EP0554736B1 - Système optique digital de tansmission d'information par l'aide d'un guide d'ondes optiques avec dispersion à la longeur d'ondes opérationnelles - Google Patents

Système optique digital de tansmission d'information par l'aide d'un guide d'ondes optiques avec dispersion à la longeur d'ondes opérationnelles Download PDF

Info

Publication number
EP0554736B1
EP0554736B1 EP93101023A EP93101023A EP0554736B1 EP 0554736 B1 EP0554736 B1 EP 0554736B1 EP 93101023 A EP93101023 A EP 93101023A EP 93101023 A EP93101023 A EP 93101023A EP 0554736 B1 EP0554736 B1 EP 0554736B1
Authority
EP
European Patent Office
Prior art keywords
optical
signal
digital signal
intensity
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93101023A
Other languages
German (de)
English (en)
Other versions
EP0554736A2 (fr
EP0554736A3 (fr
Inventor
Berthold Wedding
Martin Mittrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Alcatel SEL AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4202863A external-priority patent/DE4202863A1/de
Priority claimed from DE19924216790 external-priority patent/DE4216790A1/de
Priority claimed from DE19924230601 external-priority patent/DE4230601A1/de
Application filed by Alcatel SEL AG filed Critical Alcatel SEL AG
Publication of EP0554736A2 publication Critical patent/EP0554736A2/fr
Publication of EP0554736A3 publication Critical patent/EP0554736A3/xx
Application granted granted Critical
Publication of EP0554736B1 publication Critical patent/EP0554736B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]

