EP0559550A1 - Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux - Google Patents

Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux Download PDF

Info

Publication number
EP0559550A1
EP0559550A1 EP93400530A EP93400530A EP0559550A1 EP 0559550 A1 EP0559550 A1 EP 0559550A1 EP 93400530 A EP93400530 A EP 93400530A EP 93400530 A EP93400530 A EP 93400530A EP 0559550 A1 EP0559550 A1 EP 0559550A1
Authority
EP
European Patent Office
Prior art keywords
wafer
photocathode
scintillator
microchannels
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93400530A
Other languages
German (de)
English (en)
Other versions
EP0559550B1 (fr
Inventor
Yves Beauvais
Paul De Groot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0559550A1 publication Critical patent/EP0559550A1/fr
Application granted granted Critical
Publication of EP0559550B1 publication Critical patent/EP0559550B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/506Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output tubes using secondary emission effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system

Definitions

  • the invention relates to image intensifier tubes in which, on the one hand, incident ionizing radiation is converted into visible or near visible photons, and in which, on the other hand, a wafer of microchannels is used to achieve gain. in electrons.
  • Image intensifier tubes are in common use in the fields of radiology and more particularly in radiodiagnosis, where they are called “radiological image intensifier tubes” or for short “IIR tubes”.
  • IIR tube The principle of an IIR tube is well known. It is illustrated diagrammatically in FIG. 1, by a sectional view of an IIR 1 tube.
  • the IIR tube 1 comprises a vacuum enclosure, constituted by a central body 2 of revolution arranged around a longitudinal axis 3.
  • the body 2 is closed at one end by an inlet window 4, and at the other end by an exit window 5.
  • Incident X-rays enter the IIR tube through the entry window 4 which, for this purpose, must be as transparent as possible to these rays: the window 4 is generally formed by a thin sheet of aluminum, or tantalum, or glass, etc. A suitable shape and mechanical characteristics give the window 4 mechanical strength, sufficient to withstand the atmospheric pressure which is exerted from the outside towards the inside of the tube.
  • the X-rays then meet an assembly called the primary screen 15 which converts the incident X-radiation into electrons emitted in a vacuum, from the point where this radiation is absorbed.
  • the primary screen is generally constituted by a "sandwich" which successively comprises: a support 6 transparent to X-rays, a layer 7 of scintillator material which converts X-radiation into lower energy radiation, generally in visible light, and a photocathode 8, deposited on the scintillator 7, which emits electrons in a vacuum under the effect of the radiation emitted by the scintillator.
  • the scintillator support 6 must be transparent to X-rays: it generally consists of a thin sheet of metal, or glass based on silica, etc.
  • the scintillator 7 often consists of a layer of cesium iodide with a thickness of the order of 0.2 to 0.8 mm.
  • the photocathode 8 is formed by a layer of a photoemissive material generally having a very thin thickness (often less than 1 micrometer).
  • the IIR tube 1 also comprises a set or system of electrodes 10 brought to potentials (not shown) suitable for accelerating and focusing all the electrons emitted by a same point of photocathode 8, on a homologous point of a luminescent screen. 11 located on the outlet port side 5.
  • This electrode system is designated as the electronic optics of the IIR tube 1.
  • the luminescent screen 11 is composed of a layer deposited on a transparent support 12, located inside the tube and behind the exit window 5. It is thus possible to observe through the exit window, the visible image converted from the X-ray image which has been projected on the primary screen 15 through the entry window 4 of the tube.
  • Each of these electrons accelerated at a voltage of 10 to 30 kV, in turn causes the emission of several hundred light photons by bombarding the luminescent screen.
  • Each X photon absorbed by the primary screen 15 is thus converted into a number of light photons close to 10,000, emitted by the luminescent screen 11.
  • the electronic optics of the tube generally concentrates the output image on a format much smaller than that of the input image, typically 1/10 to 1/5, which is accompanied by a gain. important luminance for this output image.
  • Image magnification also causes the details of 1 mm at the primary screen to be reduced to approximately 1/10 mm at the luminescent screen, and the required image resolution at the screen luminescent is thus much higher than that detected at the primary screen.
  • the photonic gain, and the luminance gain provided by the enlargement, make it possible to obtain, with radiological doses tolerable by the patients, an output image sufficiently bright to be observed and recorded by means of a cinematographic camera or a television shooting camera, constituting radioscopic systems operating in real time.
  • IIL tube image intensifiers in which the incident radiation is in visible light and which therefore do not include a scintillator
  • microchannel wafer in the IIR tubes, in replacement of the electronic optics, is considered likely to have great advantages, such as for example: strong reduction in thickness, that is, the distance between the entry window and the exit window; uniform resolution over the entire image field (even for large images); possibility of making square or rectangular formats much more easily better suited to usual image formats, or television screens.
  • IIR tubes using a microchannel plate instead of electronic optics are often called “IIR tubes with double proximity focusing". Such tubes are described in particular in “Channel Electron Multiplier Plates in X-Ray Image Intensification", by I.C.P. Millar et al., In Advances in Electronics and Electron Physics, volume 33, Academic Press, 1972.
  • the primary screen is flat. It is stretched parallel and at a short distance from the entry face of the microchannel plate, while the luminescent screen is placed parallel to and at a small distance from the exit face of the plate.
  • FIG. 2 schematically shows such an IIR tube 20 of a type similar to that described in the publication mentioned above.
  • the IIR tube 20 comprises a tube body 2 arranged around a longitudinal axis 3.
  • the body 2 is closed at one end by an inlet window 4 and at the other end through an exit window 5.
  • Incident X-rays enter the tube 20 through the inlet window 4 and then meet a primary screen 21.
  • the primary screen 21 of this version is planar. It has a support 22 of scintillator, a scintillator 23 and a photocathode 24 which can be of the same nature and which ensure the same functions as the support, the scintillator and the photocathode shown in FIG. 1.
  • the electrons (not shown) emitted by photocathode 24 are directed by an electric field, towards the entry face 26 of a wafer 25 of microchannels.
  • a first and a second bias potential V1, V2 are applied respectively to the photocathode 24 and to the input face 26, with the second potential V2 more positive than the first potential V1.
  • the microchannel wafer 25 is an assembly of a multitude of small parallel channels or microchannels 27 separated by partitions 28, and assembled in the form of a rigid plate. Each primary electron (emitted by the photocathode) which enters a microchannel 27 is multiplied by a phenomenon of secondary emission in cascade on the walls of the microchannel, so that the electronic current leaving the wafer can be more than a thousand times greater informed at the entrance.
  • the diameter d1 of the microchannels can be between 10 and 100 micrometers.
  • the microchannels 27 are inclined relative to the normal to the plane of the wafer, so that electrons emitted by the photocathode 24 parallel to this normal cannot emerge from a microchannel without having given rise to a phenomenon of secondary emission.
  • the thickness E of the plate forming the wafer 25 of microchannels is typically between 1 and 5 mm.
  • the electronic gain of the wafer can be adjusted within a wide range of values, for example between 1 and 5000, as a function of the voltage developed between the input face 26 and an output face 31 of this wafer 25, output face. 31 to which a third bias potential V3 is applied.
  • the inlet face 26 and the outlet face 31 are each covered with a metallization layer respectively M1, M2 (shown in FIG. 2 in thick lines, by which the potentials V2, V3 are distributed over the inlet faces Of course, these metallizations M1, M2 must not block the microchannels 27. It should be noted that it is common to deposit the metallization layers M1, M2 on the walls of the microchannels 27 at the ends of these microchannels c ′. that is to say at the entry and exit of the latter. Generally, the metallization layers M1, M2 are deposited on the entry and exit faces 26, 31 of the microchannel wafers by an evaporation method. under vacuum of a conductive material (such as for example chromium, nickel-chromium, Inconel, etc.), by Joule effect, using, most frequently, an electron gun to sublimate the metal to be evaporated.
  • a conductive material such as for example chromium, nickel-chromium, Inconel, etc.
  • bias grazing incidence
  • microchannel wafers are supported, during evaporation, on a planetary system which allows, by continuous rotation, to expose the surface of the wafers to the metal flow in all directions, while preserving the grazing incidence.
  • the penetration of the metal inside the channels 27 is thus uniform, for each channel, and for all of the channels.
  • the electrons leaving the microchannel wafer are accelerated and focused by an electric field, on a luminescent screen 35 placed opposite the wafer, parallel to the latter, and at a distance D of the order of 1 to 5 mm. .
  • the luminescent screen 35 has dimensions substantially equal to those of the primary screen. It locally emits a quantity of light proportional to the incident electron current and therefore it restores a visible and intensified image of the X-ray image projected on the scintillator, through the entry window of the tube.
  • the luminescent screen 35 is a layer of a few micrometers thick, consisting of grains of phosphor material, and which can be deposited on the exit porthole 5.
  • the face of the luminescent screen 35 facing the wafer 25 of microchannels is coated with a very thin metallic layer 36 , aluminum for example.
  • This metallization allows the electric polarization of the screen (by the application of a fourth potential V4 more positive than the third potential V3), and serves as a reflector for the light emitted towards the rear by this screen.
  • the primary screen 21 and the wafer 25 of microchannels are secured to the body 2 of the tube, for example using lugs 29, sealed in this body, and to which are applied the polarization potentials V1, V2, V3.
  • the primary screen 21 and the wafer 25 are thus fixed so as to be electrically isolated from each other, while being separated by a relatively small distance D1, of the order of a few tenths of a millimeter (It is note that for clarity of the figures, the scale of dimensions is not respected).
  • Such an IIR tube structure is difficult to produce, in particular for large images. It is difficult indeed to produce and maintain parallel to the microchannel wafer, and at a very small and uniform distance, a perfectly flat primary screen. This is however necessary to limit the angular dispersion of the electrons (effect which reduces the spatial resolution), and to obtain a good image resolution on the whole field.
  • the present invention relates to image intensifier tubes using both a scintillator to convert ionizing radiation into light or near visible radiation, and a wafer of microchannels to carry out the amplification in electrons.
  • the object of the invention is to provide a solution to the problems mentioned above linked to the use of microchannel pancakes.
  • the invention proposes to place the photocathode directly on the entry face of the microchannel plate. This responds both to the problems associated with the uniformity of the spacing between the photocathode and the microchannel plate, and to the problems of electrical insulation between these two elements.
  • the power supply is simplified, since the input face of the microchannel plate and the photocathode can be at the same potential.
  • This arrangement also makes it possible to eliminate the effects, on the photocathode, generated by the differences in expansion coefficient between the scintillator and its support, and may even make it possible to remove this support.
  • the scintillator is then deposited on the microchannel wafer which has previously been coated with a photocathode. This avoids providing a specific support for the scintillator, a support which absorbs part of the X-rays because it is on the side of the incident X-rays.
  • the scintillator is not rigid enough to hold without support and the microchannel plate then advantageously serves as a support.
  • the photocathode can also be deposited on the scintillator, which is then applied against the wafer, or in part on the scintillator and in part on the wafer, the coated scintillator being applied against the coated wafer.
  • the invention therefore relates to an image intensifier tube, comprising a scintillator, a photocathode, a microchannel plate, an entry face of the microchannel plate being at least partially covered by a layer.
  • electrically conductive characterized in that the photocathode consists of at least one layer in contact with the electrically conductive layer.
  • FIG. 3 represents an image intensifier tube 40 arranged according to the invention, an IIR tube for example.
  • the IIR tube 40 comprises a vacuum-tight enclosure, constituted by a tube body 2 closed at one end by an inlet window 4, and at the other end by an outlet porthole 5.
