EP0541735A1 - System zur erzeugung von signalen zur steuerung oder regelung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrwerkes - Google Patents

System zur erzeugung von signalen zur steuerung oder regelung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrwerkes

Info

Publication number
EP0541735A1
EP0541735A1 EP92908755A EP92908755A EP0541735A1 EP 0541735 A1 EP0541735 A1 EP 0541735A1 EP 92908755 A EP92908755 A EP 92908755A EP 92908755 A EP92908755 A EP 92908755A EP 0541735 A1 EP0541735 A1 EP 0541735A1
Authority
EP
European Patent Office
Prior art keywords
signals
vehicle
movements
control
represent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92908755A
Other languages
English (en)
French (fr)
Inventor
Stefan Otterbein
Dieter Kunz
Rainer Kallenbach
Klaus Landesfeind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0541735A1 publication Critical patent/EP0541735A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0182Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/106Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/30Propulsion unit conditions
    • B60G2400/34Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/63Location of the center of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/30Height or ground clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/14Differentiating means, i.e. differential control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/16Integrating means, i.e. integral control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/74Analog systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/76Digital systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/90Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems other signal treatment means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/014Pitch; Nose dive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/18Starting, accelerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control

Definitions

  • the invention is based on a system according to the type of the main claim.
  • the vertical movement of the body described for example by the lifting, rolling and pitching movement, can be regarded as a measure of driving comfort.
  • Information about the current state of motion of the vehicle body is obtained, for example, by suitable sensors, for example by acceleration sensors, which are attached to suitable locations on the vehicle body.
  • a strategy for damping the body movements has been known for a number of years and is referred to as "continuous skyhooking".
  • the associated regulatory law can be used both for active (Active Damping in Road Vehicle Suspension Systems Vehicle System Dynamics, 12 (1983), pp.291-316; Passive and Active Conrol of Road Vehicle Haeve and Pitch Motion lOth IFAC World Congr. 1987, Kunststoff ) as well as for semi-active (semi-active heave and pitch con- trol for Ground Vehicles Vehicle System Dynamics, 11 (1982), pp.31-42) formulate suspension control systems.
  • the continuous skyhook damping is used in the so-called "local" variant.
  • the body movements at the articulation points of the actuators are determined, which in turn are controlled in such a way that a force is applied which counteracts the respective body movements.
  • Certain movement components of the body such as the lifting, rolling and pitching movements, cannot be specifically influenced by such a locally acting chassis control system.
  • the object of the present system according to the invention is to influence individual movement components or parts independently of one another and, if necessary, to different extents within the framework of influencing the body movements.
  • the components include, for example, the lifting, rolling and pitching movements, but also the vertical movement of the body on the front and rear axles.
  • the subject of the present invention is the so-called "modal" variant of skyhook steaming. This has two main advantages over the local variant:
  • signals are determined which represent the vertical movement of the body at selected points. Based on these signals, the lifting, rolling and pitching movement is first concluded. This is followed by a weighting of these movements in such a way that - depending on the coordination of the weighting - the natural vibration forms of the vehicle body can be individually influenced.
  • the weighting can be carried out, for example, taking into account the driving state, such as braking, accelerating and steering.
  • control signals for the actuators are finally determined which, with the appropriate action, ensure that the desired effect occurs, that is to say the individual parts of the body movement are damped independently of one another and, if appropriate, to different extents.
  • the rolling or rolling moment distribution between the axles of the vehicle can be set.
  • FIG. 2 shows the essential elements of the system according to the invention in the context of the following exemplary embodiment.
  • FIG. 3 shows a sectional view of the body and
  • FIG. 4 shows a block diagram of an error detection.
  • the skyhook control for active or semi-active chassis control systems is to be shown using FIG. 1.
  • Figures la and b show the well-known two-body model (quater car model), which approximates the vertical dynamics of a wheel unit.
  • Position 1 denotes the vehicle body with the proportional mass Ma.
  • Position 2 represents the wheel with the proportional mass Mr and position 6 represents a spring with the spring constant Cr.
  • the roadway is designated with position 5.
  • Sition with the polyvinyl 4a is a passive damper with the Dämp 'Fung constant d, the position 4b, a semi-active damper, and with the Position 3 marks an to the dampers arranged in parallel with spring (spring constant C).
  • the wheel 2 is in contact with the road surface 5.
  • the tire rigidity is described as a spring 6 with the spring constant Cr.
  • the force f stands for a control force that additionally acts between the body and the axle or wheel unit.
  • the control force f has the model idea that it can take on any value, regardless of the state of motion of the body and wheel.
  • control force f should therefore be set proportionally to the build-up speed Xa, in the following the addition "" after a variable means the first time derivative, ds is a (non-negative) tuning parameter with the dimension of a damping constant (SAE -Unit: Ns / m).
  • An active chassis control system can be implemented, for example, by a hydraulic cylinder between the body and the axle or the wheel unit, which is controlled by a valve with a large band width.
  • the control force f (from the model) is then to be understood as the target force which the real actuator force, supported by a subordinate control loop, should follow as well as possible.
  • the symbol with the pointer represents a damper 4b, the damping characteristic of which is continuously adjustable.
  • This property can be modeled, for example, by the damper force fd being proportional to the relative speed Xa ' -Xr ' , that is to say that
  • ds is a (non-negative) tuning parameter with the dimension of a damping constant (SAE unit: Ns / m).
  • SAE unit Ns / m.
  • the control force fd is thus composed of the portion d * (Xa -Xr ' ), which represents the passive damper from FIG. 1 a, and the portion fd °, which ensures that the control law (1) is more active in the case Systems is adopted when an (adjustable) damper can generate the same force as a hydraulic cylinder.
  • a damper with an adjustable characteristic can be implemented, for example, by a so-called throttle actuator, that is to say by a damper which is equipped in its piston with a throttle valve whose flow cross-section can be changed.
  • a further possibility is to have a so-called power controller, a damper with suitable pressure relief valves (possibly with servo assistance) in its piston.
  • the control force (from the model) is also to be understood as the target force, so that the two implementation options mentioned are also to be equipped with subordinate control loops in the case of semi-active systems.
  • the continuous skyhook vaporization can be used (both in the active and in the semi-active version) in principle in the so-called "local" variant.
  • the build-up speed Xa is to be understood as the respective vertical speed of the hydraulic cylinder or damper pivot point on the body, and the relative speed Xa -Xr means that at the associated wheel unit.
  • acceleration sensors can be used to determine the body speeds, which are to be mounted at the corresponding points on the body.
  • the speeds themselves are obtained by suitable processing (filtering and integration) of the sensor signals.
  • information is also required as to whether the damper is currently in the rebound or compression stage. This information can be obtained, for example, from sensors that record the deflection movements of the vehicle body relative to the wheel unit.
  • the spring-in speeds can be determined, for example, by suitable signal processing (filtering and differentiation) of signals from single-spring travel sensors. Knowledge of the spring deflection is also useful for other tasks in chassis control, for example for level control.
  • the continuous skyhook vaporization can also be used in other variants (again in the active and semi-active case). However, it is necessary to specify what is to be understood by the speed of assembly.
  • the basic idea of the modal Skyhookd mfung is the idea, under the construction speed the so-called. understand modal speeds. This makes it possible to influence the natural vibrations of the structure independently of one another and with different weights.
  • a vehicle Like any system capable of oscillation, a vehicle (with regard to its vertical movement) also has a certain number of natural modes ("modes") with associated modal or main coordinates (“modal coordinates"). Every (vertical) movement of the vehicle can - at any point in time - be composed of the natural vibration forms, however, the proportion with which each individual natural vibration form is involved in the movement varies over time.
  • the meaning of the modal coordinates lies in the fact that they quantitatively describe the distribution of the components or the components: At any point in time of the movement, the value of each modal coordinate is identical to the component with which the associated natural vibration form contributes to the movement.
  • modal motions These are characterized in that only a single natural vibration form is represented during the entire movement; all modal coordinates - with only one exception - always have the value zero.
