobei der Rechner je einen Zähler für je einen Impulsgeber aufweist. Mit einem solchen Impulsgeber als Fühler lassen sich die Drehzahlen der Antriebe exakt erfassen, also wesentlich genauer als mit einem Tachometer.
  • Für den Antrieb der Spule kann ein in seiner Drehzahl regelbarer Motor vorgesehen sein, dem ein Regelgerät vorgeschaltet ist. Ebenso ist es auch möglich, für den Antrieb des Changierfadenführers einen in seiner Drehzahl regelbaren Motor vorzusehen, dem ein Regelgerät vorgeschaltet ist. Auf diese Weise ist es möglich, die Geschwindigkeit des Changierfadenführers in Abhängigkeit von der Geschwindigkeit des Antriebs der Spule entsprechend dem jeweils gewünschten Spulverhältnis, festzulegen und andererseits eine Ausregelung des Antriebs der Spule im Sinn der Aufwindegeschwindigkeit des kontiuierlich zugeführten Spulguts, auch bei sich ändernden Kreuzungswinkeln, zu erreichen.
  • Die Erfindung wird anhand eines bevorzugten Ausführungsbeispiels der Spuleinrichtung weiter beschrieben und verdeutlicht. Es zeigen:
  • Figur 1
    einen schematischen Schaltplan wesentlicher Elemente der Spuleinrichtung und
    Figur 2
    ein Diagramm der konstanten aufgewickelten Spulgutlänge pro Zeiteinheit bei unterschiedlichen Kreuzungswinkeln.
  • In Figur 1 ist ein Drehstrommotor 1 verdeutlicht, über den die nur symbolhaft angedeutete Spindel 2 angetrieben wird. Es kann sich dabei um einen direkten Achsantrieb handeln oder um einen Treibwalzenantrieb. Dem Drehstrommotor 1 ist ein Impulsgeber 3 zugeordnet, mit dessen Hilfe sich die Drehzahl der Spindel 2 bzw. des Drehstrommotors 1 exakt ermitteln läßt.
  • Weiterhin ist ein Drehstrommotor 4 vorgesehen, über welchen der nur angedeutete Changierfadenführer 5 angetrieben wird. Ein zweiter Impulsgeber 6 ist dem Changierfadenführer 5 bzw. dem Drehstrommotor 4 zugeordnet, so daß sich auch dessen Geschwindigkeit bzw. Drehzahl sehr genau überwachen läßt. Elektrische Leitungen 7 und 8 führen zu einem Rechner 9, der je einen Zähler 10 und 11, einen Vergleicher 12 und einen ersten Regler 13 aufweist. Es ist ein zweiter Regler 20 vorgesehen, der als PID-Regler ausgebildet sein kann. Mit dem Zähler 11 werden die Impulse des Impulsgebers 3 gezählt. Der Zähler 10 zählt die Impulse des Impulsgebers 6. Die Anzahl der Impulse wird im Vergleicher 12 weiterverarbeitet und dem ersten Regler 13 zugeführt. Ein Tänzer 14 mit einer Rolle 15, über den der Faden des Spulguts geführt wird, ist dem zweiten Regler 20 vorgeschaltet. Eine Bewegung des Tänzers 14 führt zu einer Signaländerung, die dem zweiten Regler 20 zugeführt wird. Vom zweiten Regler 20 führt eine erste elektrische Leitung 16 über ein als Frequenzumformer ausgebildetes Regelgerät 17 zu dem Drehstrommotor 1. Der zweite Regler 20 regelt in erster Linie den Drehstrommotor 1 und damit den Antrieb der Spindel 2 im Sinn der Aufwindegeschwindigkeit des kontinuierlich mit vorzugsweise konstanter Geschwindigkeit zugeführten Spulguts. Darüberhinaus führt vom ersten Regler 13 eine elektrische Leitung 18 über ein als Frequenzumformer ausgebildetes Regelgerät 19 zu dem Drehstrommotor 4 des Antriebs des Changierfadenführers 5.
  • Figur 2 zeigt ein Diagramm zur Verdeutlichung der während der Spulreise aufgewickelten konstanten Spulgutlänge pro Zeiteinheit (Aufwindegeschwindigkeit). Trotz unterschiedlicher Kreuzungswinkel α, wie sie notwendigerweise bei der Präzisionskreuzwicklung in jeder Stufe durchlaufen werden und sich damit ändern, ist der Betrag der Spulgutlänge pro Zeiteinheit L immer konstant. Man erkennt, wie sich in jeder Aufwindephase mit einem konstanten Spulverhältnis sowohl die Umfangsgeschwindigkeiten vU wie auch die Changiergeschwindigkeiten vC verändern und trotzdem die Spulgutlänge pro Zeiteinheit L konstant bleibt. Die Spuleinrichtung gemäß Figur 1 mit ihrem Rechner 9 und den Reglern 13, 20 wirkt auf die Antriebe der Spindel 2 einerseits und des Changierfadenführers 5 andererseits so ein, daß die zugehörigen Umfangsgeschwindigkeiten an der Spindel 2 bzw. Spule und die Changiergeschwindigkeiten am Changierfadenführer 5 in Abhängigkeit von sich änderndem Kreuzungswinkel geregelt werden.
  • Bezugszeichenliste:
  • 1 =
    Drehstrommotor
    2 =
    Spindel
    3 =
    Impulsgeber
    4 =
    Drehstrommotor
    5 =
    Changierfadenführer
    6 =
    Impulsgeber
    7 =
    elektrische Leitung
    8 =
    elektrische Leitung
    9 =
    Rechner
    10 =
    Zähler
    11 =
    Zähler
    12 =
    Vergleichsgerät
    13 =
    erster Regler
    14 =
    Tänzer
    15 =
    Rolle
    16 =
    elektrische Leitung
    17 =
    Frequenzumformer
    18 =
    elektrische Leitung
    19 =
    Frequenzumformer
    20 =
    zweiter Regler