  • This enclosure contains a scintillator 41, a scintillator support 42, a photocathode 43, a wafer 44 of microchannels and a luminescent screen 35, carried by the outlet port 5, all of these elements ensuring functions similar to those provided by the support 22, the scintillator 23, the photocathode 24, the wafer 25 and the luminescent screen 35 of the IIR tube shown in FIG. 2.
  • the photocathode 43 is directly supported on the entry face FE of the wafer 44 (face which is oriented towards the entry window 4 and towards the scintillator 41). More specifically, in the nonlimiting example shown in FIG. 3, the photocathode 3 is produced on a conductive layer, called the first metallization layer M1, formed on the input face FE.
  • the wafer 44 of microchannels is constituted in a conventional manner, and it is similar to the wafer 25 of FIG. 2: a second metallization layer M2 is deposited on the exit face FS of the wafer 44 (face oriented towards the luminescent screen).
  • This second metallization M2 cooperates with the first metallization layer M1, to establish an electric field over the length of the microchannels 27 that comprises the wafer 44, that is to say between the inlet and the outlet of these microchannels which respectively terminate in the FE input face and in the FS output face.
  • This electric field is obtained by applying the second and third polarization potentials V2, V3 to the metallization layers respectively M1, M2, with the third potential V3 more positive than the second potential V2.
  • the potential V3 applied to the second metallization layer M1 also serves, as in the prior art, to define an electric field between the output face FS of the wafer of microchannels, and the luminescent screen 35, for operation at this level similar to that of the prior art.
  • the metallizations M1 and M2 are deposited not only on the input and output faces FE, FS, but also on the walls of the microchannels 27, at the input and at the exit of the latter into which they thus penetrate slightly from a depth h1.
  • the method of depositing metallized layers M1, M2 uses a grazing incidence evaporation technique as already explained in the preamble.
  • the scintillator 41 is disposed above the photocathode 43, and in the non-limiting example described, it is directly supported on the input face FE of the wafer 44, that is to say directly in contact with the photocathode 43.
  • the scintillator 41 can be conventionally secured to a support 42 as in the nonlimiting example shown in FIG. 3, and the assembly formed by the scintillator and its support can be fixed to the wafer 44 of microchannels, for example under the pushing of one or more pushing members 56.
  • the pushing members 56 can be formed in different ways, depending in particular on the manufacturing methods specific to each IIR tube.
  • the pressure members 56 bear on an inner peripheral part 57 of the entry window 4, this peripheral part being more massive than the central part which must absorb the radiation as little as possible. X incident.
  • these thrust members 56 comprise a rigid spacer 58 and a spring washer 59: the spring washer 59 is placed on the support 42 (in a peripheral zone of the latter, and the spacer 58 is disposed between the entry window 4 and the spring washer 59.
  • the spacers 58 have a height H2 suitable for keeping applied the scintillator 41 and its support 42 against the entry face of the wafer 44, using the washers spring 59.
  • Several such thrust members can be used, distributed around the scintillators 41.
  • Such a concave shape of the assembly formed by the scintillator 41 and its support 42 can result from an internal mechanical tension which can itself result from a concave shape given initially to the support 42 before the deposition of the scintillator 41 on it. support.
  • the coefficient of expansion of cesium iodide is generally higher than that of the support, and this scintillator is deposited hot on this support.
  • the tension exerted by the scintillator 41 tends to reduce the initial concavity, and it is necessary to give the support 42 a slightly greater concavity than that which is ultimately necessary.
  • a support 42 for the scintillator is not compulsory. Indeed, it is known that a radiation converter or scintillator for an IIR tube can be produced on a temporary support, support which can be eliminated after production of the scintillator. Such a technique is described for example in a French patent in the name of THOMSON-CSF, published under No. 2,530,367. This patent describes a process for producing a scintillator screen made of cesium iodide with a needle structure (this type of scintillator is which is most commonly used in IIR tubes), on a temporary support which is then separated from the scintillator.
  • the scintillator 41 (having no support) can be fixed on the input face FE of the wafer 44 using, for example, thrust members 56, as explained above.
  • thrust members 56 as explained above.
  • the problems of difference in expansion coefficients no longer arise, and it is therefore less useful to impart a concave shape (before it is fixed) to the scintillator 41.
  • the photocathode 43 being produced on the input face FE of the microchannel plate, the problems posed in the prior art are overcome by the deformations of the primary screen, and in general the problem positioning of the photocathode relative to the microchannel plate.
  • the invention also provides a simplification in the electrical supply of the IIR tube 40, compared with the known art, that is to say with respect to the supply of the IIR tube of FIG. 2.
  • the photocathode 43 being in contact with the first metallization layer M1, it is brought to the same second polarization potential V2 as the input face FE, and the electrons it emits are immediately placed under the influence of the electric field which reigns in each of the microchannels 27.
  • the first polarization potential V1 is eliminated, which first potential V1 is used in the prior art to establish an electric field between the photocathode and the input face of the wafer microchannels.
  • FIG. 4 is an enlarged view of the elements contained in a box 50 of Figure 3, to better illustrate the operation of the IIR tube of the invention.
  • FIG. 4 partially shows the scintillator 41 and its support 42, the microchannel wafer 44 and the photocathode 43 situated between the latter and the scintillator 41, and the luminescent screen 35 situated opposite the scintillator 41 relative to the wafer 44.
  • the scintillator 41 is constituted, for example, by a uniform layer of cesium iodide formed into needles 41a by growth by evaporation on the support 42, according to a conventional method.
  • the support 41 no longer plays the mechanical role which it fulfills in the prior art; it can therefore be deleted, if the scintillator is produced on a temporary support.
  • the thickness E1 of the scintillator is typically 0.5 millimeter.
  • the scintillator 41 is arranged in contact with the photocathode 43, which itself is produced on the input face FE of the wafer 44 of microchannels.
  • the wafer 44 of microchannels comprises the parallel microchannels 27, separated by partitions 28.
  • the microchannels 27 are slightly inclined relative to the normal to the plane of the wafer, that is to say relative to the longitudinal axis 3 of the tube.
  • the FE entry face includes the first metallization layer M1, to which the second bias potential V2 is applied.
  • the output face FS comprises the second metallization layer M2 to which the third potential V3 is applied.
  • a wafer 44 having a thickness E of the order of 2 millimeters, and microchannels 27 whose diameter d1 is about 50 micrometers, is suitable for this application.
  • the luminescent screen 35 is located relative to the outlet face FS of the wafer 44, at a distance D of the order of 1 millimeter.
  • the luminescent screen 35 receives the third polarization potential V3, by which it is brought to a positive potential of a few thousand volts relative to the output face FS of the wafer.
  • the layer forming the photocathode 43 is deposited by vacuum evaporation on the entry face FE, that is to say on the first metallization layer M1, and very particularly at the entry of the microchannels to constitute the microphotocathodes 43a there.
  • This can be achieved, as for metallizations M1, M2, by a bias evaporation technique, that is to say in grazing incidence, as already explained (the wafer 44 of microchannels being for example on a rotating support).
  • This technique makes it possible to evaporate the microphotocathodes 43a in the microchannels 27 to a depth h2 corresponding to approximately twice the diameter d1 of the microchannels: that is to say approximately 100 micrometers for microchannels of 50 micrometers in diameter.
  • the photocathode 43 covers the first metallization M1, and may even exceed this, towards the inside of the microchannels 27.
  • the visible photons emitted in the scintillator 41 are channeled in the latter either in the direction of the wafer 44 (as illustrated by the photon Ph1), or in the opposite direction, that is to say towards the support. 42. If the support 42 is reflective, all the photons will be returned to the wafer 44, which improves the sensitivity at the expense of the contrast. If the support 42 chosen is absorbent, or if there is no support, the sensitivity of the IIR tube will be reduced, to the benefit of the resolution and the contrast. The choice will be made according to the applications envisaged.
  • the fraction of useful photons can exceed 20% of the light photons emitted, which is very sufficient, given the electronic gain provided by the wafer 44 of microchannels itself.
  • the number of electrons removed from photocathode 43, for each X photon absorbed in the scintillator 41, remains greater than several tens, which is sufficient to provide only negligible noise in the detected image.
  • FIG. 5 shows in particular the inputs of two microchannels 27 contained in a box 60 of FIG. 4, in order to illustrate the flared shape capable of being imparted to the microchannels and the resulting shape of the microphotocathodes 43a.
  • the flaring of the entry of the microchannels 27 can be obtained, in itself conventional, for example using an appropriate selective chemical attack method, accomplished before the deposition of the first metallization layer M1.
  • This chemical attack has the effect of removing material from the walls of the microchannels (near the entry surface) and therefore reducing the thickness E3 of the partitions 28 at this level, which results in flaring.
  • the first metallization layer M1 and then the layer forming the photocathode 43 are then deposited, as was previously indicated.
  • the surface area of the photocathode deposited on the surface is thus reduced, in favor of the microphotocathodes 43a formed at the entrance to the microchannels, and therefore the effective part of the photocathode 43 is increased.
  • an additional deposit 29 of decreasing thickness E3 obtained by a vapor deposition technique.
  • This additional deposit 29 may preferably be made of a material having a coefficient of expansion close to that of the wafer 44, silica for example if the wafer is made of glass.
  • This additional deposit or extension is then covered by the first metallization layer M1, then by the photocathode 43.
  • image intensifier tube of the invention has been made with reference to an IIR tube, but the invention applies to all image intensifier tubes using a screen scintillator, to convert the incident radiation into visible or near visible radiation.
  • an intensifier tube according to the invention can be carried out using techniques all well known to specialists.
  • an image intensifier tube according to the invention must, practically, be produced by a vacuum transfer method. Indeed, the photocathode 43 must be evaporated under vacuum on its substrate (on the wafer of microchannels in the case of the invention), and this requires the necessary clearance.
  • the degassing of the different parts will be carried out as usual, then the photocathode will be deposited on the entry of the wafer by evaporation at an angle, for example by using sources of antimony and alkali metals (K, Cs) arranged on the sides.
  • K, Cs alkali metals
  • a system of vacuum manipulator arms allows the scintillator to be placed and fixed on the wafer, then comes to place and seal, in a vacuum-tight manner, the entry window on the body of the tube.
  • the tube will then be returned to ambient air, ready for use.
  • FIG. 6 illustrates an embodiment in which the photocathode 43 is constituted not only by a layer deposited on the input face FE of the wafer 44, but also by a second layer 43s deposited on a face of the scintillator 41 oriented towards the wafer 44. For the rest, FIG. 6 is similar to FIG. 3.
  • the scintillator 41 being applied against the entry face FE, the second layer 43s is in contact with the first photoemissive layer 43, and is thus polarized at the same potential as the latter.
  • the photocathode may consist of a single layer 43s deposited on the scintillator 41; in such a case, the layer 43s deposited on the scintillator 41 would be directly in contact with the first metallization M1.
  • the second photoemissive layer 43s makes it possible to improve the electronic efficiency, at the cost of a complication in the production, this complication however being perfectly overcome.
  • the production of the photocathode 43 on the input face FE of the microchannel plate, before transferring the scintillator 41 to this input face and maintaining it in position as described above, as well as the watertight closing of the inlet window 4, requires complex equipment (although in itself well known) allowing the vacuum handling of the various parts of the tube (body of the tube equipped with the outlet screen and the wafer , primary screen or scintillator, entry window).
  • the scintillator 41 may be placed, during the production of the photocathode 43, in a position symmetrical to that of the wafer 44, with respect to the sources of evaporation, so that a photocathode will be produced simultaneously on the entry face of the wafer, and on the chosen face of the scintillator 41.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