  • the lifting, rolling and pitching angle of the vehicle body are actually modal coordinates essentially depends on two factors.
  • the chassis control system (fully active or semi-active) is implemented.
  • the swaying is a modal coordinate if the chassis is arranged longitudinally symmetrically on the body and if the main axes of inertia of the vehicle body coincide with its longitudinal, transverse and vertical axes. This vehicle property probably applies to many of today's vehicles; it applies regardless of the chassis control system used in each case.
  • N k applies, at least approximately, to some of today's vehicle types.
  • the modal coordinates — in addition to the roll angle — are given by the vertical displacements (z and z)
  • the control it is possible and also sensible to use the control to influence the movement of the body “front” and “rear” and the roll movement independently of one another.
  • Position 11 denotes 1st means for determining the body movements and position 12 indicates in a dashed outline 2nd means for determining the lifting, rolling and pitching movements with linking units 121, 122 and 123.
  • Position 13 in a dashed outline represents 3rd means for weighting, positions 131, 132 and 133 being used to describe further linking units.
  • Positions 14 represent a combination of linking units 141, 142, 143 and 144 in a dashed outline.
  • Positions 16 and 17 mark 6th means for determining the vehicle transverse and longitudinal vehicle acceleration.
  • the 1st means (11) determine 1st signals (Vi) which directly or indirectly represent the speeds of the vehicle body in the vertical direction at selected locations (Pi) of the body.
  • the 1st signals (Vi) can for example by integrating Acceleration sensor signals are obtained, the acceleration sensors being attached to the body at the points (Pi) in such a way that they detect the vertical accelerations of the body. The conditions for the selection of the positions (Pi) will be discussed in more detail in the course of this description.
  • the 1st signals (Vi) are now fed to the 2nd means (12), where they are linked together. This linkage occurs in units 121, 122 and 123.
  • linking units of the system can be implemented electronically, digitally or electronically analogously, by simulating a matrix representing the linking properties.
  • a computer-controlled design of the units is also possible.
  • the linear links of the 1st signals (Vi) with one another in the 2nd means (12) can be represented mathematically in matrix notation. There are two different cases:
  • the first signals (VI, V2, V3) represent the speeds of the vehicle body in the vertical direction at three selected locations (PI, P2, P3) of the body.
  • the link in the second means (12) results from the following matrix
  • the first signals (VI, V2, V3) are linearly combined as follows.
  • the links between them result mathematically formally by matrix multiplication of the three-component vector (VI, V2, V3) with the matrix (4).
  • the individual linking units 121, 122 and 123 can, for example, be designed as multiplication and addition units as follows, in accordance with the vector matrix multiplication rule.
  • Unit 121 l / (det A) * [Vl * (x2 * y3-x3 * y2) + V2 * (x3 * yl-xl * y3) + V3 * (xl * 2-x2 * yl)]
  • Unit 122 l / (det A) * [-Vl * (x2-x3) -V2 * (x3-xl) -V3 * (xl-x2)]
  • Unit 123 l / (det A) * [-Vl * (y2-y3) -V2 * (y3-yl) -V3 * (yl-y2)]
  • the first signals (VI, V2, V3, V4) represent the speeds of the vehicle body in the vertical direction at four selected locations (PI, P2, P3, P4) of the body.
  • the link in the second means (12) results from the following matrix
  • the links between them result mathematically formally by matrix multiplication of the four-component vector (VI, V2, V3, V4) with the matrix (7).
  • the individual combination units 121, 122 and 123 can, for example, be designed as multiplication and addition units in accordance with the vector matrix multiplication rule.
  • the linking results (z, alpha and beta) present in both cases on the output side of the second means (12) or on the output side of the filter units (121, 122, 123) represent the lifting, rolling and pitching speeds.
  • Alpha and beta denote the rotations of the vehicle body about its longitudinal or transverse axis and z the vertical displacement of the center of gravity of the body, alpha, beta and z are the respective first time derivatives of the quantities alpha, beta and z.
  • the second signals (z ' , alpha, beta) are now fed to the third means (13), where they are weighted. This takes place in the linking units 131, 132 and 133 according to the matrix
  • the linkages among each other result mathematically formally by matrix multiplication of the three-component vector (z ' , alpha, beta) with the matrix (9).
  • the individual linking units 131, 132 and 133 can, for example, be designed as multiplication and addition units in accordance with the vector matrix multiplication rule.
  • Unit 132 alpha ' * gw
  • the stroke and the pitch angle are the modal coordinates of the body (al
  • the second special case is that in which - in addition to
  • the four parameters gkk, gnk, gkn and gnn can be matched to one another in such a way that the quantities ql and q3 can be interpreted as weighted assembly speeds on the front and rear axles with mutually independent weighting coefficients. A differently strong weighting of these two coefficients then causes a differently strong damping of the body vibrations on the front and rear axles.
  • the 3rd signals can be understood as weighted model speeds, again with mutually independent weighting coefficients. A different weighting then results in a different degree of decay of the structure's natural vibrations.
  • the driving dynamics are to be understood here in particular as the vehicle transverse and / or the vehicle longitudinal acceleration and / or the driving speed.
  • the driving dynamics can be recorded, for example, in 6th means (16, 17) as follows: -
  • the transverse movements of the vehicle can be determined from signals from a steering angle sensor, these signals also being used to control or regulate the power steering.
  • the longitudinal movements of the vehicle can be determined from signals from wheel speed sensors, which are also used, for example, in an anti-lock system.
  • the longitudinal and / or transverse movements of the vehicle can be determined from signals from appropriately positioned acceleration sensors.
  • the longitudinal vehicle movements can be determined by the position of the accelerator pedal and / or brake pedal actuated by the driver.
  • the weighting will advantageously be selected as a function of the steering, braking and acceleration maneuvers of the vehicle, in order to allow the rolling and pitching movements of the vehicle body or its vertical movements on the front and rear axles to subside rapidly.
  • the third means (13) can be avoided. However, it is then not possible to influence the various movement components in a targeted manner.
  • the third signals (ql, q2, q3) are thus present on the output side of the third means (13).
  • the fourth means (14) can be characterized as follows by the so-called force distribution matrix.
  • al is the distance between the center of gravity of the vehicle body and the front axle
  • a2 is the distance between the center of gravity of the vehicle body and the rear axle
  • b2 is the distance between the points of application of the actuators on the vehicle body on the rear axle.
  • the fourth means (14) the amplified modal speeds (ql ' , q2 ' , q3) or the unweighted lifting, rolling and pitching speeds (z ' , alpha, beta) are linearly combined as follows. Only the case in which the weighted linking results (q1, q2, q3) are processed in the fourth means (14) is explicitly stated here. The processing of the unweighted 3rd signals (z, alpha, beta) is done analogously.
  • the links among each other are obtained mathematically formally by matrix multiplication of the three-component vector (ql ' , q2, q3) with the force distribution matrix (10).
  • the individual filter units 141, 142, 143 and 144 can be designed as multiplication and addition units as follows, for example in accordance with the vector matrix multiplication rule.
  • connection results (fvl, fvr, fhl, fhr), which represent control forces.
  • These control forces are to be regarded as target forces for the hydraulic cylinders (active system) or for the adjustable dampers (semi-active systems).
  • the actuators are controlled with the linking results (fvl, fvr, fhl, fhr). By applying the actuation signals (fvl, fvr, fhl, fhr) to the actuators, corresponding control forces are applied to the target forces.
  • the parameter ro thus describes the roll or roll moment distribution (front / rear) of these forces and the equation (13) states that the distribution is time-independent. In addition, their value can be freely selected in the force distribution matrix. The choice of the parameter ro leads to an adjustable roll and / or rolling moment distribution of the control forces.
  • the equations of motion can be used to physically interpret the remaining relationships in (12)
  • FIG. F a sectional view of the body is shown in FIG. F is the resultant of the forces that are not tax forces. Such forces are those that passive chassis components exert on the body. Furthermore, disturbing forces etc. are also taken into account in the resultant F.
  • Mw and Mn are the resulting moments of these forces about the longitudinal and transverse axes. The mass moments of inertia about the corresponding axes are designated with Iw and In.
  • the equations of motion (14) apply under the model concept that the body forms a rigid body, and for small twists alpha and beta from the equilibrium position (cf. FIG. 3).
  • the compression movements of the vehicle body can be detected, for example, by sensors which determine the compression travel and / or the compression speed.
  • the signals which represent the spring travel can be differentiated to record the spring speed.
  • the output signal (r) of the 9th means (41) is compared in the comparison unit (42) with predetermined limits (tuning parameters). If the value (r) exceeds this limit, an error signal (F) is displayed. If the value (r) is not exceeded, that is to say there is no faulty function, the process shown in FIG. 4 is ended in step (43).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