Definitions

  • the invention relates to a system according to the preamble of patent claim 1.
  • the chromatic dispersion also called material dispersion
  • the optical fiber of the optical transmission system When transmitting digital signals with a high bit repetition frequency (in the gigabit range), the chromatic dispersion (also called material dispersion) that the optical fiber of the optical transmission system has at the operating wavelength is a problem in that it determines the length of the path over which a digital signal with a high bit repetition frequency is transferable, limited.
  • An operating wavelength for optical transmission in the range of 1550 nm is desirable on the one hand, since suitable fiber-optic amplifiers are available for such wavelengths, and on the other hand, the use of standard single-mode optical waveguides, since these have already been laid many times. Therefore, the problem of chromatic dispersion of the optical fiber must be solved other than by choosing the operating wavelength or choosing the optical fiber type.
  • the known system represents the following solution:
  • the semiconductor laser on the transmission side of the system is not modulated in intensity with the digital signal to be transmitted, as is usually the case, but in the frequency of its optical output signal.
  • ASK intensity modulation
  • FSK modulation can be achieved by modulating the injection current of the semiconductor laser much weaker, i.e. with a much smaller modulation stroke, than would be done if you wanted to maintain the usual ASK modulation.
  • the transmitted optical signal Due to the frequency modulation, the transmitted optical signal has a smaller spectral range than would be the case with intensity modulation, so that the chromatic dispersion of the optical waveguide no longer has such a disadvantageous effect.
  • the known system contains an optical interferometer, which converts the frequency modulation of the received optical signal into an amplitude modulation, and an optical receiver for direct reception, which receives the optical intensity-modulated signal and recovers the transmitted digital signal therefrom.
  • An optical receiver for direct reception is usually understood to mean an arrangement of an optical detector, a preamplifier, an amplifier and a regenerator (the latter is sometimes also called a decision-making circuit), the optical detector together with the preamplifier and the amplifier representing the temporal course of the intensity converts the received optical signal into a corresponding temporal profile of an electrical signal and the regenerator recovers the digital signal from the electrical signal.
  • Such optical receivers are explained, for example, in the book "Optical Fibers" by J. Geissler et al, Pergamon Press, Oxford, New York, Toronto, Sydney, Frankfurt, 1986, p. 439 or in H. Hamano et al; proc. ECOC '90, Amsterdam, pages 45 to 48.
  • the known system is more complex than previous systems and therefore disadvantageous from a cost point of view, even if it is more powerful.
  • Claim 1 names the features of a transmission system according to the invention with which the object is achieved.
  • a new receiving device has been created for receiving a frequency-modulated optical signal that has passed through an optical waveguide that is subject to dispersion at its wavelength. This is the subject of claim 2.
  • Another aspect of the invention is that an optical waveguide with dispersion is used to convert an original frequency modulation of an optical signal into an intensity modulation. Such use is the subject of claim 3.
  • errors can occur when receiving the digital signal. This can e.g. be the case when long sequences of the same binary signals, e.g. a sequence of logical "1" occur and interference pulses occur in the receiver, for example due to the noise of the receiver or the electrical preamplifier.
  • the digital signal is usually scrambled (by a scrambler) before transmission in order to avoid long sequences of identical binary signals.
  • the transmitting device remains unchanged compared to the known system mentioned at the outset, so that a frequency-modulated optical signal is transmitted to the receiving device via the optical waveguide.
  • an essentially known optical receiver for direct reception which typically has the property that it fluctuates in intensity of its optical, serves as the receiving device Converts input signal into an electrical output signal, so it is not sensitive to frequency modulation, but rather to intensity modulation.
  • the optical signal radiated into the optical waveguide on the transmission side consists of portions of different wavelengths which are radiated into the optical waveguide one after the other on the transmission side. Because of the chromatic dispersion of the optical fiber, the two signal components experience different delays in their transmission over the optical fiber. At the end of the optical fiber, the signal components with the different wavelengths have shifted in time. The resulting interference of the two signal components leads to a variation in the intensity of the optical signal emerging at the end of the optical waveguide. The time course of the intensity variation has the property that the course of the digital signal to be transmitted can be derived from it.
  • optical waveguide section itself (precisely because of the principally undesirable property of its chromatic dispersion) has the effect of converting an initial frequency modulation into an intensity modulation that contains the course of the digital signal.
  • the optical fiber with dispersion itself is used to convert the original frequency modulation into an intensity modulation.
  • the optical signal transmitted via it is to be used directly as an input signal of the optical receiver which responds to the intensity.
  • the optical receiver can be connected upstream.
  • the optical fiber length required to bridge the transmission path is not sufficient to effect the necessary modulation conversion, it can be extended by an additional optical fiber length.
  • it is the entire length of the optical waveguide, the optical output signal of which is to be used as the input signal of the optical receiver.
  • Another aspect is that in this case both the total length of the optical fiber and its partial lengths are used to convert the type of modulation.
  • frequency modulation or "FSK modulation” used here, the following should be pointed out: the term is not limited to pure frequency modulation. It is essential that, as in the known system mentioned, it is a semiconductor laser modulation which is carried out with a small modulation stroke. Most of the time, the intensity of the optical output signal does not remain constant, but changes along with the frequency. Nevertheless, such a modulation is referred to as FSK or frequency modulation. It is important that the optical output signal thus generated is not converted into an ASK modulation on the receiving side by a special device, but is processed directly with a receiver sensitive to intensity modulation.
  • the FM signal here is a frequency-modulated analog signal in which the modulation is a narrowband modulation with a phase modulation ⁇ ⁇ 1.
  • the frequency modulation in the system according to the invention is an FSK modulation, in which the frequency takes one of two discrete values and remains constant during the bit duration of the digital signal.
  • the transmission system for digital signals shown in FIG. 1 contains on its transmission side (left part of the FIG.)
  • An electrical-optical converter 2 the essential element of which is a semiconductor laser and which, as in the prior art, has the property of an electrical input signal in the form to convert a binary digital signal into a correspondingly modulated optical output signal by frequency shift keying.
  • the optical output signal therefore has different frequencies for the different binary states of the digital signal to be transmitted.
  • the binary state 0 corresponds to a wavelength ⁇ 0 and the binary state 1 a wavelength ⁇ 1.
  • the intensity normally remains constant with this modulation, as is indicated schematically with wave trains with different frequencies but the same amplitudes.
  • This transmitter-side device is connected to the receiver-side device of the system via an optical waveguide 3, which forms the transmission link.