L'invention concerne les tubes intensificateurs d'image radiologique du type comportant une galette (44) de microcanaux. Le tube intensificateur d'image de l'invention comporte une photocathode (43) directement formée sur la face d'entrée (FE) de la galette (44). On élimine ainsi, entre autres, les problèmes qui dans l'art antérieur sont liés au positionnement relatif entre la photocathode (43) et la galette (44) de microcanaux. <IMAGE>

Description

  • L'invention se rapporte aux tubes intensificateurs d'image dans lesquels, d'une part, on convertit en photons visibles ou proches du visible un rayonnement ionisant incident, et dans lesquels d'autre part on utilise une galette de microcanaux pour réaliser un gain en électrons.
  • Des tubes intensificateurs d'image sont d'un usage courant dans les domaines de la radiologie et tout particulièrement dans le radiodiagnostic, où ils sont appelés "tubes intensificateurs d'image radiologique" ou en abrégé "tubes IIR".
  • Le principe d'un tube IIR est bien connu. Il est illustré schématiquement à la figure 1, par une vue en coupe d'un tube IIR 1.
  • Le tube IIR 1 comporte une enceinte sous vide, constituée par un corps central 2 de révolution disposé autour d'un axe longitudinal 3. Le corps 2 est fermé à une extrémité par une fenêtre d'entrée 4, et à l'autre extrémité par un hublot de sortie 5.
  • Des rayons X incidents pénètrent dans le tube IIR par la fenêtre d'entrée 4 qui, à cet effet, doit être aussi transparente que possible à ces rayons : la fenêtre 4 est généralement constituée par une feuille mince d'aluminium, ou tantale, ou verre, etc.. . Une forme et des caractéristiques mécaniques adaptées confèrent à la fenêtre 4 une résistance mécanique, suffisante pour résister à la pression atmosphérique qui s'exerce de l'extérieur vers l'intérieur du tube.
  • Les rayons X rencontrent ensuite un ensemble appelé écran primaire 15 qui convertit le rayonnement X incident en électrons émis dans le vide, à partir du point où ce rayonnement est absorbé. L'écran primaire est généralement constitué par un "sandwich" qui comprend successivement : un support 6 transparent aux rayons X, une couche 7 de matériau scintillateur qui convertit le rayonnement X en rayonnement de plus basse énergie, généralement en lumière visible, et une photocathode 8, déposée sur le scintillateur 7, qui émet des électrons dans le vide sous l'effet du rayonnement émis par le scintillateur.
  • Le support 6 de scintillateur doit être transparent aux rayons X : il est constitué généralement par une mince feuille de métal, ou de verre à base de silice, etc...
  • Le scintillateur 7 est souvent constitué par une couche d'iodure de cesium d'une épaisseur de l'ordre de 0,2 à 0,8 mm.
  • La photocathode 8 est formée par une couche d'un matériau photoémissif ayant généralement une très faible épaisseur (souvent inférieure à 1 micromètre).
  • Le tube IIR 1 comprend en outre un ensemble ou système d'électrodes 10 portées à des potentiels (non représentés) appropriés à accélérer et focaliser tous les électrons émis par un même point de la photocathode 8, sur un point homologue d'un écran luminescent 11 situé du côté du hublot de sortie 5. Ce système d'électrodes est désigné comme l'optique électronique du tube IIR 1.
  • L'écran luminescent 11 est composé d'une couche déposée sur un support transparent 12, situé à l'intérieur du tube et derrière le hublot de sortie 5. On peut ainsi observer à travers le hublot de sortie, l'image visible convertie de l'image de rayons X qui a été projetée sur l'écran primaire 15 à travers la fenêtre d'entrée 4 du tube.
  • Dans un tel intensificateur d'image radiologique, chaque photon X incident d'énergie primaire comprise entre 30 à 100 kV, absorbé dans le scintillateur 7, donne typiquement naissance à plusieurs milliers de photons lumineux, et, par là, à l'émission de plusieurs centaines d'électrons dans le vide, le rendement quantique de la photocathodes 8 étant généralement compris entre 10 et 20 %.
  • Chacun de ces électrons, accélérés sous une tension de 10 à 30 kV, provoque à son tour l'émission de plusieurs centaines de photons lumineux en venant bombarder l'écran luminescent. Chaque photon X absorbé par l'écran primaire 15 est ainsi converti en un nombre de photons lumineux proche de 10 000, émis par l'écran luminescent 11.
  • De plus, l'optique électronique du tube concentre généralement l'image de sortie sur un format beaucoup plus petit que celui de l'image d'entrée, typiquement 1/10 à 1/5, ce qui s'accompagne d'un gain important de luminance pour cette image de sortie. Le dégrandissement d'image fait aussi que les détails de 1 mm au niveau de l'écran primaire sont réduits à environ 1/10 mm au niveau de l'écran luminescent, et que la résolution d'image requise au niveau de l'écran luminescent est ainsi beaucoup plus élevée que celle qui est détectée au niveau de l'écran primaire.
  • Le gain photonique, et le gain de luminance apporté par le dégrandissement, permettent d'obtenir, avec des doses radiologiques supportables par les patients, une image de sortie suffisamment lumineuse pour être observée et enregistrée par le biais d'une caméra cinématographique ou d'une caméra de prise de vue de télévision, en constituant des systèmes radioscopiques fonctionnant en temps réel.
  • Dans les tubes intensificateurs d'image lumineuse ou en abrégé "tube IIL" (Intensificateurs d'image dans lesquels le rayonnement incident est en lumière visible et qui donc ne comportent pas de scintillateur) de la seconde et troisième génération, il est connu d'ajouter une galette de microcanaux en vue d'augmenter encore le gain électronique. Mais dans les tubes IIR tels que ceux montrés à la figure 1, le gain photonique est considéré comme suffisant dans pratiquement toutes les applications, et généralement il n'est pas jugé utile de l'augmenter en ajoutant une galette de microcanaux, bien que de tels montages aient déjà été proposés.
  • Cependant, l'utilisation d'une galette de microcanaux dans les tubes IIR, en remplacement de l'optique électronique, est considérée comme susceptible de présenter de grands avantages, tels que par exemple : forte réduction de l'épaisseur, c'est-à-dire de la distance entre la fenêtre d'entrée et le hublot de sortie ; résolution uniforme sur tout le champ image (même pour images de grandes dimensions) ; possibilité de réaliser beaucoup plus facilement des formats carrés ou rectangulaires mieux adaptés aux formats d'images habituelles, ou d'écrans de télévision.
  • Des tubes IIR utilisant une galette de microcanaux en remplacement de l'optique électronique sont souvent appelés "tubes IIR à double focalisation de proximité". De tels tubes sont décrits notamment dans "Channel Electron Multiplier Plates in X-Ray Image Intensification", par I.C.P. Millar et al., dans Advances in Electronics and Electron Physics, volume 33, Académic Press, 1972. Dans le tube IIR décrit dans cette publication, l'écran primaire est plan. Il est tendu parallèlement et à une faible distance de la face d'entrée de la galette de microcanaux, tandis que l'écran luminescent est placé parallèlement à la face de sortie de la galette, et à une faible distance de celle-ci. Pour éviter que la dispersion des électrons entre la photocathode et l'entrée de la galette, d'une part, et entre la sortie de la galette et l'écran luminescent, d'autre part, ne dégradent la résolution, il faut maintenir des distances très faibles, typiquement inférieures à 1 millimètre, entre ces électrodes.
  • La figure 2 montre de manière schématique un tel tube IIR 20 d'un type semblable à celui décrit dans la publication ci-dessus mentionnée.
  • Comme dans l'exemple de la figure 1, le tube IIR 20 comporte un corps de tube 2 disposé autour d'un axe longitudinal 3. Le corps 2 est fermé à une extrémité par une fenêtre d'entrée 4 et à l'autre extrémité par un hublot de sortie 5.
  • Les rayons X incidents pénètrent dans le tube 20 par la fenêtre 4 d'entrée et rencontrent ensuite un écran primaire 21.
  • A la différence de l'écran primaire 15 de la figure 1, l'écran primaire 21 de cette version est plan. Il comporte un support 22 de scintillateur, un scintillateur 23 et une photocathode 24 qui peuvent être d'une même nature et qui assurent les mêmes fonctions que le support, le scintillateur et la photocathode montrés à la figure 1.
  • Les électrons (non représentés) émis par la photocathode 24 sont dirigés par un champ électrique, vers la face d'entrée 26 d'une galette 25 de microcanaux. A cet effet un premier et un second potentiels de polarisation V1, V2 sont appliqués respectivement à la photocathode 24 et à la face d'entrée 26, avec le second potentiel V2 plus positif que le premier potentiel V1.
  • La galette 25 de microcanaux est un assemblage d'une multitude de petits canaux ou microcanaux 27 parallèles séparés par des cloisons 28, et assemblés sous la forme d'une plaque rigide. Chaque électron primaire (émis par la photocathode) qui pénètre dans un microcanal 27 est multiplié par un phénomène d'émission secondaire en cascade sur les parois du microcanal, de sorte que le courant électronique en sortie de la galette peut être plus de mille fois supérieur au courant à l'entrée. Le diamètre d1 des microcanaux peut être compris entre 10 et 100 micromètres. Les microcanaux 27 sont inclinés par rapport à la normale au plan de la galette, afin que des électrons émis par la photocathode 24 parallèlement à cette normale ne puisse émerger d'un microcanal sans avoir donné lieu à un phénomène d'émission secondaire. En vue de réduire le nombre des électrons qui frappent la face d'entrée 26 de la galette 25 en dehors des microcanaux, il est courant de réaliser un évasement 30 à l'entrée de ces microcanaux et donc à ce niveau de réduire l'épaisseur des cloisons 28. L'épaisseur E de la plaque formant la galette 25 de microcanaux est typiquement comprise entre 1 et 5 mm. Le gain électronique de la galette peut être ajusté dans une grande plage de valeurs, par exemple entre 1 et 5000, en fonction de la tension développée entre la face d'entrée 26 et une face de sortie 31 de cette galette 25, face de sortie 31 à laquelle est appliqué un troisième potentiel de polarisation V3.