{
System zur Erzeugung von Signalen zur Steuerung oder Regelung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrwerkes
Stand der Technik
Die Erfindung geht aus von einem System nach Gattung des Hauptan¬ spruches.
Im Rahmen der Entwicklung eines elektronisch geregelten Fahrwerks ergibt sich unter anderem die Aufgabe, den Fahrkomfort zu verbes¬ sern. Als Maß für den Fahrkomfort kann die Vertikal-Bewegung der Karosserie, beschrieben beispielsweise durch die Hub- ,Wank-, und Nickbewegung, angesehen werden. Informationen über den momentanen Bewegungszustand des Fahrzeugaufbaus erhält man etwa durch geeignete Sensoren, beispielsweise durch Beschleunigungssensoren, die an ge¬ eigneten Stellen des Fahrzeugaufbaus befestigt sind.
Zur Dämpfung der Aufbaubewegungen existiert seit einer Reihe von Jahren eine Strategie, die als "kontinuierliche Skyhookd mpfung" be¬ zeichnet wird. Das zugehörige Regelungsgesetz läßt sich sowohl für aktive (Active Damping in Road Vehicle Suspension Systems Vehicle System Dynamics, 12(1983), pp.291-316; Passive and Active Conrol of Road Vehicle Haeve and Pitch Motion lOth IFAC World Congr. 1987, München) als auch für semiaktive (Semi-Active Heave and Pitch Con- trol for Ground Vehicles Vehicle System Dynamics, 11(1982), pp.31-42) Fahrwerkregelungssysteme formulieren. Bei diesen Fahrwerk¬ regelungssystemen wird die kontinuierliche Skyhook-Dämpfung in der sogenannten "lokalen" Variante angewendet. Hierbei werden die Auf- baubewegungen an den Anlenkpunkten der Aktuatoren bestimmt, die ihrerseits derart gesteuert werden, daß eine Kraft aufgebracht wird, die den jeweiligen Aufbaubewegungen entgegenwirkt. Durch ein sol¬ ches, lokal wirkendes Fahrwerkregelungssystem können bestimmte Be¬ wegungskomponenten des Aufbaus, wie etwa die Hub-, Wank- und Nickbe¬ wegungen, nicht gezielt beeinflußt werden.
Während bei aktiven Systemen das Aufbringen einer den Aufbaubewegun¬ gen entgegenwirkenden Steuerkraft weitgehenst möglich ist, kann bei semiaktiven Systemen lediglich die Dämpfercharakteristik verstellt werden. Aus der EP,A,0 197 316 und der deutschen Patentanmeldung P 39 30 555.4 sind semiaktive Systeme bekannt, die in ihrer Wirkung einem aktiven System nahekommen, obwohl sie zum Verstellen der Dämpferabstimmung kaum (im Vergleich zu aktiven Systemen) Energie benötigen.
Aufgabe des vorliegenden erfindungsgemäßen Systems ist es, im Rahmen einer Beeinflussung der Aufbaubewegungen einzelne Bewegungskomponen¬ ten oder - anteile unabhängig voneinander und gegebenenfalls unter¬ schiedlich stark zu beinflussen. Zu den Komponenten zählen bei¬ spielsweise die Hub- , die Wank- und die Nickbewegung, aber auch die Vertikalbewegung der Karosserie an Vorder- und Hinterachsen.
Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst. Vorteile der Erfindung
Gegenstand der vorliegenden Erfindung ist die sogenannte "modale" Variante der Skyhookdampfung. Diese besitzt im wesentlichen zwei Vorteile gegenüber der lokalen Variante:
1. Individuelle Dämpfung einzelner Komponenten der Aufbaubewegung.
2. Einstellbare Roll- oder Wankmomentenverteilung.
Erfindungsgemäß werden Signale ermittelt, die die Vertikalbewegung der Karosserie an ausgesuchten Stellen repräsentieren. Ausgehend von diesen Signalen wird zunächst auf die Hub-, Wank- und Nickbewegung geschlossen. Danach erfolgt eine Gewichtung dieser Bewegungen, und zwar dergestalt, daß - je nach Abstimmung der Gewichtung - die Ei¬ genschwingungsformen des Fahrzeugaufbaus individuell beeinflußt wer¬ den können. Die Gewichtung kann beispielsweise unter Berücksichti¬ gung des Fahrzustands, wie Bremsen, Beschleunigen und Lenken, getä¬ tigt werden.
Ausgehend von den gewichteten Hub-, Wank- und Nickbewegungen werden schließlich Ansteuersignale für die Aktuatoren ermittelt, die bei entsprechender Aktion dafür sorgen, daß die gewünschte Wirkung ein¬ tritt, daß also die einzelnen Anteile der Aufbaubewegung unabhängig voneinander und gegebenenfalls unterschiedlich stark gedämpft werden.
Weiterhin kann die Roll- oder Wankmomentenverteilung zwischen den Achsen des Fahrzeugs eingestellt werden.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprü¬ chen gekennzeichnet. Zeichnungen
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen darge¬ stellt und wird in der nachfolgenden Beschreibung näher erläutert.
In der Figur la und b ist das bekannte Zwei-Körper-Modell (Quater-car-model) zu sehen, das die Vertikaldyna ik einer Radein- heit (eines realen Fahrzeuges) approximiert. In der Figur 2 sind die wesentlichen Elemente des erfindungsgemäßen Systems im Rahmen des folgenden Ausführungsbeispiels dargestellt. Die Figur 3 zeigt ein Schnittbild der Karosserie und die Figur 4 ein Blockschaltbild einer Fehlererkennung.
Beschreibung des Ausführungsbeispiels
In diesem Ausführungsbeispiel soll zunächst die Skyhook-Regelung für aktive bzw. semiaktive Fahrwerkregelungssysteme anhand der Figur 1 aufgezeigt werden.
Die Figur la und b zeigt das bekannte Zwei-Körper-Modell (Quater-car-model), das die Vertikaldynamik einer Radeinheit approximiert. Mit der Position 1 ist der Fahrzeugaufbau mit der an¬ teiligen Masse Ma bezeichnet. Position 2 stellt das Rad mit der an¬ teiligen Masse Mr und Position 6 eine Feder mit der Federkonstanten Cr dar. Die Fahrbahn ist mit der Position 5 bezeichnet. Mit der Po¬ sition 4a ist ein passiver Dämpfer mit der Dämp'fungskonstanten d, mit der Position 4b ein semiaktiver Dämpfer und mit der Position 3 eine parallel zu den Dämpfern angeordneten Feder (Federkonstante C) markiert.
In der Figur la und b ist das Rad 2 in Kontakt mit der Fahrbahn 5. Hierbei ist die Reifensteifigkeit als Feder 6 mit der Federkonstan¬ ten Cr modellhaft beschrieben. Im Zwei-Körper-Mode11 der Figur la repräsentieren die Feder 3 und der Dämpfer 4a die Komponenten eines passiven Fahrwerkes, die Kraft f steht für eine Steuerkraft, die zusätzlich zwischen dem Aufbau und der Achse bzw. Radeinheit wirkt. Von der Steuerkraft f hat man die modellhafte Vorstellung, daß sie, unabhängig vom Bewegungszustand von Aufbau und Rad, beliebige Werte annehmen kann.
Das Skyhook-Regelungsgesetz läßt sich nun in der Form
f = ds*Xa' (1)
angeben. Die Steuerkraft f soll also proportional zur Aufbauge¬ schwindigkeit Xa eingestellt werden, wobei im folgenden der Zusatz " " hinter einer Größe jeweils die erste zeitliche Ableitung bedeu¬ tet, ds ist ein (nicht negativer) Abstimmungsparameter mit der Di¬ mension einer Dämpfungskonstanten (SAE-Einheit: Ns/m) .
Ein aktives Fahrwerkregelungssystem kann beispielsweise realisiert werden durch einen Hydraulikzylinder zwischen dem Aufbau und der Achse bzw. der Radeinheit, der durch ein Ventil mit großer Bandbrei¬ te gesteuert wird. Die Steuerkraft f (aus dem Modell) ist dann als Sollkraft zu verstehen, der die reale Aktuatorkraft, unterstützt durch einen unterlagerten Regelkreis, möglichst gut folgen soll.
Im Zwei-Körper-Modell der Figur lb stellt das Symbol mit dem Zeiger einen Dämpfer 4b dar, dessen Dämpfungscharakteristik kontinuierlich verstellbar ist. Diese Eigenschaft läßt sich beispielsweise dadurch modellieren, daß die Dämpferkraft fd proportional zur Relativge¬ schwindigkeit Xa'-Xr' ist, das heißt, daß
fd = dv*(Xa'-Xr') (2)
mit einer Dämpfungs-"Konstanten" dv, die in einem bestimmten Intervall [d in, dmax], o < d in < dmax, beliebige Werte annehmen kann. Die Dämpferkraft übernimmt also bei semiaktiven Systemen die Funk¬ tion der Steuerkraft, und das Skyhook-Regelungsgesetz nimmt jetzt die Gestalt
fd = d*(Xa -Xr )+fd° (3a)
mit
fd° = J ds*Xa', für Xa'*(Xa'-Xr') > 0 l' 0, für Xa'*(Xa'-Xr') <.0 (3b)
an. ds ist auch hier wieder ein (nicht negativer) Abstimmungsparame¬ ter mit der Dimension einer Dämpfungskonstanten (SAE-Einheit: Ns/m). Die Steuerkraft fd setzt sich damit zusammen aus dem Anteil d*(Xa -Xr'), der den passiven Dämpfer aus der Figur la repräsen¬ tiert, und dem Anteil fd°, der dafür sorgt, daß das Regelgesetz (1) vom Fall aktiver Systeme übernommen wird, wenn ein (verstellbarer) Dämpfer dieselbe Kraft erzeugen kann wie ein Hydraulikzylinder. Aus einem Vergleich von (2) und (3) ergibt sich überigens der aktuell erforderliche Wert der Dämpfungs-"Konstanten":
dv =
Ein Dämpfer mit verstellbarer Charakteristik kann beispielsweise durch einen sogenannten Drosselsteller realisiert werden, also durch einen Dämpfer, der in seinem Kolben mit einem Drosselventil ausge¬ stattet ist, dessen Durchflußquerschnitt veränderbar ist. Eine wei¬ tere Möglichkeit hat man mit einem sogenannten Kraftsteller, einem Dämpfer mit geeigneten Druckbegrenzungsventilen (gegebenenfalls mit Servounterstützung) in seinem Kolben. Wie im Fall eines aktiven Sy¬ stems ist auch hier die Steuerkraft (aus dem Modell) als Sollkraft zu verstehen, so daß die beiden angesprochenen Realisierungsmöglich¬ keiten für den Fall semiaktiver Systeme ebenfalls mit unterlagerten Regelkreisen auszurüsten sind. Die kontinuerliche Skyhookdampfung kann (sowohl in der aktiven als auch in der semiaktiven Fassung) grundsätzlich in der sogenannten "lokalen" Variante angewendet werden. Das heißt, daß an jeder Rad- einheit des Fahrzeuges nach dem angegebenen Schema vorgegangen wird, unabhängig von den Vorgängen an den anderen Radeinheiten. Dabei ist unter der Aufbaugeschwindigkeit Xa die jeweilige Vertikalgeschwin- digkeit des Hydraulikzylinder- bzw. Dämpferanlenkpunktes an der Karosserie zu verstehen, und mit der Relativgeschwindigkeit Xa -Xr ist die an der zugehörigen Radeinheit gemeint.