Claims (6)

  1. Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung, in dem die Drehzahl der Spule mit einem ersten Fühler und die Drehzahl des Antriebs des Changierfadenführers mit einem zweiten Fühler erfaßt, die Drehzahlen miteinander verglichen und abhängig davon der Antrieb des Changierfadenführers geregelt wird, dadurch gekennzeichnet, daß der Antrieb der Spule so geregelt wird, daß die Aufwindegeschwindigkeit des Spulguts auf der Spule während der gesamten Spulreise der Geschwindigkeit des kontinuierlich zugeführten Spulguts entspricht, daß der Antrieb der Spule von einem Fadenzugkraftaufnehmer, vorzugsweise Tänzer, derart geregelt wird, daß in jeder Aufwindephase mit konstantem Spulverhältnis die durch abnehmenden Kreuzungswinkel verursachte abnehmende Aufwindegeschwindigkeit durch eine kontinuierliche Erhöhung der Drehzahl der Spule ausgeglichen wird, und daß bei jedem Sprung zwischen zwei Aufwindephasen mit konstanten Spulverhältnissen die durch die Erhöhung des Kreuzungswinkels verursachte zunehmende Aufwindegeschwindigkeit durch eine Erniedrigung der Drehzahl der Spule ausgeglichen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aufwindephase mit einem übereinstimmenden Anfangskreuzungswinkel beginnend und einem übereinstimmenden Endkreuzungswinkel endend durchgeführt wird.
  3. Spuleinrichtung zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 und 2, mit einem Antrieb für die Spule und einem ersten zugeordneten Fühler, mit einem Antrieb für den Changierfadenführer und einem zweiten zugeordneten Fühler und mit einem ersten Regler zur Verarbeitung der Signale der beiden Fühler zur Regelung des Antriebs des Changierfadenführers, dadurch gekennzeichnet, daß ein zweiter Regler (20) zur Regelung des Antriebs der Spule im Sinn der Aufwindegeschwindigkeit des kontinuierlich zugeführten Spulguts ausgebildet und mit dem Antrieb der Spule verbunden ist, und daß dem zweiten Regler (20)ein Fadenzugkraftaufnehmer, vorzugsweise Tänzer (14), vorgeschaltet ist, der über diesen zweiten Regler die Drehzahl des Antriebs der Spule im Sinn der Aufwindegeschwindigkeit des kontinuierlich zugeführten Spulguts anpaßt.
  4. Spuleinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Fühler als Impulsgeber (3, 6) ausgebildet sind, und daß der Rechner (9) je einen Zähler (11, 12) für je einen Impulsgeber aufweist.
  5. Spuleinrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß für den Antrieb der Spule ein in seiner Drehzahl regelbarer Motor vorgesehen ist, dem ein Regelgerät vorgeschaltet ist.
  6. Spuleinrichtung nach einem oder mehreren der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß für den Antrieb des Changierfadenführers (5) ein in seiner Drehzahl regelbarer Motor vorgesehen ist, dem ein Regelgerät (19) vorgeschaltet ist.
EP93102947A 1992-03-16 1993-02-25 Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung sowie Spuleinrichtung zur Durchführung des Verfahrens Expired - Lifetime EP0562296B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208393A DE4208393A1 (de) 1992-03-16 1992-03-16 Verfahren zum aufspulen kontinuierlich mit vorzugsweise konstanter geschwindigkeit einer spuleinrichtung zugefuehrtem, fadenfoermigem spulgut in gestufter praezisionskreuzwicklung sowie spuleinrichtung zur durchfuehrung des verfahrens
DE4208393 1992-03-16