  • the novelty of the system according to FIG. 1 is that no device is formed on the receiving side for converting the transmitted optical signal into an amplitude modulation, but that the transmitted optical signal directly forms the input signal of an essentially known optical receiver 4.
  • the optical receiver 4 contains an optical-electrical converter 5, which contains an optical detector, a preamplifier and an amplifier and converts the time course of the intensity of its optical input signal into a time course of the amplitude of its electrical output signal. Furthermore, the optical receiver 4 contains a decision maker 6 (sometimes also a regenerator called), which recovers the transmitted digital signal from the electrical output signal of the optical-electrical converter 5. The latter signal is indicated schematically at the output.
  • optical receiver 4 which typically responds to intensity fluctuations and not frequency fluctuations in its optical input signal, is able to convert a transmitted frequency-modulated optical signal into the digital signal contained therein.
  • the explanation is: It is the optical waveguide section 3 itself which makes the initial frequency modulation of the optical signal radiated into it an amplitude modulation, and the resulting amplitude modulation has the property that the transmitted digital signal is contained in it.
  • the optical receiver 4 in Fig. 1 is indicated schematically that the intensity curve of the received signal, which the converter 5 converts into a corresponding curve of its electrical output signal, viewed from left to right, first has a positive pulse and then a negative pulse.
  • the positive pulse means that the digital signal changes from state 0 to state 1
  • the negative pulse means that it changes from state 1 to state 0.
  • Any circuit which can change its digital output signal from 0 to 1 when its input signal exceeds a predetermined upper threshold value and which has its digital output signal change from 1 to 0 when its electrical input signal has a predetermined lower threshold value is therefore suitable as the decision circuit 6 falls below.
  • the decision maker therefore has the task of recovering the digital signal contained therein from the electrical output signal of the optical-electrical converter 5. How it has to work in detail depends on how always depends on the course of its electrical input signal. A few exemplary embodiments of the present one will be given later.
  • FIG. 1 the example shown in FIG. 1 is recalled, in which, in the case of a bit sequence to be transmitted 0 1 0, wave trains with the wavelength ⁇ 0, ⁇ 1 and ⁇ 0 are successively irradiated into the optical waveguide.
  • Fig. 2 the successively irradiated into the optical waveguide 3 wave trains (or signal components of the optical signal) are not shown in one but in two lines, in line a the wave trains with the wavelength ⁇ 0 and in line b the wave train with the wavelength ⁇ 1. Both relate to a common time axis from left to right.
  • may not exceed the duration of a bit of the digital signal.
  • a suitable value can be selected by choosing ⁇ , i.e. practically through the modulation stroke, and possibly reach the length L (D is fixed).
  • the transit time difference of different wavelengths when changing from ⁇ 0 to ⁇ 1 gives the state of duration ⁇ that the two waves are received simultaneously and when changing from ⁇ 1 to ⁇ 0 the same long-lasting state that neither of the two waves can be received.
  • the first state means interference of the two waves, with the result that the resulting wave has a higher intensity than each of the two individual waves. and the second state means the received intensity drops to 0.
  • the resulting intensity profile of the optical signal emerging at the end of the optical waveguide 3 is shown schematically, which the optical-electrical converter converts into one converts the corresponding course of its electrical output signal. So this has, for example, depending on the sign of the dispersion and ⁇ positive pulse when changing from ⁇ 0 to ⁇ 1 and a negative pulse when changing from ⁇ 1 to ⁇ 0.
  • the decision circuit 6 can recover the transmitted binary digital signal by having the binary state of its output signal change from 0 to 1 when its input signal exceeds a predetermined first threshold value V 1 and from this state to binary state 0 when its input signal changes falls below a second predetermined threshold value V0.
  • the course of the binary digital signal thus recovered is shown in line d of FIG. 2.
  • the first threshold value V 1 is chosen such that it lies above the signal value arising when receiving only a single wave and the second threshold value V 1 is such that it lies below this "normal" signal value.
  • the output signal of the optical receiver is thus a bipolar signal
  • Fig. 3 shows the characteristic curve of the output voltage V a over the input voltage V e of such a Schmitt trigger. If the input voltage V e is increased, then its output voltage changes at a threshold value V 1 from a lower value that the Binary state 0 means to an upper value which means binary state 1. If the input voltage is lowered from a value above V 1, the output voltage only tilts back from the second state into the first state at a lower threshold value V..
  • Schmitt triggers are known per se, for example from the book ⁇ Semiconductor Circuit Technology '' by U. Tietze and C. Schenk, 8th edition, Springer-Verlag Berlin Heidelberg New York, pages 168 and 169, and 180 and 181 .
  • Another embodiment is an integrator in the form of an RC low-pass filter. Its output signal rises with the positive pulse and falls again with the negative pulse, so that the rising or falling edge of the transmitted digital signal can be easily recovered from its rising and falling edge with a simple D flip-flop.
  • an integrator with different time constants should be used. This is possible if an RC low-pass filter with a voltage-dependent capacitance, for example the capacitance of a varactor diode, is used.
  • FIG. 4 Another example of a suitable decision circuit is the circuit shown in FIG. 4, consisting of two D flip-flops and one RS flip-flop.
  • the input signal reaches the two D flip-flops 10 and 11 in parallel.
  • the RS flip-flop 12 has inputs R and S which are connected to the Q output of the flip-flop 10 and Q ⁇ -Output of the flip-flop 11 are connected.
  • the Q output of the RS flip-flop 12 thus outputs the recovered binary digital signal.
  • a special design of the decision circuit 6 from FIG. 1 is possible if the optical signal generated on the transmission side of the system has the property that the frequency modulation described is accompanied by an intensity modulation. This is the case when the semiconductor laser is modulated via the injection current. Such a modulation is to be distinguished from the normal intensity modulation of the semiconductor laser, which would be carried out with a much larger modulation stroke. So it's primarily frequency modulation.
  • Such a frequency modulation is considered, which at the wavelength ⁇ 1 (ie the higher frequency) gives a higher level of the optical output signal than at the wavelength ⁇ 0.
  • the signal which arises at the output of the optical-electrical converter 5 has a profile as shown in FIG. 5. It starts with a level P0, with which the wave train with the wavelength ⁇ 0 is received, rises like the signal of Fig. 2c pulse-like, goes back to a level P1 with which the wave train with the wavelength ⁇ 1 is received and drops from there in a pulse with a negative impulse the level P0 again. In this case, it is sufficient to detect the exceeding of a single threshold value V m at the beginning of the positive pulse and its falling below at the beginning of the negative pulse.
  • a conventional decision-making circuit for example a D flip-flop, with a threshold value V m can then be used as the decision-making circuit, as is usually also used in optical receivers known per se.
  • a decision circuit of the type shown in Fig. 4 with two threshold values V1 and V0 can be used.
  • the photodetector has a capacitance C D and, in conjunction with an additional resistor R or the input resistor R i of a subsequent amplifier, acts as an RC low-pass filter.
  • the capacitance C D of the photodetector can be varied and the integrating effect of the optical-electrical converter can be influenced.
  • FIG. 6 shows exemplary embodiments of an optical-electrical converter 5.
  • a bias voltage V D is applied to the photodetector 13.
  • the capacitance C D of the photodetector 13 acts in conjunction with the input resistance R i of the amplifier 15, FIG. 6a, or, as in FIG. 6b, with an additional resistor R as an RC low-pass filter.