Zur Ermittlung der Aufbaugeschwindigkeiten kann man beispielsweise Beschleunigungssensoren verwenden, die an den entsprechenden Stellen der Karosserie zu montieren sind. Die Geschwindigkeiten selbst er¬ hält man durch eine geeignete Verarbeitung (Filterung und Integra¬ tion) der Sensorsignale. Weiter benötigt man bei semiaktiven Syste¬ men Informationen darüber, ob sich der Dämpfer momentan in der Zug- oder in der Druckstufe befindet. Diese Informationen kann man sich etwa durch Sensoren verschaffen, die die Einfederbewegungen des Fahrzeugaufbaus relativ zur Radeinheit erfassen. Die Einfederge- schwindigkeiten können beispielsweise durch eine geeignete Signal¬ verarbeitung (Filterung und Differentation) von Signalen von Einfe- derwegsensoren ermittelt werden. Die Kenntnis der Einfederwege ist auch für andere Aufgaben in der Fahrwerkregelung von Nutzen, bei¬ spielsweise zur Niveauregulierung.
Die kontinuierliche Skyhookdampfung kann (wieder im aktiven wie se¬ miaktiven Fall) auch in anderen Varianten angewendet werden. Aller¬ dings ist dabei zu präzisieren, was unter der Aufbaugeschwindigkeit zu verstehen ist. Grundidee der modalen Skyhookd mpfung ist der Gedanke, unter der Aufbaugeschwindigkeit die sgn. modalen Geschwindigkeiten zu verste¬ hen. Dadurch ist es möglich, die Eigenschwingungsformen des Aufbaus unabhängig voneinander und unterschiedlich stark gewichtet zu beein¬ flussen.
Zur Erläuterung der Begriffe Eigenschwingungsform, Modalkoordinate und Hauptschwingung ist zunächst folgendes zu bemerken:
Wie jedes schwingungsfähiges System besitzt auch ein Fahrzeug (bzgl. seiner Vertikalbewegung) eine bestimmte Anzahl an Eigenschwingungs¬ formen ("modes") mit zugehörigen Modal- oder Hauptkoordinaten ("modal coordinates"). Jede (Vertikal-) Bewegung des Fahrzeugs kann man sich - zu jedem Zeitpunkt - zusammengesetzt denken aus den Ei¬ genschwingungsformen, allerdings variiert dabei im Verlaufe der Zeit der Anteil, mit dem jede einzelne Eigenschwingungsform an der Bewe¬ gung beteiligt ist. Die Bedeutung der Modalkoordinaten liegt nun darin, daß sie die Verteilung der Anteile oder der Komponenten quan¬ titativ beschreiben: Zu jedem Zeitpunkt der Bewegung ist der Wert einer jeden Modalkoordinaten identisch mit dem Anteil, mit dem die zugehörige Eigenschwingungsform zur Bewegung beiträgt.
Spezielle (Vertikal-) Bewegungen des Fahrzeugs sind seine Haupt¬ schwingungen ("modal motions"): Diese sind dadurch gekennzeichnet, daß während der gesamten Bewegung nur eine einzige Eigenschwingungs¬ form vertreten ist; damit haben alle Modalkoordinaten - mit nur ei¬ ner Ausnahme - stets den Wert Null.
In der Fahrzeugtechnik benutzt man häufig zur Beschreibung der (Ver¬ tikal-) Bewegung der Karosserie die Koordinaten "Hub" (Vertikalver¬ schiebung ihres Schwerpunktes), Wankwinkel (Verdrehung um ihre Längsachse) und Nickwinkel (Verdrehung um ihre Querachse). Sind die¬ se Koordinaten auch Modalkoordinaten, so existiert bspw. eine "Nick-Hauptschwingung", bei der eine reine Nickbewegung in dem Sinne vorliegt, daß der Schwerpunkt in Ruhe ist und auch keine Wankbewe¬ gung erfolgt (Hub- und Wank-Komponente sind nicht vertreten) . Ist dagegen nur der Wankwinkel eine Modalkoordinate, so sind zwei der Hauptschwingungen gekoppelte Hub-Nickbewegungen: Die Vertikalbewe¬ gung des Schwerpunkts ist verknüpft mit einer Nickbewegung - und um¬ gekehrt; bei einer dieser Hauptschwingungen dominiert dabei die Hub-Komponente ("viel" Hub, "wenig" Nicken), bei der anderen über¬ wiegt die Nickkomponente.
Ob der Hub-, Wank- und Nickwinkel des Fahrzeugaufbaus tatsächlich Modalkoordinaten sind, hängt im wesentlichen von zwei Faktoren ab. Zum einen vom Fahrzeug selbst, zum anderen von der Art und Weise, in der das Fahrwerkregelsystem (vollaktiv oder semiaktiv) ausgeführt ist. Allgemein läßt sich sagen, daß das Wanken eine Modalkoordinate ist, wenn das Fahrwerk längssymmetrisch an der Karosserie angeordnet ist, und wenn die Hauptträgheitsachsen des Fahrzeugaufbaus mit sei¬ ner Längs-, Quer- und Hochachse übereinstimmen. Diese Fahrzeugeigen¬ schaft trifft wohl für viele der heutigen Fahrzeuge zu; sie gilt un¬ abhängig vom jeweils verwendeten Fahrwerkregelsystem.
Bei Fahrzeugen mit einem semiaktiven Fahrwerkregelsystem, das bei¬ spielsweise durch ein Fahrwerk mit konventionellen Federn sowie re¬ gelbaren Dämpfern realisiert ist, sind der Hub- und der Nickwinkel nicht immer auch Modalkoordinaten. Dies ist nämlich nur dann der Fall, wenn ein bestimmter Zusammenhang zwischen den Federsteifigkei- ten c , c der Tragfedern an Vorder- und Hinterachse und den Achsabständen al und a2 zum Karosserieschwerpunkt besteht (al*c = a2*c„) . Wenn also das Verhältnis al*c /a2*c ungefähr gleich
H v H ' ' eins ist, ist eine praktisch wirksame, (fast ideal) entkoppelte Be¬ einflussung von Hub-, Wank- und Nickbewegungen erreichbar. Wichtig für die Anwendungen ist ein zweiter Fall, bei dem ein spe¬ zieller Zusammenhang zwischen dem Massenträgheitsmoment I der Karosserie bezüglich ihrer Querachse, ihrer Masse m und den Achs- abständen a und c besteht (I = m *al*a2); diese Beziehung
N k trifft, zumindest näherungsweise, auf manche der heutigen Fahrzeug¬ typen zu. In diesem Fall sind die Modalkoordinaten -neben dem Wank¬ winkel- gegeben durch die Vertikalverschiebungen (z und z ) der
V H
Karosserie "vorne" und "hinten". Hier ist es also möglich und auch sinnvoll, mit Hilfe der Regelung die Bewegung des Aufbaus "vorne" und "hinten" sowie die Wankbewegung unabhängig voneinander zu beein¬ flussen.
Fig. 2 zeigt im Rahmen diese Ausführungsbeispiels die wesentlichen Elemente des Systems. Mit der Position 11 sind 1.Mittel zur Ermitt¬ lung der Aufbaubewegungen und mit der Position 12 sind in gestri¬ chelter Umrandung 2.Mittel zur Ermittlung der Hub-, Wank- und Nickbewegungen mit Verknüpfungseinheiten 121, 122 und 123 bezeich¬ net. Position 13 stellt in gestrichelter Umrandung 3.Mittel zur Ge¬ wichtung dar, wobei mit den Positionen 131, 132 und 133 weitere Ver¬ knüpfungseinheiten beschrieben werden. Die Positionen 14 stellen in gestrichelter Umrandung eine Kombination von Verknüpfungseinheiten 141, 142, 143 und 144 dar. Die Positionen 16 und 17 markieren 6.Mit¬ tel zur Ermittelung der Fahrzeugquer- und Fahrzeuglängsbeschleuni¬ gung.
Im folgenden wird die Funktionsweise des erfindungsgemäßen Systems im Rahmen des Ausführungsbeispiels beschriebenen und anhand der Fig.2 erläutert.
In den 1.Mitteln (11) werden 1.Signale (Vi) ermittelt, die mittelbar oder unmittelbar die Geschwindigkeiten des Fahrzeugaufbaus in verti¬ kaler Richtung an ausgesuchten Stellen (Pi) des Aufbaus repräsentie¬ ren. Die 1.Signale (Vi) können beispielsweise durch Integration von Beschleunigungssensorsignalen erlangt werden, wobei die Beschleuni¬ gungssensoren an den Punkten (Pi) am Aufbau derart befestigt sind, daß sie die vertikalen Beschleunigungen des Aufbaus erfassen. Auf die Bedingungen zur Wahl der Stellen (Pi) wird im Laufe dieser Be¬ schreibung noch näher eingegangen.
Die 1.Signale (Vi) werden nun den 2.Mitteln (12) zugeführt, wo diese miteinander verknüpft werden. Diese Verknüpfung geschieht in den Einheiten 121, 122 und 123.
Diese, wie auch alle anderen Verknüpfungseinheiten des Systems, kön¬ nen elektronisch digital oder elektronisch analog, durch Nachbildung einer die Verknüpfungseigenschaften repräsentierenden Matrix reali¬ siert werden. Weiterhin ist eine rechnergesteuerte Auslegung der Einheiten möglich.
Die lineare Verknüpfungen der 1.Signale (Vi) untereinander in den 2.Mitteln (12) läßt sich mathematisch in Matrixschreibweise darstel¬ len. Hierzu sind zwei Fälle zu unterscheiden:
l.Fall:
Durch die 1. Signale (VI, V2, V3) werden die Geschwindigkeiten des Fahrzeugaufbaus in vertikaler Richtung an drei ausgesuchten Stellen (PI, P2, P3) des Aufbaus repräsentiert. In diesem Fall ergibt sich die Verknüpfung in den 2.Mitteln (12) durch folgende Matrix
x2*y3-x3*y2 x3*yl-xl*y3 xl*y2-x2*yl l/(det A) * | -(x2-x3) -(x3-xl) -(xl-x2) |(4), -(y2-y3) -(y3-yl) -(yl-y2) wobei
- det A = (y2-y3)*xl + (y3-yl)*x2 + (yl-y2)*x3 ist und
- xi und yi die Koordinaten des Punktes (Pi) bezüglich eines auf¬ baufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt sind, wobei der Index i=l,2,3 ist und der Fahrzeug¬ aufbau modellhaft zweidimensional angenommenen wird, und