  • La face d'entrée 26 et la face de sortie 31 sont chacune recouverte d'une couche de métallisation respectivement M1, M2 (représentées sur la figure 2 en traits épais, grâce auxquelles les potentiels V2,V3 sont répartis sur les faces d'entrée et de sortie. Bien entendu ces métallisations M1,M2 ne doivent pas obturer les microcanaux 27. Il est à noter qu'il est courant de déposer les couches de métallisation M1,M2 sur les parois des microcanaux 27 aux extrémités de ces microcanaux c'est-à-dire à l'entrée et à la sortie de ces derniers. Généralement, les couches de métallisation M1,M2 sont déposées sur les faces d'entrée et de sortie 26, 31 des galettes de microcanaux par une méthode d'évaporation sous vide d'un matériau conducteur (tel que par exemple du chrome, nickel-chrome, Inconel, etc...), par effet Joule, en utilisant, le plus fréquemment, un canon à électrons pour sublimer le métal à évaporer.
  • Cette technique est classique. Pour limiter la pénétration du métal dans les canaux 27, l'évaporation s'effectue en incidence rasante (en "biais") .
  • Par ailleurs, les galettes de microcanaux sont supportées, pendant l'évaporation, sur un système de planétaire qui permet, par rotation continue, d'exposer la surface des galettes au flux métallique selon toutes les directions, tout en conservant l'incidence rasante. La pénétration du métal à l'intérieur des canaux 27 est ainsi uniforme, pour chaque canal, et pour l'ensemble des canaux.
  • Les électrons en sortie de la galette de microcanaux sont accélérés et focalisés par un champ électrique, sur un écran luminescent 35 disposé en regard de la galette, parallèlement à celle-ci, et à une distance D de l'ordre de 1 à 5 mm. L'écran luminescent 35 a des dimensions sensiblement égales à celles de l'écran primaire. Il émet localement une quantité de lumière proportionnelle au courant d'électrons incident et il restitue donc une image visible et intensifiée de l'image de rayons X projetée sur le scintillateur, à travers la fenêtre d'entrée du tube. L'écran luminescent 35 est une couche de quelques micromètres d'épaisseur, constituée par des grains de matériaux luminophore, et qui peut être déposée sur le hublot de sortie 5. La face de l'écran luminescent 35 tournée vers la galette 25 de microcanaux, est revêtue d'une couche métallique 36 très mince, en aluminium par exemple. Cette métallisation permet la polarisation électrique de l'écran (par l'application d'un quatrième potentiel V4 plus positif que le troisième potentiel V3), et sert de réflecteur pour la lumière émise vers l'arrière par cet écran.
  • L'écran primaire 21 et la galette 25 de microcanaux sont solidarisés au corps 2 du tube, à l'aide par exemple de pattes 29, scellées dans ce corps, et auxquelles sont appliqués en outre les potentiels de polarisation V1, V2, V3. L'écran primaire 21 et la galette 25 sont ainsi fixés de manière à être électriquement isolés l'un de l'autre, tout en étant séparés par une distance D1 relativement faible, de l'ordre de quelques dixièmes de millimètres (Il est à noter que pour plus de clarté des figures, l'échelle des dimensions n'est pas respectée).
  • Une telle structure de tube IIR est difficile à réaliser, en particulier pour les images de grandes dimensions. Il est difficile en effet de réaliser et maintenir parallèlement à la galette de microcanaux, et à une distance très faible et uniforme, un écran primaire parfaitement plan. Ceci est pourtant nécessaire pour limiter la dispersion angulaire des électrons (effet qui réduit la résolution spatiale), et pour obtenir une bonne résolution d'image sur l'ensemble du champ.
  • Une autre difficulté vient de ce que le scintillateur 23 et son support 22 ne possèdent pas les mêmes coefficients de dilatation : ils sont constitués tous les deux par des couches minces qui tendent à se déformer, et entraînent une déformation de la photocathode et donc une modification locale de la distance entre cette dernière et la galette de microcanaux.
  • Ces difficultés sont d'autant plus prononcées que la dimension des tubes IIR est grande, alors que les applications envisagées d'un tube IIR à galette de microcanaux (c'est-à-dire d'un tube IIR à double focalisation de proximité) demandent de grandes surfaces utiles, typiquement supérieures à 15 cm de diamètre, ou de format rectangulaire de surface équivalente.
  • La présente invention concerne les tubes intensificateurs d'image utilisant à la fois un scintillateur pour convertir un rayonnement ionisant en rayonnement lumineux ou proche du visible, et une galette de microcanaux pour réaliser l'amplification en électrons. L'invention a pour but d'apporter une solution aux problèmes ci-dessus mentionnés liés à l'utilisation des galettes à microcanaux.
  • L'invention propose de disposer directement la photocathode sur la face d'entrée de la galette de microcanaux. On répond ainsi à la fois aux problèmes liés à l'uniformité de l'écartement entre la photocathode et la galette de microcanaux, et aux problèmes d'isolation électrique entre ces deux éléments. On simplifie l'alimentation électrique, car la face d'entrée de la galette de microcanaux et la photocathode peuvent être à un même potentiel.
  • Cette disposition permet en outre de supprimer les effets, sur la photocathode, engendrés par les différences de coefficient de dilatation entre le scintillateur et son support, et peut permettre même de supprimer ce support. Le scintillateur est alors déposé sur la galette de microcanaux qui a préalablement été revêtue d'une photocathode. Ceci évite de prévoir un support spécifique pour le scintillateur, support qui absorbe une partie des rayons X du fait qu'il est du côté du rayonnement X incident. Le scintillateur n'est pas assez rigide pour tenir sans support et la galette de microcanaux sert alors avantageusement de support. La photocathode peut aussi être déposée sur le scintillateur, qui est ensuite appliquée contre la galette, ou en partie sur le scintillateur et en partie sur la galette, le scintillateur revêtu étant appliqué contre la galette revêtue.
  • L'invention concerne donc un tube intensificateur d'image, comportant un scintillateur, une photocathode, une galette de microcanaux, une face d'entrée de la galette de microcanaux étant au moins partiellement recouverte par une couche électriquement conductrice, caractérisé en ce que la photocathode est constituée par au moins une couche en contact avec la couche électriquement conductrice.
  • L'invention sera mieux comprise et d'autres avantages qu'elle apporte apparaîtrons à la lecture de la description qui suit, faite à titre d'exemple non limitatif en référence aux dessins annexés parmi lesquels :
    • la figure 1 déjà décrite représente un tube IIR de l'art antérieur, du type à optique électronique ;
    • la figure 2 déjà décrite représente schématiquement par une vue en coupe, un tube IIR de l'art antérieur, du type à galette de microcanaux ;
    • la figure 3 montre schématiquement par une vue en coupe, un tube IIR du type à galette de microcanaux conforme à l'invention ;
    • la figure 4 est une vue agrandie d'une partie d'une galette de microcanaux montrée à la figure 3 ;
    • la figure 5 représente plus particulièrement l'entrée de microcanaux montrés aux figures 3 et 4 ;
    • la figure 6 est une vue semblable à la figure 3, et illustre la présence d'une couche de photocathode réalisée sur un scintillateur.
  • Pour simplifier les figures et faciliter leur lecture, l'échelle des dimensions n'est pas respectée.
  • La figure 3 représente un tube intensificateur d'image 40 agencé suivant l'invention, un tube IIR par exemple. Le tube IIR 40 comporte une enceinte étanche au vide, constituée par un corps de tube 2 fermé à une extrémité par une fenêtre d'entrée 4, et à l'autre extrémité par un hublot de sortie 5. Cette enceinte contient un scintillateur 41, un support de scintillateur 42, une photocathode 43, une galette 44 de microcanaux et un écran luminescent 35, porté par le hublot de sortie 5, tous ces éléments assurant des fonctions semblables à celles assurées par le support 22, le scintillateur 23, la photocathode 24, la galette 25 et l'écran luminescent 35 du tube IIR montré à la figure 2.
  • Suivant une caractéristique de l'invention, la photocathode 43 est directement appuyée sur la face d'entrée FE de la galette 44 (face qui est orientée vers la fenêtre d'entrée 4 et vers le scintillateur 41). Plus précisément, dans l'exemple non limitatif représenté à la figure 3, la photocathode 3 est réalisée sur une couche conductrice, appelée première couche de métallisation M1, formée sur la face d'entrée FE.
  • Pour le reste, la galette 44 de microcanaux est constituée de façon classique, et elle est semblable à la galette 25 de la figure 2 : une seconde couche de métallisation M2 est déposée sur la face de sortie FS de la galette 44 (face orientée vers l'écran luminescent). Cette seconde métallisation M2 coopère avec la première couche de métallisation M1, pour établir un champ électrique sur la longueur des microcanaux 27 que comporte la galette 44, c'est-à-dire entre l'entrée et la sortie de ces microcanaux qui respectivement aboutissent dans la face d'entrée FE et dans la face de sortie FS. Ce champ électrique est obtenu par l'application des second et troisième potentiels de polarisations V2, V3 aux couches de métallisation respectivement M1,M2, avec le troisième potentiel V3 plus positif que le second potentiel V2. Il est à noter que le potentiel V3 appliqué à la seconde couche de métallisation M1 sert en outre comme dans l'art antérieur, à définir un champ électrique entre la face de sortie FS de la galette de microcanaux, et l'écran luminescent 35, en vue d'un fonctionnement à ce niveau semblable à celui de l'art connu.