  • 6a is the Input resistance R i shown separately as part of amplifier 15.
  • FIG. 7b the simplified equivalent circuit diagram is used for the photodetector.
  • the current source supplies a photocurrent, the amount of which depends on the incident light output.
  • FIG. 7c the parallel connection of the ideal current source 17, resistor R and capacitance C D results.
  • the RC low-pass filter can be seen there.
  • eye diagrams are recorded to assess the transmission quality.
  • the recording of eye diagrams generally represents a laboratory measure to assess the transmission quality. Here it serves to influence the transmission quality and is part of the system.
  • FIG. 8 The system with the additions according to the invention is shown in FIG. 8. It also consists of a controllable amplifier 20, a device 60 for recording eye diagrams, a computer 105 and a device 30 for clock derivation of the digital signal.
  • This device for clock derivation is part of every digital transmission system, but was not shown in FIG. 1. It is connected to an output 165 of the optical-electrical converter 5 and an input 160 of the decision circuit 6 and has an output 150 for the clock.
  • the amplifier 20 has an input 25 for the digital signal and an input 135 for a manipulated variable V V and is connected to the electrical-optical converter 2.
  • the decision-making circuit also has an input 140 for a manipulated variable V S and an input 145 for a manipulated variable V T and a data output 155.
  • the optical-electrical converter 5 has an input 130 for a manipulated variable V D , which is connected to the photodiode 13.
  • the device 60 for recording eye diagrams is connected via an input 120 to the output 165 of the optical-electrical converter 5 and via an input 125 to the output 150 of the device 30 for clock derivation. It consists of a sample and hold circuit 35, an analog-to-digital converter 40, a frequency divider 55, a phase shifter 50 and a pulse generator 45.
  • the frequency divider 55 which is connected to the input 125, is followed by the phase shifter 50 and Pulse generator 45, which is connected to the sample and hold element 35.
  • the pulse generator has an input 65 for a manipulated variable V P and the phase shifter 50 has an input 70 for a manipulated variable V ⁇ .
  • the function of the device 60 for recording eye diagrams corresponds to that of a sampling oscilloscope, the function of which is described, for example, in Klein, P.E., "The Oscilloscope", Franzis-Verlag, Kunststoff 1979.
  • the device 60 determines the course of an eye diagram, which results from the received digital signal. This eye diagram is referred to as the actual eye diagram.
  • the computer 105 compares this actual eye diagram with a predetermined eye diagram, the target eye diagram, and derives manipulated variables from the deviations, which at the outputs e.g. are available as analog voltage values and forwarded to the controllable system components.
  • the manipulated variable V V In order to be able to control the amplifier 20 on the transmission side, the manipulated variable V V must be transmitted from the reception side to the transmission side.
  • This transmission can take place, for example, in a bidirectional transmission system in that the manipulated variable V V is converted into an optical signal using an electrical-optical converter and this is transmitted to the transmission side using wavelength division multiplexing. There is a conversion from an optical signal into an electrical signal, which in turn represents the manipulated variable V V.
  • the manipulated variable V V causes a change ⁇ I in the output current of the amplifier which is proportional to the manipulated variable V V , ie ⁇ I ⁇ V V.
  • a current change ⁇ I of the electrical-optical converter 2 causes a frequency change ⁇ of the optical digital signal that is proportional to the current change ⁇ I; ie ⁇ ⁇ ⁇ I.
  • the frequency change ⁇ is equivalent to a change in wavelength ⁇ .
  • Another manipulated variable V D regulates the bias of the photodiode of the optical-electrical converter 5 and, as already described, thereby the capacitance of the photodiode.
  • the frequency response of the optical-electrical converter can thus be regulated, which is advantageous if an integrator with a different time constant is to be used. This has already been mentioned in connection with the integrator.
  • the threshold value of the decision-making circuit 6 can be regulated with the manipulated variable V S.
  • the device for clock derivation 30 delivers a clock of constant frequency.
  • the decision circuit is controlled by the manipulated variable V T in such a way that the phase of the clock is regulated, ie the decision time is determined so that the opening of the eye diagram is greatest.
  • the pulse generator 45 and the phase shifter 50 of the device 60 for recording eye diagrams can also be regulated.
  • the manipulated variable V P regulates the pulse generator and the manipulated variable V ⁇ regulates the phase shifter. This controls the sample and hold circuit and thus the time of sampling.
  • the measures described here can influence the eye diagram resulting from the received digital signal and the transmission quality of the system can be optimized.
  • the recording of eye diagrams, the comparison with a target eye diagram and the regulation of system components can take place in any optical communication system for the transmission of digital signals.
  • an intensity-modulated signal results in the optical receiver.
  • a decision circuit with intermediate storage retrieves the data signal from it.
  • this signal can be falsified by interference pulses.
  • 9 a shows, for example, the falsification of the electrical signal generated in the receiver by a negative interference pulse. It is considered there that a negative interference pulse occurs in the above-described course of the electrical output signal at the reception-side optical-electrical converter at a time t0.
  • the level of the interference pulse is so great here that the threshold value V0 of the decision circuit is undershot and the digital signal recovered by the decision maker changes from state "1" to state "0". This state transition at time t0 represents an error in the recovered data signal that is propagating.
  • the intensity of the optical signal to be transmitted which is a frequency-modulated signal, is varied in the optical transmitter as a function of the digital signal.
  • FIG. 11 shows the transmission side of the system shown in FIG. 1, here supplemented by a circuit arrangement 200 and an optical intensity modulator, which serve to impress intensity fluctuations on the optical signal.
  • An optical intensity modulator is a component whose optical transmission depends on the voltage applied.
  • An example of this is a Mach-Zehnder interferometer. Further examples of this can be found in the publication by Robert G. Waller, "High-Speed III-V Semiconductor Intensity Modulators", IEEE Journal of Quantum Electronics, Vol.27, No.3, March 1991, pp. 654-667.
  • the circuit arrangement 200 consists of an N-digit shift register 220, two AND gates 210, 215 and a differential amplifier 205.
  • the shift register 220 has an input 240 for the digital signal and an input 245 for a clock.
  • An output 225 is connected to an input 25 of the electrical-optical converter 2.
  • the outputs of the AND gates are connected to inputs of a differential amplifier 205, the output of which is connected to an input 235 of the optical amplitude modulator 230.
  • the digital signal to be transmitted is written sequentially into the shift register.
  • a positive voltage on the optical intensity modulator results in a higher transmission, a negative voltage a lower one. This change in the transmission and thus the light output of the optical signal produces the changes in intensity.
  • a positive or negative intensity change is only generated and sent if a certain number of identical binary signals follow one another.
  • a change in intensity lasts until the first output Q i is not equal to the other outputs.
  • a change in intensity can therefore last for several cycles.
  • Changes in intensity of the optical signal are converted into changes in voltage in the receiver. This measure reduces the risk of interference pulses in the case of long-lasting sequences of the same binary signals and thus the falsification of the received binary signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Claims (15)