- die Koordinaten (xi, yi) der Punkte Pi derart gewählt werden, daß (det A) nicht Null ist.
In den 2.Mitteln (12) werden also die 1.Signale (VI, V2, V3) wie folgt beschrieben linear kombiniert.
(5)
Die Verknüpfungen untereinander ergeben sich mathematisch formal durch Matrixmultiplikation des dreikomponentigen Vektors (VI, V2, V3) mit der Matrix (4). Die einzelnen Verknüpfungseinheiten 121, 122 und 123 können beispielsweise gemäß der Vektor-Matrixmultiplika¬ tionsvorschrift als Multiplikations- und Additionseinheiten wie folgt ausgelegt sein.
Einheit 121: l/(det A) * [Vl*(x2*y3-x3*y2)+V2*(x3*yl-xl*y3)+V3*(xl* 2-x2*yl)]
Einheit 122: l/(det A) * [-Vl*(x2-x3)-V2*(x3-xl)-V3*(xl-x2)] Einheit 123: l/(det A) * [-Vl*(y2-y3)-V2*(y3-yl)-V3*(yl-y2)]
2.Fall:
Durch die 1. Signale (VI, V2, V3, V4) werden die Geschwindigkeiten des Fahrzeugaufbaus in vertikaler Richtung an vier ausgesuchten Stellen (PI, P2, P3, P4) des Aufbaus repräsentiert. In diesem Fall ergibt sich die Verknüpfung in den 2.Mitteln (12) durch folgende Matrix
wobei
= -x3/(xl-x3) und
= xl/(xl-x3) und
2 2 = yl/(yl +y3 ) und
2 2 = y3/(yl +y3 ) und
= -l/(xl-x3) und = l/(xl-x3) ist und
•: xi und yi die Koordinaten des Punktes (Pi) bezüglich eines auf¬ baufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt sind, wobei der Index i=l,2,3,4 ist und der Fahr¬ zeugaufbau modellhaft zweidimensional angenommenen wird, und
-: die Koordinaten (xi, yi) der Orte Pi derart gewählt werden, daß
2 2 x3 nicht gleich xl, yl +y3 > 0, x2=xl, y2=-yl, x4***x3 und y4=-y3 ist. In den 2.Mitteln (12) werden also die 1.Signale (VI, V2, V3, V4) wie folgt beschrieben linear kombiniert.
(7)
Die Verknüpfungen untereinander ergeben sich mathematisch formal durch Matrixmultiplikation des vierko ponentigen Vektors (VI, V2, V3, V4) mit der Matrix (7). Die einzelnen Verknüpfungseinheiten 121, 122 und 123 können in diesem Fall beispielsweise gemäß der Vek¬ tor-Matrixmultiplikationsvorschrift als Multiplikations- und Addi- tionseinheiten wie folgt ausgelegt sein.
Einheit 121: 1/2 * (V1*B11 + V2*B12 + V3*B13 + V4*B14)
Einheit 122: 1/2 * (V1*B21 + V2*B22 + V3*B23 + V4*B24)
Einheit 123: 1/2 * (V1*B31 + V2*B32 + V3*B33 + V4*B34),
wobei die Größen Bij wie oben beschrieben definiert sind.
Die in beiden Fällen ausgangsseitig der 2.Mitteln (12) bzw. aus- gangsseitig der Filtereinheiten (121, 122, 123) anliegenden Ver¬ knüpfungsergebnisse (z , alpha und beta ) repräsentieren die Hub-, Wank- und Nickgeschwindigkeiten. Hierbei sind mit alpha bzw. beta die Verdrehungen des Fahrzeugaufbaus um seine Längs- bzw. Querachse und mit z die Vertikalverschiebung des Karosserieschwerpunktes be¬ zeichnet, alpha , beta und z sind die jeweiligen ersten zeitlichen Ableitungen der Größen alpha, beta und z. Die 2.Signale (z', alpha , beta ) werden nun den 3.Mitteln (13) zugeführt, wo diese gewichtet werden. Dies geschieht in den Ver¬ knüpfungseinheiten 131, 132 und 133 gemäß der Matrix
wobei alle Matrixelemente als Abstimmungsparameter anzusehen sind.
In den 3.Mitteln (13) werden also die 2.Signale (z', alpha', beta') wie folgt beschrieben linear kombiniert.
Die Verknüpfungen untereinander ergeben sich mathematisch formal durch Matrixmultiplikation des dreikomponentigen Vektors (z', alpha , beta ) mit der Matrix (9). Die einzelnen Verknüpfungseinhei¬ ten 131, 132 und 133 können in diesem Fall beispielsweise gemäß der Vektor-Matrixmultiplikationsvorschrift als Multiplikations- und Additionseinheiten wie folgt ausgelegt sein.
Einheit 131: (z'*gkk) + (beta'*gkn)
Einheit 132: alpha'*gw
Einheit 133: (z'*gnk) + (beta'*gnn).
Zur Interpretation der 3.Signale (ql', q2', g3') soll zunächst der
Sonderfall betrachtet werden, in dem - neben dem Wankwinkel - der
Hub und der Nickwinkel die Modalkoordinaten der Karosserie sind (al
* c = a * c ) . Hier ist qkn = qnk = 0 zu wählen, so daß man V 2 H
(ql', q2', q3') als gewichtete Hub-, Wank- und Nickgeschwindigkeiten deuten kann. Eine unterschiedlich starke Gewichtung hat dann eine unterschiedlich starke Dämpfung dieser Bewegungskomponenten zur Fol¬ ge. Dies ist beispielsweise bei Lenk-, Brems- oder Beschleunigungs¬ manövern sinnvoll, um die dabei entstehenden Wank- und Nickschwin¬ gungen der Karosserie rasch abklingen zu lassen.
Als zweiten Sonderfall läßt sich der anführen, in dem - neben dem
Wankwinkel - die Vertikalverschiebungen der Karosserie "vorne" und
"hinten" die Modalkoordinaten sind (I_τ = m, * a. * a..). In
N k 1 2 diesem Fall lassen sich die vier Parameter gkk, gnk, gkn und gnn so aufeinander abstimmen, daß die Größen ql und q3 interpretiert werden können als gewichtete Aufbaugeschwindigkeiten an der Vorder- und Hinterachse mit voneinander unabhängigen Gewich¬ tungskoeffizienten. Eine unterschiedlich starke Gewichtung dieser beiden Koeffizienten bewirkt dann eine unterschiedlich starke Dämp¬ fung der Karosserieschwingungen an Vorder- und Hinterachse.
Im allgemeinen Fall kann man die 3.Signale als gewichtete Mo¬ dalgeschwindigkeiten auffassen, wiederum mit voneinander unabhängi¬ gen Gewichtungskoeffizienten. Eine unterschiedlich starke Gewichtung hat dann ein unterschiedlich starkes Abklingen der Aufbau-Eigen¬ schwingungen zur Folge.
Es ist vorteilhaft, die Gewichtung der 2.Signale (z , alpha , beta ) in den 3.Mitteln (13) abhängig von der Fahrdynamik, wie Längs- und/oder Querbewegungen des Fahrzeuges, -und/oder der Umge¬ bungstemperatur zu tätigen. Unter der Fahrdynamik ist hier insbeson¬ dere die Fahrzeugquer- und/oder die Fahrzeuglängsbeschleunigung und/oder die Fahrgeschwindigkeit zu verstehen. Die Erfassung der Fahrdynamik kann beispielsweise in 6.Mittel (16, 17) wie folgt be¬ schrieben erfolgen: - Die Querbewegungen des Fahrzeugs können aus Signalen eines Lenk¬ winkelsensors ermittelt werden, wobei diese Signale auch zu einer Servolenkungssteuerung oder -regelung herangezogen werden.
- Die Längsbewegungen des Fahrzeuges können aus Signalen von Rad¬ drehzahlsensoren, die beispielsweise auch bei einem Anti-Blockier-Syste verwendet werden, ermittelt werden.
- Die Längs- und/oder Querbewegungen des Fahrzeuges können aus Signalen von entsprechend positionierten Beschleunigungssensoren ermittelt werden.
Die Fahrzeuglängsbewegungen können durch die Stellung des vom Fahrer betätigten Fahrpedals und/oder Bremspedals ermittelt wer¬ den.
Zusammenfassend ist zu den Beeinflussungen in den 3.Mitteln (13) zu sagen, daß hier eine gezielte Beeinflussung der modalen Bewegungs¬ komponenten, das heißt der Aufbaueigenschwingungsformen, möglich ist, um beispielsweise eine bestimmte Bewegung in der anschließenden Datenauswertung besonders hervorzuheben bzw. zu dämpfen. So wird man vorteilhafterweise die Gewichtung beispielsweise abhängig von Lenk-, Brems- und Beschleunigungsmanöver des Fahrzeugs wählen, um die hier¬ durch entstehenden Wank- und Nickbewegungen des Fahrzeugaufbaus bzw. seine Vertikalbewegungen an Vorder- und Hinterachsen rasch abklingen zu lassen.
Bei einer einfach ausgelegten Ausgestaltung des erfindungsgemäßen Systems können die 3.Mittel (13) umgangen werden. Allerdings ist dann die gezielte Beeinflussung der verschiedenen Bewegungsanteile nicht möglich. Ausgangsseitig der 3.Mitteln (13) liegen also die 3.Signale (ql , q2 , q3 ) an.
Im Falle eines vierrädrigen, zweiachsigen Fahrzeugs, bei dem zwi¬ schen jedem Rad und dem Aufbau aktive oder semiaktive Aktuatoren an¬ geordnet sind, werden die ausgangsseitig der dritten Mittel (13) an¬ liegenden gewichteten bzw. verstärkten Modalgeschwindigkeiten oder die, unter Umgehung der dritten Mittel (13), ausgangsseitig der zweiten Mittel (12) anliegenden unbeeinflußten Hub-, Wank- und Nick¬ geschwindigkeiten in vierten Mitteln (14) untereinander verknüpft. Die vierten Mittel (14) lassen durch die sogenannte Kraftvertei¬ lungsmatrix wie folgt charakterisieren.
Dabei sind die Elemente der Matrix (10)
-: Fll = F21 = a2/(al+a2)
-: F31 = F41 = al/(al+a2)
-: F12 = -F22 = (l/bl)*(ro/ro+l)
-: F32 = -F42 = (l/b2)*(l/ro+l)
-: F43 = F33 = -F23 = -F13 = l/(al+a2), und
-: al der Abstand zwischen dem Schwerpunkt der Fahrzeugkarrosserie und der Vorderachse ist,
-: a2 der Abstand zwischen dem Schwerpunkt der Fahrzeugkarrosserie und der Hinterachse ist,
-: 2*bl der Abstand der Angriffspunkte der Aktuatoren am Fahrzeug¬ aufbau an der Vorderachse ist, und
-: 2*b2 der Abstand der Angriffspunkte der Aktuatoren am Fahrzeug¬ aufbau an der Hinterachse ist.
Die Bedeutung der Größe ro wird später erklärt. In den 4.Mitteln (14) werden also die verstärkten Modalgeschwindig- keiten (ql', q2', q3 ) oder die ungewichteten Hub-, Wank- und Nick- geschwindigkeiten (z', alpha , beta ) wie folgt beschrieben linear kombiniert. Hierbei sei nur der Fall explizit ausgeführt, bei dem die gewichteten Verknüpfungsergebnisse (ql , q2 , q3 ) in den 4.Mit¬ teln (14) verarbeitet werden. Die Verarbeitung der ungewichteten 3.Signale (z , alpha , beta ) geschieht analog hierzu.