  • Pour favoriser l'établissement du champ électrique dans les microcanaux 27, les métallisations M1 et M2 sont déposées non seulement sur les faces d'entrée et de sortie FE, FS, mais aussi sur les parois des microcanaux 27, à l'entrée et à la sortie de ces derniers dans lesquels elles pénètrent ainsi légèrement d'une profondeur h1. A cet effet la méthode de dépôt des couches métallisées M1, M2 utilise une technique d'évaporation en incidence rasante comme déjà expliqué dans le préambule.
  • Cette légère pénétration de la première couche métallisée M1 dans une partie de chaque microcanal 27, partie qui constitue l'entrée de chaque microcanal, est mise à profit dans l'invention où elle constitue le support de la photocathode 43 conforme à l'invention. La couche formant la photocathode 43 est ainsi réalisée sur la face d'entrée FE, ainsi que dans l'entrée de chacun des microcanaux 27 où elle constitue une microphotocathode 43a ; par suite la photocathode 43 comporte autant de microphotocathodes 43a qu'il y a de microcanaux 27.
  • Le scintillateur 41 est disposé au-dessus de la photocathode 43, et dans l'exemple non limitatif décrit, il est directement appuyé sur la face d'entrée FE de la galette 44 c'est-à-dire directement en contact avec la photocathode 43.
  • Le scintillateur 41 peut être solidaire de façon classique d'un support 42 comme dans l'exemple non limitatif représenté à la figure 3, et l'ensemble formé par le scintillateur et son support peut être fixé à la galette 44 de microcanaux par exemple sous la poussée d'un ou plusieurs organes de poussée 56. Les organes de poussée 56 peuvent être constitués de différentes manières, en fonction notamment des modes de fabrication propres à chaque tube IIR.
  • Dans l'exemple non limitatif de la description, les organes de pression 56 prennent appui sur une partie périphérique intérieure 57 de la fenêtre d'entrée 4, cette partie périphérique étant plus massive que la partie centrale qui elle doit absorber le moins possible le rayonnement X incident. Dans l'exemple représenté à la figure 2, ces organes de poussée 56 comportent une entretoise rigide 58 et une rondelle ressort 59 : la rondelle ressort 59 est placée sur le support 42 (dans une zone périphérique de ce dernier, et l'entretoise 58 est disposée entre la fenêtre d'entrée 4 et la rondelle ressort 59. Les entretoises 58 ont une hauteur H2 appropriée à maintenir appliqués le scintillateur 41 et son support 42 contre la face d'entrée de la galette 44, à l'aide des rondelles ressort 59. Plusieurs tels organes de poussée peuvent être utilisés, répartis sur le tour des scintillateurs 41.
  • En vue d'une part d'améliorer la fixation de l'ensemble scintillateur-support 41,42, et d'autre part de limiter, voire annuler les déformations mécaniques résultant des différences de coefficients de dilatation du scintillateur et du support, il est possible (mais non obligatoire) de conférer à cet ensemble scintillateur-support 41, 42, avant sa fixation sur la galette 44, une forme (non représentée) légèrement concave (vue de la fenêtre d'entrée). Avec une telle forme, quand l'ensemble scintillateur-support 41,42 est placé au-dessus de la galette 44, c'est d'abord par sa partie centrale qu'il est au contact de la face d'entrée FE sur laquelle est formée la photocathode 43. En assurant ensuite une pression régulière sur la périphérie de l'ensemble scintillateur-support 41, 42 lors de sa fixation à l'aide des organes de poussée 56, on obtient un appui uniforme de cet ensemble sur la face d'entrée FE, en jouant sur son élasticité.
  • Une telle forme concave de l'ensemble formé par le scintillateur 41 et son support 42, peut résulter d'une tension mécanique interne qui peut elle-même résulter d'une forme concave donnée initialement au support 42 avant le dépôt du scintillateur 41 sur ce support. Le coefficient de dilatation de l'iodure de césium est généralement supérieur à celui du support, et ce scintillateur est déposé à chaud sur ce support. De la sorte, la tension exercée par le scintillateur 41 tend à réduire la concavité initiale, et il faut donner au support 42 une concavité un peu supérieure à celle qui est finalement nécessaire. On pourra par exemple donner une flèche initiale voisine de 1 millimètre, pour un support 5 en alliage d'aluminium de 0,5 millimètre d'épaisseur, et de 15 à 25 centimètres de diamètre.
  • Mais, dans cette configuration où le scintillateur 41 est appliqué sur la face d'entrée FE de la galette, la présence d'un support 42 de scintillateur n'est pas obligatoire. En effet, il est connu qu'un convertisseur de rayonnement ou scintillateur pour tube IIR peut être réalisé sur un support provisoire, support qui peut être éliminé après réalisation du scintillateur. Une telle technique est décrite par exemple dans un brevet français au nom de THOMSON-CSF, publié sous le n° 2 530 367. Ce brevet décrit un procédé pour réaliser un écran scintillateur en iodure de cesium avec une structure en aiguilles (ce type de scintillateur est celui qui est le plus couramment utilisé dans les tubes IIR), sur un support provisoire qui est ensuite séparé du scintillateur. Dans un tel cas, le scintillateur 41 (n'ayant pas de support) peut être fixé sur la face d'entrée FE de la galette 44 à l'aide par exemple des organes de poussée 56, comme ci-dessus expliqué. Cependant dans le cas d'un scintillateur 41 débarrassé de son support ou substrat, les problèmes de différence de coefficients de dilatation ne se posent plus, et il est donc moins utile de conférer une forme concave (avant sa fixation) au scintillateur 41.
  • Avec l'invention, la photocathode 43 étant réalisée sur la face d'entrée FE de la galette de microcanaux, on répond aux problèmes posés dans l'art antérieur par les déformations de l'écran primaire, et d'une façon générale au problème du positionnement de la photocathode par rapport à la galette de microcanaux.
  • L'invention apporte en outre une simplification dans l'alimentation électrique du tube IIR 40, par rapport à l'art connu c'est-à-dire par rapport à l'alimentation du tube IIR de la figure 2. En effet, avec le tube IIR de l'invention, la photocathode 43 étant en contact avec la première couche de métallisation M1, elle est portée au même second potentiel de polarisation V2 que la face d'entrée FE, et les électrons qu'elle émet sont immédiatement placés sous l'influence du champ électrique qui règne dans chacun des microcanaux 27.
  • Dans ces conditions, par rapport au tube IIR classique de la figure 2, les potentiels nécessaires au fonctionnement du tube IIR de l'invention sont limités à :
    • second potentiel de polarisation V2 alimentant simultanément la face d'entrée FE et la photocathode 43 ;
    • troisième potentiel de polarisation V3 (plus positif que le second potentiel V2) appliqué à la face de sortie FS ;
    • et un quatrième potentiel de polarisation V4 (plus positif que le troisième potentiel V3) appliqué à l'écran luminescent 35.
  • On constate que par rapport au tube IIR classique de la figure 2, le premier potentiel de polarisation V1 est supprimé, lequel premier potentiel V1 sert dans l'art antérieur à établir un champ électrique entre la photocathode et la face d'entrée de la galette de microcanaux.
  • Il est à noter en outre que ceci conduit, avec le tube IIR suivant l'invention, non seulement à réduire le nombre de potentiels de polarisation, mais aussi à réduire de façon importante la différence de potentiel appliquée à ce tube.
  • La figure 4 est une vue agrandie des éléments contenus dans un encadré 50 de la figure 3, permettant de mieux illustrer le fonctionnement du tube IIR de l'invention. La figure 4 montre partiellement, le scintillateur 41 et son support 42, la galette 44 de microcanaux et la photocathode 43 située entre cette dernière et le scintillateur 41, et l'écran luminescent 35 situé à l'opposé du scintillateur 41 par rapport à la galette 44.
  • Le scintillateur 41 est constitué, par exemple, par une couche uniforme d'iodure de césium formé en aiguilles 41a par croissance par évaporation sur le support 42, suivant une méthode classique. Cependant comme il a déjà été expliqué plus haut, le support 41 ne joue plus le rôle mécanique qu'il remplit dans l'art antérieur ; il peut donc être supprimé, si on réalise le scintillateur sur un support provisoire. L'épaisseur E1 de scintillateur est typiquement 0,5 millimètre.
  • Le scintillateur 41 est disposé au contact de la photocathode 43, qui elle-même est réalisée sur la face d'entrée FE de la galette 44 de microcanaux.
  • La galette 44 de microcanaux comprend les microcanaux 27 parallèles, séparés par des cloisons 28. Les microcanaux 27 sont légèrement inclinés par rapport à la normale au plan de la galette, c'est-à-dire par rapport à l'axe longitudinal 3 du tube. La face d'entrée FE comporte la première couche de métallisation M1, à laquelle est appliqué le second potentiel de polarisation V2. La face de sortie FS comporte la seconde couche de métallisation M2 à laquelle est appliqué le troisième potentiel V3. A titre indicatif, une galette 44 ayant une épaisseur E de l'ordre de 2 millimètres, et des microcanaux 27 dont le diamètre d1 est d'environ 50 micromètres, convient pour cette application.
  • L'écran luminescent 35 est situé par rapport à la face de sortie FS de la galette 44, à une distance D de l'ordre de 1 millimètre. L'écran luminescent 35 reçoit le troisième potentiel de polarisation V3, par lequel il est porté à un potentiel positif de quelques milliers de volts par rapport à la face de sortie FS de la galette.