  1. Système pour la transmission optique d'un signal numérique par l'intermédiaire d'un guide d'ondes lumineuses (3) avec dispersion sur sa longueur d'ondes, comportant du côté émission du système un émetteur optique (2), dont le signal de sortie optique est modulé dans sa fréquence par le signal numérique, et comportant du côté réception un récepteur optique (4), qui convertit son signal optique d'entrée en un signal électrique correspondant à sa courbe d'intensité et récupère le signal numérique à partir du signal électrique, caractérisé en ce que, le signal émis par l'émetteur optique (2) sous forme de signal optique à modulation de fréquence et transmis par l'intermédiaire du guide d'ondes lumineuses (3) au côté réception est amené sous forme de signal d'entrée au récepteur optique (4) répondant à la courbe d'intensité de son signal optique d'entrée.
  2. Dispositif côté réception pour un système de transmission optique d'un signal numérique par l'intermédiaire d'un guide d'ondes lumineuses avec dispersion, sur lequel le signal numérique est transmis optiquement par l'intermédiaire du guide d'ondes lumineuses par modulation de fréquence d'un laser à semi-conducteurs, le dispositif côté réception comportant un récepteur optique (4), qui convertit son signal optique d'entrée en un signal électrique correspondant à sa courbe d'intensité et le récupère à partir du signal numérique, caractérisé en ce que le signal d'entrée du récepteur optique (4) répondant à la courbe d'intensité de son signal optique d'entrée est le signal optique à modulation de fréquence d'origine, transmis par l'intermédiaire du guide d'ondes lumineuses.
  3. Utilisation d'un guide d'ondes lumineuses avec dispersion sur une longueur d'ondes déterminée, pour la conversion d'un signal optique de même longueur d'ondes, modulé FSK par un signal numérique, en un signal optique, qui contient le signal numérique dans sa courbe d'intensité.
  4. Système selon la revendication 1 ou dispositif de réception selon la revendication 2, caractérisé en ce que le récepteur optique (4) contient un circuit de décision (6), qui passe d'un premier état binaire (0) à un second état binaire (1) lorsque son signal d'entrée monte sous forme d'impulsion, et passe du second état binaire (1) au premier état binaire (0) lorsque son signal d'entrée descend sous forme d'impulsion.
  5. Système ou dispositif selon la revendication 1 ou 2, caractérisé en ce que la modulation de fréquence du laser à semi-conducteurs est accompagnée d'une modulation d'intensité.
  6. Système ou dispositif selon la revendication 1 ou 2, caractérisé en ce que le récepteur optique (4) présente, pour la récupération du signal numérique à partir du signal électrique un circuit de décision (6), dont l'état passe d'un premier état binaire (0) à un second état binaire (1) lorsque le signal électrique dépasse une valeur seuil (Vm) prédéfinie, et repasse du second état binaire (1) au premier état binaire (0) lorsque le signal électrique est inférieur à la valeur seuil (Vm) prédéfinie.
  7. Système ou dispositif selon la revendication 1 ou 2, caractérisé en ce qu'est utilisé pour la récupération du signal numérique un récepteur optique (4) comportant un intégrateur.
  8. Système ou dispositif selon la revendication 7, caractérisé en ce que l'intégrateur est un filtre passe-bas contenu dans le récepteur optique (4) et disposé de façon intégrée derrière le convertisseur optique-électrique (5) de ce dernier.
  9. Système ou dispositif selon la revendication 7, caractérisé en ce qu'est utilisé comme intégrateur le convertisseur optique-électrique (5) du récepteur optique (4), la tension de polarisation et par là même la capacité du photodétecteur contenu dans le convertisseur optique-électrique (5) étant réglables pour le réglage de l'action de l'intégrateur.
  10. Système selon la revendication 1, caractérisé en ce que qu'existent côté réception un dispositif (60) pour l'établissement d'un diagramme visuel du signal reçu et un calculateur (105), qui compare le diagramme visuel établi à un diagramme visuel prédéfini, et déduit, à partir des écarts, une ou plusieurs grandeurs de réglage pour un ou plusieurs composants réglables du système et règle ainsi ces composants du système.
  11. Système selon la revendication 10, caractérisé en ce qu'existent des moyens pour transmettre côté émission et à l'amplificateur une des grandeurs de réglage prévue pour le réglage d'un amplificateur (20) branché en amont de l'émetteur optique (2), et en ce que le calculateur (105) règle l'amplificateur (20).
  12. Système selon la revendication 10, caractérisé en ce que le calculateur (105) règle la tension de polarisation de la photodiode par l'intermédiaire d'une des grandeurs de réglage.
  13. Système selon la revendication 10, caractérisé en ce que le calculateur (105) règle la valeur-seuil du circuit de décision (6) par l'intermédiaire d'une des grandeurs de réglage.
  14. Système selon la revendication 10, caractérisé en ce que le calculateur (105) règle la phase du cycle pour le circuit de décision (6) par l'intermédiaire d'une des grandeurs de réglage.
  15. Système selon la revendication 1, caractérisé en ce qu'existe côté émission une disposition de circuit (200), qui produit une tension de sortie positive ou négative, quand un nombre déterminé de signaux binaires successifs est présent dans le signal d'entrée, et qu'existe un modulateur optique d'intensité (230), qui élève l'efficacité lumineuse du signal optique sur la base de la tension de sortie de la disposition de circuit, lorsque les signaux binaires identiques successifs présentent un premier état binaire, et qui abaisse l'efficacité lumineuse du signal optique lorsque les signaux binaires identiques successifs présentent un second état binaire.
EP93101023A 1992-02-01 1993-01-23 Système optique digital de tansmission d'information par l'aide d'un guide d'ondes optiques avec dispersion à la longeur d'ondes opérationnelles Expired - Lifetime EP0554736B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE4202863A DE4202863A1 (de) 1992-02-01 1992-02-01 Digitales optisches nachrichtenuebertragungssystem mit einem bei der betriebswellenlaenge dispersionsbehafteten lichtwellenleiter
DE4202863 1992-02-01
DE19924216790 DE4216790A1 (de) 1992-05-21 1992-05-21 Digitales optisches Nachrichtenübertragungssystem mit einem bei der Betriebswellenlänge dispersionsbehafteten Lichtwellenleiter
DE4216790 1992-05-21
DE19924230601 DE4230601A1 (de) 1992-09-12 1992-09-12 Digitales optisches Nachrichtenübertragungssystem mit einem bei der Betriebswellenlänge dispersionsbehafteten Lichtwellenleiter
DE4230601 1992-09-12