Die Verknüpfungen untereinander ergeben sich mathematisch formal durch Matrixmultiplikation des dreikomponentigen Vektors (ql', q2 , q3 ) mit der Kraftverteilungsmatrix (10). Die einzelnen Filterein¬ heiten 141, 142, 143 und 144 können in diesem Fall beispielsweise gemäß der Vektor-Matrixmultiplikationsvorschrift als Multiplika- tions- und Additionseinheiten wie folgt ausgelegt sein.
Einheit 141: (Fll*ql') + (F12*q2') - (F13*q3')
Einheit 142: (F21*ql') - (F22*q2') - (F23*q3')
Einheit 143: (F31*ql') + (F32*q2') + (F33*q3')
Einheit 144: (F41*ql') - (F42*q2') + (F43*q3')
wobei die Größen Fij wie oben beschrieben definiert sind.
Als Ergebnisse der Verknüpfungen liegen ausgangsseitig der vierten Mitteln (14) die Verknüpfungsergebnisse (fvl, fvr, fhl, fhr) an, die Steuerkräfte repräsentieren. Diese Steuerkräfte sind als Sollkräfte für die Hydraulikzylinder (aktives System) bzw. für die verstellba¬ ren Dämpfer (semiaktive Systeme) anzusehen. Mit den Verknüpfungsergebnissen (fvl, fvr, fhl, fhr) werden die Ak¬ tuatoren angesteuert. Durch die Beaufschlagung der Aktuatoren mit den Ansteuersignalen (fvl, fvr, fhl, fhr) werden den Sollkräften entsprechende Steuerkräfte aufgebracht.
Die Skyhookdampfung erfolgt also durch diese Ansteuerung in der lo¬ kalen Form aufgrund dieser Steuerkräfte.
Zur physikalischen Interpretation der Kraftverteilungsmatrix (10) kann man davon ausgehen, daß die Beziehung (11) äquivalent ist zu den Gleichungen.
fvl + fvr + fhl + fhr = ql' (12a) bl*(fvl-fvr) + b2*(fhl-fhr) = q2' (12b)
-al*(fvl+fvr) + a2*(fhl+fhr) = q3' (12c) bl*(fvl-fvr) - ro*b2*(fhl-fhr) = 0 (12d).
Um dies einzusehen, braucht man nur die in (12) links angegebenen Linearkombinationen der Kräfte (fvl, fvr, fhl, fhr) zu bilden und dabei die Kräfte selbst durch die rechten Seiten von (11) zu er¬ setzen.
Der Zusammenhang (12d) läßt sich auch in der Darstellung
ro = [bl*(fvr-fvl)] / [b2*(fhr-fhl)] = konst| (13)
angeben, in der man im Zähler das Wankmoment der beiden vorderen und im Nenner das Wankmoment der beiden hinteren Steuerkräfte erkennt. Der Parameter ro beschreibt damit die Roll- oder Wankmomentenvertei¬ lung (vorne/hinten) dieser Kräfte und die Gleichung (13) besagt, daß die Verteilung zeitunabhängig ist. Darüber hinaus kann ihr Wert in der Kraftverteilungsmatrix frei gewählt werden. Man gelangt also durch die Wahl des Parameters ro zu einer einstellbaren Wank- und/oder Rollmomentenverteilung der Steuerkräfte. Zur physikalischen Deutung der restlichen Beziehungen in (12) kann man die Bewegungsgleichungen
Ma*z" = -(fvl+fvr+fhl+fhr) + F (14a)
Iw*alpha" = -bl*(fvl-fvr) - b2*(fhl-fhr) + Mw (14b) In*beta" = al*(fvl+fvr) - a2*(fhl+fhr) + Mn (14c)
der Karosserie betrachten, wobei das den Größen nachgestellte " "- Zeichen die zweite zeitliche Ableitung der jeweiligen Größe bedeutet. Hierzu ist in Figur 3 ein Schnittbild der Karosserie ge¬ zeigt. F ist die Resultierende aus den Kräften, die keine Steuer¬ kräfte sind. Solche Kräfte sind die, die passive Fahrwerkskomponen- ten auf die Karosserie ausüben. Weiterhin sind in der Resultierenden F auch Störkräfte usw. berücksichtigt. Mw und Mn sind die resultie¬ renden Momente dieser Kräfte um die Längs- und die Querachse. Mit Iw und In sind die Massenträgheitsmomente um die entsprechenden Achsen bezeichnet. Die Bewegungsgleichungen (14) gelten unter der Modell¬ vorstellung, daß die Karosserie einen starren Körper bildet, sowie für kleine Verdrehungen alpha und beta aus der Gleichgewichtslage (vgl. Figur 3).
Wenn man die Steuerkräfte (fvl, fvr, fhl, fhr) mit Hilfe der Kraft¬ verteilungsmatrix, das heißt gemäß der Gleichung (11) bestimmt, so gehen die Bewegungsgleichungen (14) über in die Form für die gere¬ gelte Bewegung
(Ma*z") + (gkk*z') + (gkn*beta') = F (15a) (Iw*alpha") + (gw*alpha') = Mw (15b) (In*beta") + (gnk*z') + (gnn*beta') = Mn (15c).
Dies folgt unmittelbar aus den Beziehungen (12) und (9). Betrachtet man zunächst wieder den Sonderfall, in dem - neben dem Wankwinkel - der Hub und der Nickwinkel die Modalkoordinaten der
Karosserie sind (a * c = a c ). Hier sind die Gewichtungs-
1 V - π faktoren gkn und gnk zu Null zu wählen, wenn man die Modalkoordina¬ ten unabhängig voneinander beeinflussen will. Dann erkennt man deut¬ lich den Einfluß der restlichen Abstimmungsparameter gkk, gw und gnn: gw beispielsweise dämpft im wesentlichen allein die Wankbewe¬ gung (eine Kopplung mit der Hub- oder Nickbewegung existiert nur dann, wenn das Momen M von diesen Bewegungen abhängt) . Entspre- w chendes gilt für den Einfluß von gkk und gnn. Das heißt, daß eine individuelle Dämpfung der Hub-, Wank- und Nickschwingungen ermög¬ licht wird.
Im zweiten Sonderfall, in dem - neben dem Wankwinkel - die Vertikal¬ verschiebungen der Karosserie "vorne" und "hinten" die Modalkoordi¬ naten sind (I -= mτ_ * a, * a_) oder auch im allgemeinen N K 1 λ
Fall, muß man gkn und gnk im allgemeinen von Null verschieden wählen und alle Gewichtungsfaktoren geeignet aufeinander abstimmen.
Betrachtet man den beschriebenen Vorschlag zur Verbesserung des Fahrkomforts eingebettet in ein umfangreicheres Fahrwerkregelungs- konzept, so erkennt man, wie schon oben erwähnt, daß es sinnvoll ist, die Werte aller Gewichtungsfaktoren abhängig von den Momentan¬ werten der Fahrzustandsgr ßen, wie Fahrgeschwindigkeit, Längs- und Querbeschleunigung zu wählen. So wird man etwa beim Bremsen und Be¬ schleunigen gkk und insbesondere gnn groß (im Vergleich zu gw) wäh¬ len, um die entstehenden Hub-Nick-Schwingungen bzw. die Vertikal¬ schwingungen an Vorder- und Hinterachse rasch abklingen zu lassen. Beim Anlenken einer Kurve dagegen wird sich ein großer Wert von gw (im Vergleich zu gkk und gnn) günstig auswirken, da dann die ange¬ regten Wankbewegungen schnell reduziert werden. Auf diese Art und Weise läßt sich schließlich eine gewisse Anzahl von Parametersätzen festlegen, die bestimmten FahrSituationen und -manövern (gekenn¬ zeichnet durch Wertebereiche der Fahrzustandsgr ßen) zugeordnet sind. Werden semiaktive Systeme verwendet, so ist es nötig, daß Signale ermittelt werden, die die relativen Bewegungen zwischen den Radein¬ heiten und dem Aufbau des Fahrzeuges repräsentieren, und durch Ver¬ gleiche der Ansteuersignale (fvl, fvr, fhl, fhr) mit den Einfederbe¬ wegungen die Dämpfereinstellungen zu tätigen (siehe Gleichung (3b)). Weiterhin kann im Falle von nicht zu realisierenden Sollkräften er¬ satzweise eine maximal harte oder maximal weiche Einstellung gewählt werden. Dies kann, wie beispielsweise in der deutschen Patentanmel¬ dung P 39 30 555.4 beschrieben, dadurch geschehen, daß die relativen Bewegungen zwischen den Radeinheiten und dem Aufbau des Fahrzeuges derart berücksichtigt werden, daß eine ersatzweise harte oder weiche Einstellung abhängig von der Sollkraft und diesen relativen Bewegun¬ gen gewählt wird.
Die Einfederbewegungen des Fahrzeufaufbaus können beispielsweise durch Sensoren erfaßt werden, die den Einfederweg und/oder die Ein- federgeschwindigkeit ermitteln. Insbesondere können zur Erfassung der Einfedergeschwindigkeit die Signale, die den Einfederweg reprä¬ sentieren, differenziert werden.
Werden in den 1.Mitteln (11) die 1.Signale (Vk, mit k=l bis 4) er¬ mittelt, die die Geschwindigkeiten des Fahrzeugaufbaus in vertikaler Richtung an vier ausgesuchten Stellen (PI, P2, P3, P4) des Aufbaus repräsentieren, so gelangt man wie folgt beschrieben zu einer weite¬ ren vorteilhaften Ausgestaltung des erfindungsgemäßen Systems.
Durch die Erfassung der vertikalen Aufbaugeschwindigkeiten an vier Punkten liegt bezüglich der Bestimmung der drei Bewegungskomponen¬ ten, Hub-, Nick- und Wankbewegung, eine Überbestimmung vor. Dies kann zur Fehlererkennung der Sensorik und/oder der Signalverarbei¬ tung des erfindungsgemäßen Systems benutzt werden. Hierzu werden, wie in der Fig.4 dargestellt, die 1.Signale (Vk, mit k=l bis 4) 9.Mitteln (41) zugeführt. Diese 9.Mittel (41) verknüpfen die 1.Signale (Vk, mit k=l bis 4) mit den Koordinaten der Punkte (Pi), an denen die Aufbaubewegungen ermittelt werden. Diese Ver¬ knüpfung geschieht nach folgender mathematischer Vorschrift: H r =^ C "rik*Vk) ,
wobei die Elemente rik durch die Matrix R
R = 1/2 * [l/(yl2+y32)] gegeben sind, yi die Koordinaten des Punktes (Pi) in Fahrzeugquer¬ richtung bezüglich eines aufbaufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt darstellen, wobei der Index i=l,2,3,4 ist, und y2=-yl und y4=-y3 ist, und der Fahrzeugaufbau mo¬ dellhaft zweidimensional angenommenen wird.
Das Ausgangssignal (r) der 9.Mitteln (41) wird in der Vergleichsein¬ heit (42) mit vorgegebenen Schranken (Abstimmungsparameter) vergli¬ chen. Überschreitet der Wert (r) diese Schranke, so wird ein Fehler¬ signal (F) zur Anzeige gebracht. Wird der Wert (r) nicht überschrit¬ ten, das heißt, liegt keine fehlerhafte Funktion vor,, so wird im Schritt (43) der in der Figur 4 gezeigte Ablauf beendet.