  • La couche formant la photocathode 43 est déposée par évaporation sous vide sur la face d'entrée FE c'est-à-dire sur la première couche de métallisation M1, et tout particulièrement à l'entrée des microcanaux pour y constituer les microphotocathodes 43a. Ceci peut être réalisé, comme pour les métallisations M1, M2, par une technique d'évaporation en biais c'est-à-dire en incidence rasante, comme déjà expliqué (la galette 44 de microcanaux étant par exemple sur un support tournant). Cette technique permet d'évaporer les microphotocathodes 43a dans les microcanaux 27 jusqu'à une profondeur h2 correspondant à environ deux fois le diamètre d1 des microcanaux : soit environ 100 micromètres pour des microcanaux de 50 micromètres de diamètre. La photocathode 43 recouvre la première métallisation M1, et peut même dépasser celle-ci, vers l'intérieur des microcanaux 27.
  • Lorsqu'un photon X est absorbé dans le scintillateur 41, il donne lieu à l'émission de plusieurs milliers de photons visibles. Cette lumière, canalisée par les aiguilles 41a du scintillateur, est émise vers l'entrée des microcanaux 27 (comme illustré à la figure 4 par un photon lumineux Ph1) où elle a une forte probabilité de venir exciter la photocathode 43 (dont la partie efficace est principalement constituée par les microphotocathodes 43a). Des électrons émis par la photocathode, en conséquence, sont attirés vers l'intérieur des microcanaux 27 par le champ électrique, où ils se multiplient par émission secondaire en cascade, à la suite des chocs sur les parois des microcanaux, selon le processus bien connu des galettes de microcanaux. A la sortie des microcanaux 27, les électrons sont accélérés vers l'écran luminescent 35 où ils restituent, par cathodoluminescence, une image visible homologue de l'image de rayons X absorbée par le scintillateur 41.
  • Il est à noter que les photons visibles émis dans le scintillateur 41, sont canalisés dans ce dernier soit en direction de la galette 44 (comme illustré par le photon Ph1), soit dans la direction opposée c'est-à-dire vers le support 42. Si le support 42 est réfléchissant, tous les photons seront renvoyés vers la galette 44, ce qui améliore la sensibilité au détriment du contraste. Si le support 42 choisi est absorbant, ou s'il n'y a pas de support, la sensibilité du tube IIR sera réduite, au bénéfice de la résolution et du contraste. Le choix se fera selon les applications envisagées.
  • Une partie des photons visibles émis dans le scintillateur 41 en direction de la galette 44, est perdue : pour une part, ces photons perdus (non représentés) sont ceux qui sont dirigés vers les cloisons 28 et qui ne pénètrent pas dans les microcanaux 27 ; les autres photons visibles perdus sont ceux qui sont émis vers l'axe des microcanaux 27 et qui par suite ne rencontrent pas la photocathode 43 ou plus précisément les microphotocathodes 43a.
  • Dans l'un et l'autre des cas, on peut réduire la proportion de photons perdue en évasant l'entrée des microcanaux 27, comme il est davantage expliqué dans une suite de la description faite en référence à la figure 5.
  • Au total, la fraction des photons utiles peut excéder 20 % des photons lumineux émis, ce qui est très suffisant, compte tenu du gain électronique apporté par la galette 44 de microcanaux elle-même. Le nombre d'électrons arrachés à la photocathode 43, pour chaque photon X absorbé dans le scintillateur 41, reste supérieur à plusieurs dizaines, ce qui est suffisant pour n'apporter qu'un bruit négligeable dans l'image détectée.
  • La figure 5 montre particulièrement les entrées de deux microcanaux 27 contenus dans un encadré 60 de la figure 4, afin d'illustrer la forme évasée susceptible d'être conférée aux microcanaux et la forme qui en résulte des microphotocathodes 43a.
  • L'évasement de l'entrée des microcanaux 27 (à proximité de la face d'entrée FE) peut être obtenu, de façon en elle-même classique, par exemple à l'aide d'une méthode d'attaque chimique sélective appropriée, accomplie avant le dépôt de la première couche de métallisation M1.
  • Cette attaque chimique a pour effet d'ôter de la matière sur les parois des microcanaux (à proximité de la surface d'entrée) et donc de réduire à ce niveau l'épaisseur E3 des cloisons 28, d'où résulte l'évasement. La première couche de métallisation M1 puis la couche formant la photocathode 43 sont ensuite déposées, comme il a été précédemment indiqué. On diminue ainsi la superficie de photocathode déposée en surface, au profit des microphotocathodes 43a formées à l'entrée des microcanaux, et donc on augmente la partie efficace de la photocathode 43.
  • Pour obtenir un évasement de l'entrée des microcanaux 27, il est possible aussi de prolonger l'extrémité (symbolisée à la figure 5 par une limite en traits pointillés) des cloisons 28, par un dépôt additionnel 29 d'épaisseur E3 décroissante, obtenu par une technique de dépôt en phase vapeur. Ce dépôt additionnel 29 peut être, de préférence, en un matériau présentant un coefficient de dilatation voisin de celui de la galette 44, de la silice par exemple si la galette est en verre. Ce dépôt additionnel ou prolongement est ensuite recouvert par la première couche de métallisation M1, puis par la photocathode 43.
  • La description du tube intensificateur d'image de l'invention a été faite en référence à un tube IIR, mais l'invention s'applique à tous tubes intensificateur d'image utilisant un écran scintillateur, pour convertir le rayonnement incident en un rayonnement visible ou proche du visible.
  • La réalisation d'un tube intensificateur suivant l'invention, peut s'effectuer à l'aide de techniques toutes bien connues des spécialistes.
  • On peut préciser cependant, à titre uniquement indicatif, qu'un tube intensificateur d'image selon l'invention doit, pratiquement, être réalisé par une méthode de transfert sous vide. En effet, la photocathode 43 doit être évaporée sous vide sur son substrat (sur la galette de microcanaux dans le cas de l'invention), et il faut pour cela le dégagement nécessaire.
  • Le tube de l'invention peut être introduit dans un bâti de transfert de vide (non représenté) sous la forme de trois sous-ensembles :
    • le premier sous-ensemble comprend le corps du tube, la galette du microcanaux, l'écran luminescent, le hublot de sortie (l'écran luminescent étant, par exemple, déposé directement sur la face interne du hublot), tous ces éléments étant fixés de façon définitive.
    • le second sous-ensemble est constitué par le scintillateur sur son support (on un support provisoire).
    • le troisième sous-ensemble est constitué par la fenêtre d'entrée, munie par exemple d'une bride (non représentée) pouvant venir se fermer sur le corps du tube.
  • A l'intérieur du bâti, sous vide, on procédera comme habituellement au dégazage des différentes pièces, puis on réalisera le dépôt de la photocathode sur l'entrée de la galette par une évaporation en biais, par exemple en se servant de sources d'antimoine et de métaux alcalin (K, Cs) disposées sur les côtés. Le contrôle de l'évaporation de la photocathode s'effectuera selon un procédé connu.
  • Une fois la photocathode réalisée, un système de bras manipulateurs sous vide, permet de venir déposer et fixer le scintillateur sur la galette, puis de venir poser et sceller, de manière étanche au vide, la fenêtre d'entrée sur le corps du tube.
  • Le tube sera alors remis à l'air ambiant, prêt à être utilisé.
  • La figure 6 illustre un mode de réalisation dans lequel la photocathode 43 est constituée non seulement par une couche déposée sur la face d'entrée FE de la galette 44, mais aussi par une seconde couche 43s déposée sur une face du scintillateur 41 orientée vers la galette 44. Pour le reste, la figure 6 est semblable à la figure 3.
  • Le scintillateur 41 étant appliqué contre la face d'entrée FE, la seconde couche 43s est en contact avec la première couche photoémissive 43, et se trouve ainsi polarisée au même potentiel que cette dernière.
  • Il est à noter qu'il est possible aussi, dans l'esprit de l'invention, que la photocathode soit constituée par une unique couche 43s déposée sur le scintillateur 41 ; dans un tel cas, la couche 43s déposée sur le scintillateur 41 serait directement en contact avec la première métallisation M1.
  • La seconde couche 43s photoémissive permet d'améliorer le rendement électronique, au prix d'une complication dans la réalisation, cette complication étant cependant parfaitement surmontable.
  • En effet, la réalisation de la photocathode 43 sur la face d'entrée FE de la galette de microcanaux, avant de reporter le scintillateur 41 sur cette face d'entrée et de le maintenir en position comme décrit ci-dessus, de même que la fermeture étanche de la fenêtre d'entrée 4, nécessitent un équipement complexe (bien qu'en lui-même bien connu) permettant la manipulation sous vide des diverses parties du tube (corps du tube équipé de l'écran de sortie et de la galette, écran primaire ou scintillateur, fenêtre d'entrée). Dans ce même équipement sous vide, il faut disposer des sources d'évaporation des matériaux constituants la photocathode (antimoine et métaux alcalins), et des possibilités de mouvement relatifs (système planétaire), ou de sources multiples, permettant l'évaporation uniforme de la photocathode sur la face d'entrée de la galette.
  • Dans ce système relativement complexe, on pourra disposer le scintillateur 41, pendant la réalisation de la photocathode 43, dans une position symétrique de celle de la galette 44, par rapport aux sources d'évaporation, de sorte que l'on réalisera simultanément une photocathode sur la face d'entrée de la galette, et sur la face choisie du scintillateur 41.