Publications (3)

Publication Number Publication Date
EP0554736A2 EP0554736A2 (fr) 1993-08-11
EP0554736A3 EP0554736A3 (fr) 1994-03-09
EP0554736B1 true EP0554736B1 (fr) 1996-04-10

Family

ID=27203355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93101023A Expired - Lifetime EP0554736B1 (fr) 1992-02-01 1993-01-23 Système optique digital de tansmission d'information par l'aide d'un guide d'ondes optiques avec dispersion à la longeur d'ondes opérationnelles

Country Status (10)

Country Link
US (1) US5371625A (fr)
EP (1) EP0554736B1 (fr)
JP (1) JPH05347586A (fr)
CN (1) CN1040492C (fr)
AT (1) ATE136705T1 (fr)
AU (1) AU660062B2 (fr)
CA (1) CA2088459C (fr)
DE (1) DE59302134D1 (fr)
ES (1) ES2089595T3 (fr)
RU (1) RU2110895C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295152B1 (en) 1997-12-11 2001-09-25 Alcatel Optical receiver for receiving digitally transmitted data

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4341408A1 (de) * 1993-12-04 1995-06-08 Sel Alcatel Ag Optisches System zur Übertragung eines Mehrstufensignals
DE19737482A1 (de) 1997-08-28 1999-03-04 Alsthom Cge Alcatel Verfahren zur optischen Übertragung über ein Lichtwellenleiternetz, sowie optisches Übertragungsnetz
DK173396B1 (da) * 1997-12-19 2000-09-18 Tellabs Denmark As Fremgangsmåde og system til koding af WDM-signaler samt AM-modulationsenhed til et WDM-system
DE19938972A1 (de) * 1999-08-17 2001-02-22 Alcatel Sa Sender zum Erzeugen eines frequenzmodulierten optischen Digitalsignals
IL137083A0 (en) * 2000-06-29 2001-06-14 Eci Telecom Ltd Optical telecommunication device
US7173551B2 (en) 2000-12-21 2007-02-06 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7149256B2 (en) 2001-03-29 2006-12-12 Quellan, Inc. Multilevel pulse position modulation for efficient fiber optic communication
US7307569B2 (en) 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
EP1384338B1 (fr) 2001-04-04 2010-12-15 Quellan, Inc. Procede et systeme permettant de decoder des signaux multiniveau
FI20011418A (fi) * 2001-06-29 2002-12-30 Nokia Corp Menetelmä ja laite signaalin vastaanottamiseksi optisessa CDMA-järjestelmässä
AU2003211094A1 (en) 2002-02-15 2003-09-09 Quellan, Inc. Multi-level signal clock recovery technique
WO2003077423A2 (fr) 2002-03-08 2003-09-18 Quellan, Inc. Convertisseur analogique-numerique a grande vitesse faisant intervenir un code gray unique
US7340185B1 (en) * 2002-04-22 2008-03-04 Tyco Telecommunications (Us) Inc. Optical signal receiver with dual stage soft detection
US7209671B1 (en) * 2002-04-22 2007-04-24 Tyco Telecommunications (Us) Inc. Multiple detector decision receiver
US7263291B2 (en) * 2002-07-09 2007-08-28 Azna Llc Wavelength division multiplexing source using multifunctional filters
US6963685B2 (en) * 2002-07-09 2005-11-08 Daniel Mahgerefteh Power source for a dispersion compensation fiber optic system
US7663762B2 (en) * 2002-07-09 2010-02-16 Finisar Corporation High-speed transmission system comprising a coupled multi-cavity optical discriminator
AU2003256569A1 (en) 2002-07-15 2004-02-02 Quellan, Inc. Adaptive noise filtering and equalization
US7054538B2 (en) * 2002-10-04 2006-05-30 Azna Llc Flat dispersion frequency discriminator (FDFD)
US7742542B2 (en) * 2002-11-06 2010-06-22 Finisar Corporation Phase correlated quadrature amplitude modulation
US7505694B2 (en) * 2002-11-06 2009-03-17 Finisar Corporation Thermal chirp compensation systems for a chirp managed directly modulated laser (CML™) data link
US7564889B2 (en) * 2002-11-06 2009-07-21 Finisar Corporation Adiabatically frequency modulated source
US7558488B2 (en) * 2002-11-06 2009-07-07 Finisar Corporation Reach extension by using external Bragg grating for spectral filtering
US7536113B2 (en) * 2002-11-06 2009-05-19 Finisar Corporation Chirp managed directly modulated laser with bandwidth limiting optical spectrum reshaper
US7280721B2 (en) * 2002-11-06 2007-10-09 Azna Llc Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology
US7406266B2 (en) * 2002-11-06 2008-07-29 Finisar Corporation Flat-topped chirp induced by optical filter edge
US7555225B2 (en) * 2002-11-06 2009-06-30 Finisar Corporation Optical system comprising an FM source and a spectral reshaping element
AU2003287628A1 (en) 2002-11-12 2004-06-03 Quellan, Inc. High-speed analog-to-digital conversion with improved robustness to timing uncertainty
US7609977B2 (en) * 2002-12-03 2009-10-27 Finisar Corporation Optical transmission using semiconductor optical amplifier (SOA)
US7907648B2 (en) * 2002-12-03 2011-03-15 Finisar Corporation Optical FM source based on intra-cavity phase and amplitude modulation in lasers
US7860404B2 (en) * 2002-12-03 2010-12-28 Finisar Corporation Optical FM source based on intra-cavity phase and amplitude modulation in lasers
US7542683B2 (en) 2002-12-03 2009-06-02 Finisar Corporation Chirp Managed Laser (CML) transmitter
US7925172B2 (en) * 2002-12-03 2011-04-12 Finisar Corporation High power, low distortion directly modulated laser transmitter
US7813648B2 (en) * 2002-12-03 2010-10-12 Finisar Corporation Method and apparatus for compensating for fiber nonlinearity in a transmission system
US7480464B2 (en) * 2002-12-03 2009-01-20 Finisar Corporation Widely tunable, dispersion tolerant transmitter
US7809280B2 (en) * 2002-12-03 2010-10-05 Finisar Corporation Chirp-managed, electroabsorption-modulated laser