Publications (2)

Publication Number Publication Date
EP0562296A1 EP0562296A1 (de) 1993-09-29
EP0562296B1 true EP0562296B1 (de) 1995-07-26

Family

ID=6454198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93102947A Expired - Lifetime EP0562296B1 (de) 1992-03-16 1993-02-25 Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung sowie Spuleinrichtung zur Durchführung des Verfahrens

Country Status (6)

Country Link
EP (1) EP0562296B1 (de)
JP (1) JPH06200428A (de)
KR (1) KR930019535A (de)
AT (1) ATE125515T1 (de)
DE (2) DE4208393A1 (de)
TW (1) TW213889B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538480C2 (de) * 1995-10-16 2001-10-25 Sahm Georg Fa Spulmaschine und Verfahren zum Aufwickeln eines kontinuierlich zulaufenden Fadens auf eine Spule
EP0950627A1 (de) * 1998-04-17 1999-10-20 Schärer Schweiter Mettler AG Verfahren und Vorrichtung zum Aufwickeln eines mit konstanter Geschwindigkeit gelieferten Fadens auf eine Spule
DE19950285A1 (de) * 1999-10-19 2001-04-26 Rieter Ag Maschf Verfahren und Vorrichtung zum Aufwickeln eines Fadens auf eine Spule
DE10209851A1 (de) * 2002-03-06 2003-09-18 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum Aufwinden eines Fadens an einer Kreuzspuleinrichtung
DE10342266B4 (de) * 2002-09-25 2016-02-04 Saurer Germany Gmbh & Co. Kg Verfahren zum Herstellen einer Kreuzspule
DE10352819A1 (de) * 2003-11-12 2005-06-23 Rieter Ingolstadt Spinnereimaschinenbau Ag Verfahren und Spulvorrichtung zum Aufspulen von Garnen an Textilmaschinen
DE102009011843A1 (de) * 2009-03-05 2010-09-09 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Aufspulen von Kreuzspulen mit Präzisionswicklung an einer Doppeldrahtzwirnmaschine
CN112110258A (zh) * 2020-09-19 2020-12-22 许继电源有限公司 一种岸电电缆卷筒张力控制系统及控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2165600A1 (de) * 1971-02-23 1972-09-14 Leesona Corp., Warwick, R.I. (V.St.A.) Verfahren zur Herstellung eines Garnwickels
CH603469A5 (de) * 1975-11-05 1978-08-15 Rieter Ag Maschf
DE2947261A1 (de) * 1979-11-23 1981-06-04 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Praezisions-kreuzspulkopf in einer praezisions-kreuzspulmaschine
DE3049573A1 (de) * 1980-12-31 1982-07-29 Fritjof Dipl.-Ing. Dr.-Ing. 6233 Kelkheim Maag Vorrichtung zur herstellung von garnspulen
DE3401530A1 (de) * 1984-01-18 1985-07-25 Fritjof Dipl.-Ing. Dr.-Ing. 6233 Kelkheim Maag Praezisionsspule, sowie verfahren und vorrichtung zu deren herstellung
CN1005029B (zh) * 1985-03-05 1989-08-23 巴马格·巴默机器制造股份公司 卷绕方法
EP0195325B1 (de) * 1985-03-11 1988-09-07 B a r m a g AG Aufwickelverfahren
GB2224520B (en) * 1988-11-07 1993-06-23 Appalachian Electronic Instr High speed precision yarn winding system
DE3920374A1 (de) * 1989-06-22 1991-01-03 Schlafhorst & Co W Verfahren und wickeleinrichtung zum herstellen einer kreuzspule mit stufenpraezisionswicklung