Claims (9)

  1. Tube intensificateur d'image comportant un écran scintillateur (41), une photocathode (43), une galette (44) d'amplification électronique, la galette (44) comportant une pluralité de microcanaux (27), une face d'entrée (FE) de la galette (44) orientée vers l'écran scintillateur (41) étant au moins partiellement recouverte par une couche de métallisation (M1), caractérisé en ce que la photocathode (43) comporte au moins une couche photoémissive (43a, 43s) en contact avec la couche de métallisation (M1).
  2. Tube intensificateur suivant la revendication 1, caractérisé en ce que la couche photoémissive (43a, 43s) de photocathode (43) est déposée sur la face d'entrée (FE) de la galette (44).
  3. Tube intensificateur suivant la revendication 2, caractérisé en ce que la couche de photocathode (43) pénètre dans l'entrée des microcanaux (27) sur au moins une partie des parois des microcanaux.
  4. Tube intensificateur suivant l'une des revendications précédentes, caractérisé en ce que l'écran scintillateur (41) est appuyé sur la face d'entrée (FE) de la galette (44).
  5. Tube intensificateur suivant la revendication 2, caractérisé en ce que l'écran scintillateur (41) est appuyé sur la face d'entrée (FE) de la galette (44), et en ce que la photocathode (43) comporte en outre au moins une couche photoémissive (43s) déposée sur l'écran scintillateur (41).
  6. Tube intensificateur suivant la revendication 1, caractérisé en ce que l'écran scintillateur (41) est appuyé sur la face d'entrée (FE) de la galette (44), et en ce que la couche photoémissive (43s) en contact avec la couche de métallisation (M1) est déposée sur l'écran scintillateur (41).
  7. Tube intensificateur suivant l'une des revendications précédentes, caractérisé en ce que l'entrée des microcanaux (27) a une forme évasée.
  8. Tube intensificateur suivant la revendication 7, caractérisé en ce que des cloisons (28) qui séparent les microcanaux (27), sont prolongés du côté de la face d'entrée (FE) par un dépôt additionnel (29) dont l'épaisseur (E3) varie, afin de réaliser la forme évasée à l'entrée des microcanaux (27).
  9. Tube intensificateur suivant l'une des revendications précédentes, caractérisé en ce que l'écran scintillateur (41) est appuyé sur la galette (44), et en ce que la galette (44) constitue l'unique support de l'écran scintillateur (41).
EP93400530A 1992-03-06 1993-03-02 Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux Expired - Lifetime EP0559550B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9202721 1992-03-06
FR9202721A FR2688343A1 (fr) 1992-03-06 1992-03-06 Tube intensificateur d'image notamment radiologique, du type a galette de microcanaux.