US7474859B2 (en) * 2002-12-03 2009-01-06 Finisar Corporation Versatile compact transmitter for generation of advanced modulation formats
US7613401B2 (en) * 2002-12-03 2009-11-03 Finisar Corporation Optical FM source based on intra-cavity phase and amplitude modulation in lasers
US7120758B2 (en) * 2003-02-12 2006-10-10 Hewlett-Packard Development Company, L.P. Technique for improving processor performance
US7630425B2 (en) * 2003-02-25 2009-12-08 Finisar Corporation Optical beam steering for tunable laser applications
US8792531B2 (en) 2003-02-25 2014-07-29 Finisar Corporation Optical beam steering for tunable laser applications
GB2421674B (en) 2003-08-07 2006-11-15 Quellan Inc Method and system for crosstalk cancellation
US7804760B2 (en) 2003-08-07 2010-09-28 Quellan, Inc. Method and system for signal emulation
EP1687929B1 (fr) 2003-11-17 2010-11-10 Quellan, Inc. Procede et systeme d'annulation de brouillage d'antenne
US7616700B2 (en) 2003-12-22 2009-11-10 Quellan, Inc. Method and system for slicing a communication signal
WO2005084268A2 (fr) 2004-02-27 2005-09-15 Azna Llc Systeme optique comprenant une source fm et un element spectral de remise en forme
US7639955B2 (en) * 2004-09-02 2009-12-29 Finisar Corporation Method and apparatus for transmitting a signal using a chirp managed laser (CML) and an optical spectrum reshaper (OSR) before an optical receiver
US7725079B2 (en) 2004-12-14 2010-05-25 Quellan, Inc. Method and system for automatic control in an interference cancellation device
US7522883B2 (en) 2004-12-14 2009-04-21 Quellan, Inc. Method and system for reducing signal interference
US20070012860A1 (en) * 2005-05-05 2007-01-18 Daniel Mahgerefteh Optical source with ultra-low relative intensity noise (RIN)
US9252983B2 (en) 2006-04-26 2016-02-02 Intersil Americas LLC Method and system for reducing radiated emissions from a communications channel
US7697186B2 (en) * 2006-10-24 2010-04-13 Finisar Corporation Spectral response modification via spatial filtering with optical fiber
WO2008080171A1 (fr) 2006-12-22 2008-07-03 Finisar Corporation Émetteur optique comportant un laser accordable à modulation directe et un élément de remise en forme de spectre optique périodique
US7941057B2 (en) 2006-12-28 2011-05-10 Finisar Corporation Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal
US8131157B2 (en) * 2007-01-22 2012-03-06 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US7962044B2 (en) 2007-02-02 2011-06-14 Finisar Corporation Temperature stabilizing packaging for optoelectronic components in a transmitter module
US7991291B2 (en) 2007-02-08 2011-08-02 Finisar Corporation WDM PON based on DML
US8027593B2 (en) 2007-02-08 2011-09-27 Finisar Corporation Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers
US7697847B2 (en) * 2007-04-02 2010-04-13 Finisar Corporation Dispersion compensator for frequency reshaped optical signals
US7991297B2 (en) * 2007-04-06 2011-08-02 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US8204386B2 (en) * 2007-04-06 2012-06-19 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US7760777B2 (en) * 2007-04-13 2010-07-20 Finisar Corporation DBR laser with improved thermal tuning efficiency
US7778295B2 (en) * 2007-05-14 2010-08-17 Finisar Corporation DBR laser with improved thermal tuning efficiency
US8160455B2 (en) 2008-01-22 2012-04-17 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
EP2263332A2 (fr) 2008-03-12 2010-12-22 Hypres Inc. Système et procédé d'émetteur-récepteur radioélectrique numérique
US7869473B2 (en) * 2008-03-21 2011-01-11 Finisar Corporation Directly modulated laser with isolated modulated gain electrode for improved frequency modulation
US8260150B2 (en) * 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
US8199785B2 (en) 2009-06-30 2012-06-12 Finisar Corporation Thermal chirp compensation in a chirp managed laser
JP6657700B2 (ja) * 2015-09-17 2020-03-04 日本電気株式会社 干渉除去装置及び干渉除去方法
CN108599867B (zh) * 2018-03-29 2021-02-02 上海交通大学 基于波形匹配的光学数字信号接收装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2495412A1 (fr) * 1980-12-02 1982-06-04 Thomson Csf Systeme de transmission d'informations a modulation directe de la lumiere a liaison optique a bande passante etendue vers les frequences basses et le continu
GB2107147B (en) * 1981-09-03 1985-07-10 Standard Telephones Cables Ltd Optical requency modulation system
US4713841A (en) * 1985-06-03 1987-12-15 Itt Electro Optical Products, A Division Of Itt Corporation Synchronous, asynchronous, data rate transparent fiber optic communications link
JPH0752862B2 (ja) * 1987-10-29 1995-06-05 日本電気株式会社 4値fsk光通信方式
US4786797A (en) * 1987-12-28 1988-11-22 Unisys Corporation Electro-optical data handling system with noise immunity
JPH01185037A (ja) * 1988-01-20 1989-07-24 Hitachi Ltd 光送信器,光受信器及び光伝送装置並びに光受信器の制御方法
US5191462A (en) * 1990-05-11 1993-03-02 At&T Bell Laboratories Fiber optic transmission distortion compensation
DE69133133T2 (de) * 1990-07-13 2003-02-06 Nec Corp Intensitätsmodulierte optische Übertragungsvorrichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Optic Letters, Vol.6, Nr.2, Feb 1981, Seiten 58-60 *
Optic Letters, Vol.7, Nr.3, März 1982, Seiten 139-141 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295152B1 (en) 1997-12-11 2001-09-25 Alcatel Optical receiver for receiving digitally transmitted data