Claims

Ansprüche
1. System zur Erzeugung von Signalen zur Steuerung oder Regelung ei¬ nes in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrwer¬ kes eines Personen- und/oder Nutzkraftwagens mit einem Fahrzeugauf¬ bau, wenigstens zwei Radeinheiten und AufhängungsSystemen zwischen dem Fahrzeugaufbau und den Radeinheiten, die die Bewegungen zwischen den Radeinheiten und dem Fahrzeugaufbau beeinflussen können, wobei
1.Signale (Vi) ermittelt werden, die die Aufbaubewegung des Fahr¬ zeugs repräsentieren, und
Mittel (12, 13, 14) vorgesehen sind, durch die,
- ausgehend von den 1.Signalen (Vi), auf die Hub- ,Wank- und Nick¬ bewegungen des Aufbaus, geschlossen wird und,
ausgehend von den Hub-, Wank- und Nickbewegüngen, Ansteuersignale (fvl, fvr, fhl, fhr) zur Beaufschlagung der AufhängungsSysteme derart ermittelt werden, daß die Eigenschwingungsformen unabhän¬ gig voneinander beeinflußt werden können.
2. System nach Anspruch 1, dadurch gekennzeichnet, daß die Roll- oder Wankmomentenverteilung einstellbar ist.
3. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß durch die AufhängungsSysteme Steuerkräfte zwischen den Radeinheiten und dem Fahrzeugaufbau aufgebracht werden können und die Ansteuersignale (fvl, fvr, fhl, fhr) zur Beaufschla¬ gung der AufhängungsSysteme Sollkräfte repräsentieren und durch die Beaufschlagung der AufhängungsSysteme mit den AnsteuerSignalen (fvl, fvr, fhl, fhr) den Sollkräften entsprechende Steuerkräfte aufge¬ bracht werden.
4. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß im Falle von semiaktiven Aufhängungssyste¬ men Signale erfaßt werden, die mittelbar oder unmittelbar die Einfe¬ derbewegungen des Aufbaus repräsentieren, und durch Vergleiche der Ansteuersignale (fvl, fvr, fhl, fhr) mit den Einfederbewegungen die Dämpfereinstellungen getätigt werden und ersatzweise für eine nicht zu realisierende Sollkraft eine maximal harte oder weiche Einstel¬ lung gewählt wird.
5. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß im Falle von semiaktiven Aufhängungssyste¬ men Signale ermittelt werden, die die relativen Bewegungen zwischen den Radeinheiten und dem Aufbau des Fahrzeuges repräsentieren, und die ersatzweise harte oder weiche Einstellung abhängig von der Soll¬ kraft und den relativen Bewegungen zwischen den Radeinheiten und dem Aufbau des Fahrzeuges gewählt werden.
6. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß im Falle von semiaktiven Aufhängungssyste¬ men Dämpfersysteme zum Einsatz kommen, deren Kolben mit einem Dros¬ selventil ausgestattet ist, dessen Durchflußquerschnitt veränderbar ist (Drosselsteller), oder Dämpfersysteme zum Einsatz kommen, deren Kolben mit geeigneten Druckbegrenzungsventilen versehen sind (Kraft¬ steller).
7. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß zur Ansteuerung der AufhängungsSysteme durch die Ansteuersignale (fvl, fvr, fhl, fhr) ein unterlagerter Re¬ gelkreis benutzt wird, durch den beispielsweise im Falle, wenn die Ansteuersignale (fvl, fvr, fhl, fhr) lineare Steuerspannungen sind, das nicht lineare Steuerverhalten des Dämpfers derart berücksichtigt wird, daß eine der Sollkraft entsprechende Steuerkraft aufgebracht wird.
8. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß
1.Mittel (11) zur Ermittelung der 1.Signale (Vi), die mittelbar oder unmittelbar die Geschwindigkeiten des Fahrzeugaufbaus in vertikaler Richtung an ausgesuchten Stellen (Pi) des Aufbaus re¬ präsentieren, vorgesehen sind und
2.Mitteln (12) zur Ermittelung der 2.Signale (z , alpha', beta ), die die Hub- ,Wank- und Nickbewegungen repräsentieren, vorgesehen sind und
3.Mitteln (13) zur Beeinflussung derart vorgesehen sind, daß die 2.Signale (z , alpha , beta ) unter Berücksichtigung von Größen, die den Fahrzustand repräsentieren und/oder beeinflussen, additiv und/oder multiplikativ gewichtet werden, und
- 4.Mitteln (14) zur Verknüpfung vorgesehen sind, mittels derer die 2.Signale (z', alpha , beta ) oder die gewichteten Signale (ql', g2', q3 ) derart verknüpft werden, daß die Verknüpfungsergebnisse (fvl, fvr, fhl, fhr) Sollkräfte für die Aufhängungssysteme reprä¬ sentieren.
9. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß
- in den 3.Mitteln (13) die 2.Signale (z', alpha', beta') abhängig von der Fahrdynamik gewichtet werden, wobei die Fahrdynamik ins¬ besondere durch die Fahrzeugquer- und/oder die Fahrzeuglängsbe¬ schleunigung und/oder die Fahrgeschwindigkeit repräsentiert wird, und
- zur Erfassung der Fahrdynamik 6.Mittel (16, 17) vorgesehen sind, mittels derer beispielsweise
- die Querbewegungen des Fahrzeuges aus Signalen eines Lenkwinkel¬ sensors ermittelt werden, die beispielsweise auch zu einer Ser¬ volenkungssteuerung oder -regelung herangezogen werden, und/oder
- die Längsbewegungen des Fahrzeuges aus Signalen von Raddrehzahl- sensoren ermittelt werden, die beispielsweise auch in einem Anti-Blockier-System verwendet werden, und/oder
- die Längs- und/oder Querbewegungen des Fahrzeuges aus Signalen von entsprechend positionierten BeschleunigungsSensoren ermittelt werden und/oder
- die Fahrzeuglängsbewegungen durch die Stellung des vom Fahrer be¬ tätigten Fahrpedals und/oder Bremspedals ermittelt werden.
10. System nach wenigstens einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die 1.Signale (Vi) in 1.Mitteln (11) durch Integration von BeschleunigungssensorSignalen erlangt werden, wobei die Beschleunigungssensoren an den ausgesuchten Stellen (Pi) am Auf¬ bau derart befestigt sind, daß sie die vertikalen Beschleunigungen des Aufbaus erfassen.
11. System nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß
die Signale (VI, V2, V3), die die Geschwindigkeiten des Fahrzeug¬ aufbaus in vertikaler Richtung an drei ausgesuchten Stellen (PI, P2, P3) des Aufbaus repräsentieren, durch eine Linearkombination in den 2.Mitteln (12) untereinander verknüpft werden und die 2.Mittel (12) die Matrix
x2*y3-x3*y2 x3*yl-xl*y3 xl*y2-x2*yl l/(det A) * | -(x2-x3) -(x3-xl) -(xl-x2) -(y2-y3) -(y3-yl) -(yl-y2)
aufweisen, wobei
-: det A = (y2-y3)*xl + (y3-yl)*x2 + (yl-y2)*x3 und -: xi und yi die Koordinaten des Punktes (Pi) bezüglich eines auf¬ baufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt, wobei der Index i=l,2,3 ist und der Fahrzeugaufbau modellhaft zweidimensional angenommenen wird, und -: die Koordinaten (xi, yi) der Punkte Pi derart gewählt werden, daß (det A) nicht Null ist, oder
- die Signale (VI, V2, V3 ,V4), die die Geschwindigkeiten des Fahr¬ zeugaufbaus in vertikaler Richtung an vier ausgesuchten Stellen (PI, P2, P3, P4) des Aufbaus repräsentieren, durch eine Linear¬ kombination in den 2.Mitteln (12) untereinander verknüpft werden und die 2.Mittel (12) die Matrix
aufweisen, wobei
Bll = B12 = -x3/(xl-x3) und B13 = B14 = xl/(xl-x3) und
B21 = -B22 = yl/(yl2+y32) und
2 2 B23 = -B24 = y3/(yl +y3 ) und
B31 = B32 = -l/(xl-x3) und
B33 = B34 = l/(xl-x3) und xi und yi die Koordinaten des Punktes (Pi) bezüglich eines auf¬ baufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt, wobei der Index i=l,2,3,4 ist und der Fahrzeugauf¬ bau modellhaft zweidimensional angenommenen wird, und die Koordinaten (xi, yi) der Punkte Pi derart gewählt werden, daß
2 2 x3 nicht gleich xl, yl +y3 > 0, x2=xl, y2=-yl, x4=x3 und y4=-y3 ist, und/oder die Gewichtungen in der 2. Signale in den 3.Mitteln (13) gemäß der Matrix
vorgenommen wird, wobei
die Gewichtungskoeffizienten gkk, gkn, gw, gnk und gnn konstant oder abhängig von Größen sind, die den Fahrzustand repräsentieren oder beeinflussen, und/oder im Falle eines vierrädrigen, zweiachsigen Fahrzeuges, bei dem zwischen jedem Rad und dem Aufbau des Federungs- und/oder DämpfungsSysteme angeordnet sind, die ausgangsseitig der S.Mit¬ teln (13) anliegenden beeinflußten Verknüpfungsergebnisse (ql', q2 , q3 ) in 4.Mitteln (14) untereinander verknüpft werden und die 4. ittel (14) die Matrix
aufweisen, wobei
Fll = F21 = a2/(al+a2)
F31 = F41 = al/(al+a2)
F12 = -F22 = (l/bl)*(ro/ro+l)
F32 = -F42 = (l/b2)*(l/ro+l)
F43 = F33 = -F23 = -F13 = l/(al+a2) und al der Abstand zwischen dem Schwerpunkt der Fahrzeugkarrosserie und der Vorderachse ist,
-: a2 der Abstand zwischen dem Schwerpunkt der Fahrzeugkarrosserie und der Hinterachse ist,
-: 2*bl der Abstand der Angriffspunkte der Aktuatoren am Fahrzeug¬ aufbau an der Vorderachse ist, und
-: 2*b2 der Abstand der Angriffspunkte der Aktuatoren am Fahrzeug¬ aufbau an der Hinterachse ist und
-: als Ergebnisse dieser Verknüpfungen die Verfnüpfungsergebnisse (fvl, fvr, fhl, fhr) anliegen.
12. System nach einem der vorhergehenden Ansprüche, dadurch gekenn¬ zeichnet, daß die 1.Signale (Vk, mit k=l bis 4), die die Geschwin¬ digkeiten des Fahrzeugaufbaus in vertikaler Richtung an vier ausge¬ suchten Stellen (PI, P2, P3, P4) des Aufbaus repräsentieren, in 9.Mitteln (41) zur Erzeugung eines Signals (r) herangezogen werden und das Signal (r) durch den mathematischen Zusammenhang
r = ( *^*rik*Vk)2 aus den Signalen (Vk, mit k=l bis 4) ermittelt wird, wobei die Elemente rik durch die Matrix R
-y3'
R = 1/2 * [l/(yl2+y32)] * yl*y3
-yl*y3
und yi die Koordinaten des Punktes (Pi) in Fahrzeugquerrichtung be¬ züglich eines aufbaufesten Koordinatensystems mit dem Schwerpunkt der Karosserie als Nullpunkt, wobei der Index i=l,2,3,4 ist und y2=-yl und y4=-y3 ist und der Fahrzeugaufbau odellhaft zweidimen¬ sional angenommenen wird, und das Signal (r) mit vorgegebenen Schranken verglichen wird und bei Überschreiten dieser Schranken ein Fehlersignal (F) zur Anzeige gebracht wird.
EP92908755A 1991-05-31 1992-05-12 System zur erzeugung von signalen zur steuerung oder regelung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrwerkes Withdrawn EP0541735A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4117897 1991-05-31
DE4117897A DE4117897C2 (de) 1991-05-31 1991-05-31 System zur Erzeugung von Signalen zur Steuerung oder Regelung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrwerkes

Publications (1)

Publication Number Publication Date
EP0541735A1 true EP0541735A1 (de) 1993-05-19

Family

ID=6432913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92908755A Withdrawn EP0541735A1 (de) 1991-05-31 1992-05-12 System zur erzeugung von signalen zur steuerung oder regelung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrwerkes

Country Status (5)