Publications (2)

Publication Number Publication Date
EP0559550A1 true EP0559550A1 (fr) 1993-09-08
EP0559550B1 EP0559550B1 (fr) 1995-09-06

Family

ID=9427444

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93400530A Expired - Lifetime EP0559550B1 (fr) 1992-03-06 1993-03-02 Tube intensificateur d'image, notamment radiologique, du type à galette de microcanaux

Country Status (5)

Country Link
US (1) US5319189A (fr)
EP (1) EP0559550B1 (fr)
JP (1) JP3378041B2 (fr)
DE (1) DE69300429T2 (fr)
FR (1) FR2688343A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698482B1 (fr) * 1992-11-20 1994-12-23 Thomson Tubes Electroniques Dispositif générateur d'images par effet de luminescence.
US5656807A (en) * 1995-09-22 1997-08-12 Packard; Lyle E. 360 degrees surround photon detector/electron multiplier with cylindrical photocathode defining an internal detection chamber
DE19808652A1 (de) * 1998-03-02 1999-09-16 Bundesdruckerei Gmbh Verifikationssystem für ein Wert- und Sicherheitserzeugnis
FR2777112B1 (fr) 1998-04-07 2000-06-16 Thomson Tubes Electroniques Dispositif de conversion d'une image
DE19827094A1 (de) * 1998-06-18 1999-12-23 Treo Elektrooptik Gmbh Bildwandler- bzw. Bildverstärkerröhre und Photokathode dafür
US6483231B1 (en) * 1999-05-07 2002-11-19 Litton Systems, Inc. Night vision device and method
US7498557B2 (en) 2005-09-08 2009-03-03 Applied Materials Israel Ltd. Cascaded image intensifier
US7321123B2 (en) * 2005-12-20 2008-01-22 Schlumberger Technology Corporation Method and apparatus for radiation detection in a high temperature environment
US8052884B2 (en) * 2008-02-27 2011-11-08 Arradiance, Inc. Method of fabricating microchannel plate devices with multiple emissive layers
WO2009126845A2 (fr) * 2008-04-10 2009-10-15 Arradiance, Inc. Dispositif d'intensification d'image
US8227965B2 (en) * 2008-06-20 2012-07-24 Arradiance, Inc. Microchannel plate devices with tunable resistive films
US8237129B2 (en) * 2008-06-20 2012-08-07 Arradiance, Inc. Microchannel plate devices with tunable resistive films
DE102011077058A1 (de) * 2011-06-07 2012-12-13 Siemens Aktiengesellschaft Strahlungsdetektor und bildgebendes System
DE102011077056A1 (de) * 2011-06-07 2012-12-13 Siemens Aktiengesellschaft Strahlungsdetektor und bildgebendes System
US9837238B2 (en) 2015-08-26 2017-12-05 National Security Technologies, Llc Photocathode
JP7055342B2 (ja) * 2018-01-10 2022-04-18 国立大学法人大阪大学 光増倍装置
US11747493B2 (en) 2020-09-16 2023-09-05 Amir Massoud Dabiran Multi-purpose high-energy particle sensor array and method of making the same for high-resolution imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497759A (en) * 1967-05-15 1970-02-24 Philips Corp Image intensifiers
US4691099A (en) * 1985-08-29 1987-09-01 Itt Electro Optical Products Secondary cathode microchannel plate tube
DE3704716A1 (de) * 1987-02-14 1988-08-25 Kernforschungsanlage Juelich Ortsempfindlicher detektor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838526Y2 (ja) * 1978-12-19 1983-08-31 日本放送協会 像増強装置
FR2486712A1 (fr) * 1980-07-11 1982-01-15 Thomson Csf Tube intensificateur d'images a micro-canaux, et ensemble de prise de vues comprenant un tel tube
FR2591032B1 (fr) * 1985-11-29 1988-01-08 Thomson Csf Photocathode a faible courant d'obscurite
FR2591033B1 (fr) * 1985-11-29 1988-01-08 Thomson Csf Photocathode a rendement eleve
FR2592217B1 (fr) * 1985-12-20 1988-02-05 Thomson Csf Photocathode a amplification interne
US4855589A (en) * 1986-03-10 1989-08-08 Picker International, Inc. Panel type radiation image intensifier
FR2625838B1 (fr) * 1988-01-13 1996-01-26 Thomson Csf Scintillateur d'ecran d'entree de tube intensificateur d'images radiologiques et procede de fabrication d'un tel scintillateur
FR2626106B1 (fr) * 1988-01-15 1990-05-04 Thomson Csf Procede de fabrication d'une photocathode pour tube intensificateur d'images
FR2634057B1 (fr) * 1988-07-08 1991-04-19 Thomson Csf Procede de fabrication d'un tube perfectionne intensificateur d'images radiologiques, tube intensificateur ainsi obtenu
FR2634562B1 (fr) * 1988-07-22 1990-09-07 Thomson Csf Procede de fabrication d'un scintillateur et scintillateur ainsi obtenu
JPH02152143A (ja) * 1988-12-02 1990-06-12 Toshiba Corp X線イメージ管及びその製造方法
US5159231A (en) * 1989-02-13 1992-10-27 Galileo Electro-Optics Corporation Conductively cooled microchannel plates
NL9000267A (nl) * 1990-02-05 1991-09-02 Philips Nv Proximity roentgenbeeldversterkerbuis.
FR2666448B1 (fr) * 1990-09-04 1992-10-16 Thomson Tubes Electroniques Tube intensificateur d'image a isolation electrique optimisee.
FR2687007B1 (fr) * 1992-01-31 1994-03-25 Thomson Tubes Electroniques Tube intensificateur d'image notamment du type a focalisation de proximite.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497759A (en) * 1967-05-15 1970-02-24 Philips Corp Image intensifiers
US4691099A (en) * 1985-08-29 1987-09-01 Itt Electro Optical Products Secondary cathode microchannel plate tube
DE3704716A1 (de) * 1987-02-14 1988-08-25 Kernforschungsanlage Juelich Ortsempfindlicher detektor

Also Published As

Publication number Publication date
FR2688343A1 (fr) 1993-09-10
JP3378041B2 (ja) 2003-02-17
DE69300429T2 (de) 1996-02-22
DE69300429D1 (de) 1995-10-12
US5319189A (en) 1994-06-07
JPH0644929A (ja) 1994-02-18
EP0559550B1 (fr) 1995-09-06

Similar Documents

Publication Publication Date Title
EP0559550B1 (fr) Tube intensificateur d&#39;image, notamment radiologique, du type à galette de microcanaux
EP0554145B1 (fr) Tube intensificateur d&#39;image, notamment du type à focalisation de proximité
FR2926924A1 (fr) Source radiogene comprenant au moins une source d&#39;electrons associee a un dispositif photoelectrique de commande
FR2789221A1 (fr) Corps de cathode pour l&#39;emission d&#39;electrons
EP0403802B1 (fr) Intensificateur d&#39;images de rayons X et procédé pour la fabrication d&#39;un écran d&#39;entrée
EP0325500B1 (fr) Scintillateur d&#39;écran d&#39;entrée de tube intensificateur d&#39;images radiologiques et procédé de fabrication d&#39;un tel scintillateur
EP2907154B1 (fr) Photocathode semi-transparente à taux d&#39;absorption amélioré
US5977705A (en) Photocathode and image intensifier tube having an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both
EP0099285A1 (fr) Ecran scintillateur convertisseur de rayonnement et procédé de fabrication d&#39;un tel écran
EP0553578B1 (fr) Tube intensificateur d&#39;image avec compensation de courbe de brillance
EP2815418A1 (fr) Dispositif et procédé d&#39;émission d&#39;électrons et dispositif comportant un tel système d&#39;émission d&#39;électrons
EP0013241B1 (fr) Tube intensificateur d&#39;image radiologique à sortie video et chaîne de radiologie comportant un tel tube
EP0044239B1 (fr) Tube intensificateur d&#39;images à micro-canaux et ensemble de prise de vues comprenant un tel tube
EP0608168B1 (fr) Tube convertisseur d&#39;images, et procédé de fabrication d&#39;un tel tube
Diebold et al. MCP detector development for WSO-UV
FR2702086A1 (fr) Anode tournante pour tube à rayonnement X composite.
CN113454750A (zh) 荧光体面板的制造方法、荧光体面板、图像增强器和扫描型电子显微镜
EP0110458B1 (fr) Tube à rayons cathodiques muni d&#39;un écran luminescent, procédé pour la fabrication d&#39;un écran destiné à un tel tube et tube image de télévision à projection muni d&#39;un tel écran
US3814977A (en) Image storage device
US3232781A (en) Electron image intensifying devices
JP2553653B2 (ja) ストリーク管
JPH01192177A (ja) 受光素子の製造方法
EP0851455A1 (fr) Tube intensificateur d&#39;image radiologique
WO1986001937A1 (fr) Tube a image a sortie video, systeme de prise de vue utilisant un tel tube et procede de fonctionnement d&#39;un tel tube
FR2491677A1 (fr) Multiplicateur d&#39;electrons, procede de fabrication et tubes images comportant ledit multiplicateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19930915

17Q First examination report despatched

Effective date: 19950117

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 69300429

Country of ref document: DE

Date of ref document: 19951012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040309

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040311

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051130