Also Published As

Publication number Publication date
EP0554736A2 (fr) 1993-08-11
CN1040492C (zh) 1998-10-28
ATE136705T1 (de) 1996-04-15
CN1078586A (zh) 1993-11-17
AU660062B2 (en) 1995-06-08
ES2089595T3 (es) 1996-10-01
DE59302134D1 (de) 1996-05-15
AU3205093A (en) 1993-08-05
CA2088459A1 (fr) 1993-08-02
JPH05347586A (ja) 1993-12-27
EP0554736A3 (fr) 1994-03-09
US5371625A (en) 1994-12-06
CA2088459C (fr) 2000-08-08
RU2110895C1 (ru) 1998-05-10

Similar Documents

Publication Publication Date Title
EP0554736B1 (fr) Système optique digital de tansmission d'information par l'aide d'un guide d'ondes optiques avec dispersion à la longeur d'ondes opérationnelles
DE3787902T2 (de) Optischer Sender mit einem optischen Frequenzdiskriminator.
DE3232430C2 (de) Optisches Nachrichtenübertragungssystem
DE69026465T2 (de) Optischer Entzerrungsempfänger für Lichtwellenübertragungssystem
DE69916719T2 (de) Sendevorrichtung für optische Daten
DE69633816T2 (de) Synchrone Polarisations- und Phasenmodulation mit einer periodischen Wellenform mit harmonischen Oberschwingungen zur Leistungsverbesserung von optischen Übertragungssystemen
DE69108349T2 (de) Optische Verstärker.
DE69733637T2 (de) Optisches Übertragungssystem
DE69831678T2 (de) Optisches übertragungssystem und verfahren
DE69935054T2 (de) Übertragungssystem für ein optisches Zeitmultiplexsignal
DE69017848T2 (de) Optische Übertragungsvorrichtung.
DE3038760C2 (fr)
DE69018061T2 (de) Optimiertes optisches Wellenlängen-Multiplex-Kommunikationssystem.
DE19619780A1 (de) Optisches Übertragungssystem, optisches Transmissionsmodul, und optischer Modulator
EP0656700A1 (fr) Système optique pour la transmission d'un signal à plusieurs étages
DE4415176A1 (de) Vorrichtung und Verfahren zur Dispersionskompensation in einem faseroptischen Übertragungssystem
DE60314714T2 (de) CRZ optischer Sender mit Mach-Zehnder-Modulator
DE4430821A1 (de) Optische Kommunikationsvorrichtung
EP1026849A2 (fr) Système de transmission optique ainsi qu'émetteur et récepteur
EP0595087A1 (fr) Récepteur pour un système de transmission d'un signal numérique sur un guide d'ondes optique dispersif
DE60310344T2 (de) Optische duobinäre Übertragung
DE69912366T2 (de) Verfahren und Vorrichtung zur Überwachung von dispersiver Wellenenergie zum optimieren der Solitonübertragungsleistung
DE69200569T2 (de) Binäre Modulation von Injektionslasern.
DE60036891T2 (de) Lichtwellenübertragungssysteme unter Verwendung von optischen Halbleiterverstärkern
DE60030446T2 (de) System und Vorrichtung zum Senden von optischen Daten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19940617

17Q First examination report despatched

Effective date: 19941019

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960410

Ref country code: BE

Effective date: 19960410

REF Corresponds to:

Ref document number: 136705

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JUERG ULRICH C/O ALCATEL STR AG

REF Corresponds to:

Ref document number: 59302134

Country of ref document: DE

Date of ref document: 19960515

ITF It: translation for a ep patent filed

Owner name: DOTT. ANTONIO SERGI

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2089595

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960613

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089595

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089595

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991217

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020102

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030124

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030124

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120123

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120120

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59302134

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130124

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130122