Country Link
US (1) US5488562A (de)
EP (1) EP0541735A1 (de)
JP (1) JP3446959B2 (de)
DE (1) DE4117897C2 (de)
WO (1) WO1992021525A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683185B1 (fr) * 1991-11-01 1995-07-07 Atsugi Unisia Corp Appareil de reglage du coefficient d'amortissement des amortisseurs d'un vehicule.
DE4436441C2 (de) * 1993-10-15 1997-09-11 Fichtel & Sachs Ag Verfahren zur Steuerung eines Kraftfahrzeugfahrwerks
EP0672548B1 (de) * 1994-02-24 2000-05-31 Unisia Jecs Corporation Vorrichtung und Verfahren zum Regeln der Dämpfungscharakteristiken von Fahrzeugstossdämpfern
US5510986A (en) * 1994-03-14 1996-04-23 Trw Inc. Method and apparatus for controlling an active suspension system
JPH09249016A (ja) * 1996-03-15 1997-09-22 Unisia Jecs Corp 車両懸架装置
US5712783A (en) * 1996-04-26 1998-01-27 Lord Corporation Control method for semi-active damper
US5864768A (en) * 1996-09-09 1999-01-26 Ford Global Technologies, Inc. Vehicle suspension control system
DE19753205C2 (de) * 1997-12-01 2000-07-13 Daimler Chrysler Ag Regelbares Aufhängungssystem in einem aktiven Fahrwerk eines Kraftfahrzeugs
JP3662118B2 (ja) * 1998-08-07 2005-06-22 トヨタ自動車株式会社 車輌の加減速度演算方法
US6463371B1 (en) * 1998-10-22 2002-10-08 Yamaha Hatsudoki Kabushiki Kaisha System for intelligent control of a vehicle suspension based on soft computing
US6115658A (en) * 1999-01-04 2000-09-05 Lord Corporation No-jerk semi-active skyhook control method and apparatus
FR2794068A1 (fr) * 1999-04-20 2000-12-01 Toyota Motor Co Ltd Dispositif et procede de commande de force d'ammortissement
DE10029010B4 (de) * 1999-06-22 2008-06-05 Toyota Jidosha Kabushiki Kaisha, Toyota Einrichtung zum Steuern von Aufhängungsstoßdämpfern bei Fahrzeugen auf Grundlage eines Scheindämpfungssystems
DE50211806D1 (de) 2001-05-09 2008-04-17 Continental Ag Verfahren zur Regelung des Dämpferstromes für elektrisch verstellbare Dämpfer
DE10260788A1 (de) * 2002-12-23 2004-07-01 Daimlerchrysler Ag Einstellbares Feder-Dämpfer-System in einem Fahrzeug
DE10306228B4 (de) * 2003-02-13 2010-10-07 Asturia Automotive Systems Ag Aktuator zur aktiven Fahrwerksregelung
JP2007500379A (ja) * 2003-07-25 2007-01-11 ヤマハ発動機株式会社 インテリジェント制御システムのソフト演算最適化装置
DE10338997A1 (de) * 2003-08-25 2005-05-25 Trw Fahrwerksysteme Gmbh & Co. Kg Einkanaliges Wankstabilisierungssystem und Verfahren zum Betrieb desselben
US7251638B2 (en) 2004-03-03 2007-07-31 Yamaha Hatsudoki Kabushiki Kaisha Intelligent robust control system for motorcycle using soft computing optimizer
DE102004017385A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Koordination eines Fahrdynamikregelungssystems mit anderen Fahrzeugstabilisierungssystemen
DE102004056610A1 (de) * 2004-11-24 2006-06-01 Zf Friedrichshafen Ag Verfahren zum Steuern und Regeln eines aktiven Fahrwerksystems
US20060224547A1 (en) * 2005-03-24 2006-10-05 Ulyanov Sergey V Efficient simulation system of quantum algorithm gates on classical computer based on fast algorithm
US20060218108A1 (en) * 2005-03-24 2006-09-28 Sergey Panfilov System for soft computing simulation
US20060293817A1 (en) * 2005-06-23 2006-12-28 Takahide Hagiwara Intelligent electronically-controlled suspension system based on soft computing optimizer
FR2888781A1 (fr) * 2005-07-25 2007-01-26 Renault Sas Procede de commande de systeme d'amortissement de vehicule
FR2890904B1 (fr) * 2005-09-22 2007-12-14 Peugeot Citroen Automobiles Sa Dispositif de commande de suspension, vehicule muni de celui-ci, procede d'obtention et programme
FR2890900B1 (fr) 2005-09-22 2007-12-14 Peugeot Citroen Automobiles Sa Dispositif de commande de suspension, vehicule muni de celui-ci, procede d'obtention et programme.
FR2890905B1 (fr) 2005-09-22 2009-01-16 Peugeot Citroen Automobiles Sa Dispositif de commande de suspension, vehicule muni de celui-ci, procede d'obtention et programme.
DE102007017242A1 (de) 2007-04-12 2008-10-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zur Wankstabilisierung eines Kraftfahrzeugs
JP2009035218A (ja) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd 能動型サスペンション、および車両の姿勢変化抑制方法
DE102007051204B4 (de) * 2007-10-26 2018-12-20 Volkswagen Ag Verfahren und Vorrichtung zur Bestimmung von Bewegungsgrößen, insbesondere von Aufbaubewegungen, eines Körpers
DE102007051224A1 (de) * 2007-10-26 2009-04-30 Volkswagen Ag Verfahren und Regelungssystem zur Regelung der Aufbaubewegung eines Fahrzeugs
DE102008052993B4 (de) 2007-10-26 2022-09-15 Volkswagen Ag Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
EP2105330B1 (de) * 2008-03-26 2011-04-27 Honda Motor Co., Ltd. Vorrichtung zur Regelung einer Radaufhängung
DE102013214742A1 (de) * 2013-07-29 2015-01-29 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Fahrwerksregelung
DE102016107261A1 (de) * 2016-04-20 2017-10-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuerungseinrichtung zur Einstellung der Dämpfkraft eines Stoßdämpfers
DE102016123420B4 (de) * 2016-12-05 2024-02-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuerungseinrichtung zur Einstellung der Dämpfkraft eines Stoßdämpfers
DE102016123421B4 (de) * 2016-12-05 2024-02-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Steuerungseinrichtung zur Einstellung der Dämpfkraft eines Stoßdämpfers
DE102020101333B4 (de) 2020-01-21 2023-02-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Aktives Dämpfungssystem
US11945277B2 (en) * 2021-09-29 2024-04-02 Ford Global Technologies, Llc Methods and apparatus to use front load estimates for body control

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1485003A (en) * 1973-11-21 1977-09-08 Lucas Industries Ltd Land vehicle wheel suspension arrangements
DE3408292A1 (de) * 1984-03-07 1985-08-29 Daimler-Benz Ag, 7000 Stuttgart Aktives federungssystem
DE3524862A1 (de) * 1985-04-12 1986-10-30 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zur daempfung von bewegungsablaeufen
JPH0696363B2 (ja) * 1986-06-10 1994-11-30 日産自動車株式会社 能動型サスペンシヨン
DE3783557T2 (de) * 1986-10-24 1993-05-13 Mazda Motor Fahrzeugaufhaengungssystem mit veraenderlichen aufhaengungscharakteristiken.
JPH0829649B2 (ja) * 1987-03-31 1996-03-27 日産自動車株式会社 能動型サスペンシヨン装置
JPS63251318A (ja) * 1987-04-09 1988-10-18 Hitachi Ltd 自動車の走行状況適応サスペンシヨン制御方式
ES2011326A6 (es) * 1988-03-28 1990-01-01 Castillo Castillo Jose Luis Sistema de amortiguacion de modos de oscilacion de vehiculos con suspension que aprovecha el movimiento relativo entre la parte suspendida y las no suspendidas pra producir fuerzas exclusivamente en el sentido opuesto al movimiento de los modos de oscilacion excitados.
DE3818188A1 (de) * 1988-05-28 1989-12-07 Daimler Benz Ag Aktives federungssystem
US4978135A (en) * 1988-09-08 1990-12-18 Mazda Motor Corporation Vehicle suspension system
JP2685268B2 (ja) * 1989-01-19 1997-12-03 マツダ株式会社 車両のサスペンション装置
JPH02303914A (ja) * 1989-05-17 1990-12-17 Mazda Motor Corp 車両のサスペンション装置
GB8913809D0 (en) * 1989-06-15 1989-08-02 Group Lotus Vehicle suspension system
DE3930555A1 (de) * 1989-06-29 1991-01-03 Bosch Gmbh Robert Semiaktive fahrwerksregelung
JP2867448B2 (ja) * 1989-08-11 1999-03-08 株式会社日立製作所 アクティブサスペンション制御装置
US5104143A (en) * 1989-09-27 1992-04-14 Toyota Jidosha Kabushiki Kaisha Vehicle suspension system with roll control variable according to vehicle speed
EP0426340B1 (de) * 1989-11-02 1993-06-09 General Motors Corporation Vorrichtung zur Fahrzeugaufhängung
US5096219A (en) * 1990-12-17 1992-03-17 General Motors Corporation Full vehicle suspension control with non-vertical acceleration correction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9221525A1 *

Also Published As

Publication number Publication date
DE4117897A1 (de) 1992-12-03
DE4117897C2 (de) 2001-10-04
JPH06500059A (ja) 1994-01-06
JP3446959B2 (ja) 2003-09-16
US5488562A (en) 1996-01-30
WO1992021525A1 (de) 1992-12-10

Similar Documents

Publication Publication Date Title
DE4117897C2 (de) System zur Erzeugung von Signalen zur Steuerung oder Regelung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrwerkes
DE102007025118B4 (de) Steuervorrichtung für einen Dämpfer mit variabler Dämpfungskraft
DE60118149T2 (de) Auf der Sky-Hook-Theorie basierendes Verfahren und Vorrichtung zur Regelung einer Fahrzeugaufhängung
DE4138831C2 (de) Verfahren und System zum Regeln einer aktiven Aufhängung eines Fahrzeuges
DE4115481C2 (de) System zur Erhöhung des Fahrkomforts und der Fahrsicherheit
DE60102335T2 (de) Aufhängungsvorrichtung mit einem elektrischen Stellantrieb mit einer parallelen Feder
DE102011080104A1 (de) Fahrzeugaufbaulagesteuervorrichtung
EP1814747A2 (de) Verfahren zum steuern und regeln eines aktiven fahrwerksystems
EP0348634A2 (de) Regelungseinrichtung zur Wankstabilisierung eines Fahrzeugs
EP2214920B1 (de) Verfahren und system zur beeinflussung der bewegung eines in seinen bewegungsabläufen steuerbaren oder regelbaren fahrzeugaufbaus eines kraftfahrzeuges und fahrzeug
DE4039629C2 (de)
DE10038074B4 (de) Steuerungsvorrichtung für Fahrzeugstoßdämpfer
DE102008053008A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE4333347A1 (de) System zur Steuerung der Dämpfungskraft-Charakteristika eines Stoßdämpfers für ein Fahrzeug
DE4303160A1 (de) System zur Regelung und/oder Steuerung eines Kraftfahrzeugfahrwerks
DE4116118C2 (de) System zur Erzeugung von Signalen zur Steuerung oder Regelung eines steuerbaren oder regelbaren Fahrwerkes
DE69908784T2 (de) Fahrzeugaufhängungen
DE4035314A1 (de) Verfahren zum semiaktiven regeln eines fahrwerks
DE4418625A1 (de) Aufhängungssteuereinrichtung für ein Fahrzeug, Abstimmverfahren für Aufhängungs-Federkonstante und Abstimmverfahren für Aufhängungs-Dämpfungsmaß
EP2052885B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
EP2052884B1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE102007050170A1 (de) Dämpfungsvorrichtung
DE102008052993A1 (de) Verfahren und System zur Beeinflussung der Bewegung eines in seinen Bewegungsabläufen steuerbaren oder regelbaren Fahrzeugaufbaus eines Kraftfahrzeuges und Fahrzeug
DE4217325A1 (de) Verfahren und Vorrichtung zur Erzeugung von Signalen zur Steuerung oder Regelung eines steuerbaren oder regelbaren Fahrwerkes
DE4302884A1 (de) Einrichtung und Verfahren zur kontinuierlichen Dämpfungskraftregelung in einem Fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 19941026

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950307