Also Published As

Publication number Publication date
TW213889B (de) 1993-10-01
KR930019535A (ko) 1993-10-18
ATE125515T1 (de) 1995-08-15
DE59300392D1 (de) 1995-08-31
DE4208393A1 (de) 1993-09-23
JPH06200428A (ja) 1994-07-19
EP0562296A1 (de) 1993-09-29

Similar Documents

Publication Publication Date Title
EP0194524B1 (de) Aufwickelverfahren
EP0195325B1 (de) Aufwickelverfahren
EP0561188B1 (de) Verfahren zum Aufspulen von einer Spuleinrichtung zugeführtem, band- oder fadenförmigem Spulgut in Kreuzspulung mit Präzisionswicklung
EP0237892B1 (de) Verfahren und Einrichtung zum Umspulen eines Fadens
DE69023235T2 (de) Verfahren und Vorrichtung zum Aufspulen eines Garnes.
DE2219755B2 (de) Vorrichtung zum konstanthalten des fadenzuges an praezisionskreuzspulmaschinen
EP0562296B1 (de) Verfahren zum Aufspulen von kontinuierlich mit vorzugsweise konstanter Geschwindigkeit einer Spuleinrichtung zugeführtem, fadenförmigem Spulgut in gestufter Präzisionskreuzwicklung sowie Spuleinrichtung zur Durchführung des Verfahrens
EP0256383B1 (de) Verfahren zum Aufwickeln von Fäden
DE3401530A1 (de) Praezisionsspule, sowie verfahren und vorrichtung zu deren herstellung
EP1951605A1 (de) Verfahren zur vermeidung von bildwicklungen
EP0055849B1 (de) Verfahren und Vorrichtung zur Herstellung von Garnspulen
WO1999024344A1 (de) Verfahren und vorrichtung zum aufspulen eines kontinuierlich zulaufenden fadens
EP0664765B1 (de) Verfahren zum aufwickeln eines fadens zu einer kreuzspule
DE19817111A1 (de) Verfahren zum Aufwickeln eines Fadens zu einer zylindrischen Kreuzspule
DE2914924A1 (de) Aufspuleinrichtung
EP0093258B1 (de) Verfahren zur Spiegelstörung beim Aufwickeln eines Fadens in wilder Wicklung
DE4126392C1 (en) Appts. for spooling up fibres, preventing slippage and power fluctuations - includes controlling spooling speed by regulating spool spindle revolutions acccording to contact roller speed
DE3714320C3 (de) Verfahren und Vorrichtung zum Steuern der Fadenspannung in einem Spulautomaten
DE3210244A1 (de) Verfahren zur spiegelstoerung beim aufwickeln eines fadens in wilder wicklung
DE3723593C1 (en) Method for regulating a winding motor acting on a winding spindle on a cross-winding machine and cross-winding machine
DE4239579A1 (de) Verfahren zum Wickeln von Kreuzspulen
DE4039086A1 (de) Spulenwickelvorrichtung und verfahren zu ihrem betrieb
CH681988A5 (de)
EP1110896B1 (de) Verfahren zum Wickeln von Kreuzspulen
DE19628402A1 (de) Verfahren zur Vermeidung von Bildwicklungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19930916

17Q First examination report despatched

Effective date: 19941107

17Q First examination report despatched

Effective date: 19941208

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 125515

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950731

REF Corresponds to:

Ref document number: 59300392

Country of ref document: DE

Date of ref document: 19950831

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970225

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050225