EP0534155B1 - Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung - Google Patents
Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung Download PDFInfo
- Publication number
- EP0534155B1 EP0534155B1 EP92114540A EP92114540A EP0534155B1 EP 0534155 B1 EP0534155 B1 EP 0534155B1 EP 92114540 A EP92114540 A EP 92114540A EP 92114540 A EP92114540 A EP 92114540A EP 0534155 B1 EP0534155 B1 EP 0534155B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- matrix
- aluminum
- elements
- grain size
- consolidated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0026—Matrix based on Ni, Co, Cr or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/08—Amorphous alloys with aluminium as the major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
Definitions
- the present invention relates to a compacted and consolidated aluminum-based alloy material having not only a high strength but also elongation sufficient to withstand practically-employed working, and also to a process for the production of the material.
- Aluminum-based alloys having high strength and high heat resistance have been produced to date by liquid quenching or the like.
- the aluminum alloys disclosed in Japanese Patent Application Laid-Open (Kokai) No. HEI 1-275732 and obtained by liquid quenching are amorphous or microcrystalline and are excellent alloys having high strength, high heat resistance and high corrosion resistance.
- the conventional aluminum-based alloys referred to above exhibit high strength, high heat resistance and high corrosion resistance and are excellent alloys.
- they are each obtained in the form of powder or flakes by liquid quenching and the powder or flakes are then processed or worked as a raw material in one way or another to obtain a final product, in other words, the powder or flakes are converted into a final product by primary processing or working, they are excellent in processability or workability.
- to form the powder or flakes as a raw material into a consolidated material and then to work the consolidated material, namely, to subject the consolidated material to secondary working there is still room for improvement in their workability and also in the retention of their excellent properties after the working.
- EP-A-0 475 101 filed on August 14, 1991 and claiming priority of August 8, 1990, discloses aluminium-based alloys with high strength and toughness.
- Figure 2 shows the relation between the average crystal grain size and the elongation in an Al 87 Ni 6 Mm 7 alloy. What is to be taken from said figure 2 is that the elongation increases with the average crystal grain size and that an elongation of 2.0% is achieved only if the average crystal grain size is 37,000 nm or more.
- the powder or flakes as the raw material are required to be amorphous, a supersaturated solid solution or microcrystalline such that the mean crystal grain size of the matrix is not greater than 1000 nm and the mean grain size of intermetallic compounds is 10-800 nm or to be in a mixed phase thereof.
- the raw material is amorphous, it can be converted into such a microcrystalline or mixed phase as defined above by heating it to a temperature of 50 to 550 °C, preferably 350 to 450 °C, upon compaction.
- FIG. 1 is a graph showing variations in tensile strength and elongation at room temperature among the consolidated materials in Example 1.
- FIG. 2 is also a graph depicting variations in tensile strength and elongation at room temperature among the consolidated materials in Example 2.
- FIG. 3 is also a graph showing variations in tensile strength and elongation at room temperature among the consolidated materials in Example 3.
- FIG. 4 is also a graph showing variations in tensile strength and elongation at room temperature among the extruded materials in Example 4.
- the proporticns a, a', b, c, d and e are limited, in atomic percentages, to the ranges of 84-94.8%, 82-94.6%, 5-10%, 0.1-3%, 0.1-3%, and 0.2-2%, respectively, in the general formulae in the first and second aspects of the present invention, because the alloys within the above ranges have higher roomtemperature strength than conventional (commercial) high-strength aluminum alloys and are also equipped with ductility (elongation) sufficient to withstand practically-employed working.
- ductility elongation
- HEI 3-181065 high strength is available at room temperature to 200 °C within the above ranges. Further, within the above-described ranges, cold working can be performed easily, to say nothing of hot and warm working below 400 °C.
- c plus d (c+d) is preferably in the range of 0.5 to 5%. When the c+d is at least 0.5%, the matrix is further refined and a very high thermal stability can be expected. Therefore, a further improved strength can be obtained both at room temperature and at elevated temperatures.
- c+d of not greater than 5% provides a high ductility at room temperature sufficient to withstand practically-employed working.
- Ni is an element having a relatively small ability to diffuse into the Al matrix. As it is contained together with element X, various stable or metastable, fine intermetallic compounds are formed and distributed as fine grains in the Al matrix. Ni is therefore effective not only in strengthening the matrix but also in inhibiting extraordinary coarsening of crystal grains. In other words, Ni improves the hardness and strength of the alloy to significant extents, stabilizes the microcrystalline phase at elevated temperatures, to say nothing of room temperature, and imparts heat resistance.
- element X stands for one or two elements selected from La and Ce or for Mm. It is an element having a small ability to diffuse in the Al matrix. As it is contained together with element Ni, it forms stable intermetallic compounds, thereby contributing to the stabilization of the microcrystalline structure. Further, its combination with the above element can impart ductility required to apply conventional working.
- Mm is the common name for composite materials formed of La and Ce as principal elements and, in addition, containing rare earth (lanthanoid) elements other than La and Ce described above and inevitable impurities (Si, Fe, Mg, Al, etc.). Mm can substitute for La and/or Ce at the ratio of approximately 1 to 1 (by atom percent) and is economical, whereby Mm has a substantial advantage in economy.
- Element M is one or two elements selected from Zr and Ti.
- Zr and Ti form intermetallic compounds with Al and are distributed as fine particles in the Al matrix, thereby contributing toward making finer the texture of the Al matrix, improving the ductility of the Al matrix and also strengthening the Al matrix.
- a consolidated material of still higher strength can be obtained by adding Zr and/or Ti as a substitute for the Al in an AlNiMm alloy. Further, the ductility of an AlNiMm alloy can by improved by adding Zr and/or Ti as a substitute for the Mm in the AlNiMm alloy.
- Element Q is one or more elements selected from Mg, Si, Cu and Zn.
- Mg, Si, Cu and Zn form intermetallic compounds with Al and they also form intermetallic compounds among themselves, thereby strengthening the Al matrix and improving heat resistance. In addition, specific strength and specific elasticity are also improved.
- the mean crystal grain size of the matrix is limited to the range of 40-1000 nm for the following reasons.
- Mean crystal grain sizes of the matrix smaller than 40 nm are too small to provide sufficient ductility despite high strength.
- a mean crystal grain size of the matrix of at least 40 nm is therefore needed. If the mean crystal grain size of the matrix exceeds 1000 nm, on the other hand, the strength drops abruptly, thereby making it impossible to obtain a consolidated material having high strength.
- a mean crystal grain size of the matrix not greater than 1000 nm is hence needed.
- the mean grain size of the intermetallic compounds is limited to the range of 10-800 nm because intermetallic compounds with a mean grain size outside the above range cannot serve as strengthening elements for the Al matrix. If the intermetallic compounds have a mean grain size smaller than 10 nm, they do not contribute to the strengthening of the Al matrix and, if they are present in the state of solid solution in an amount greater than that needed in the matrix, there is the potential problem of embrittlement. Mean grain sizes greater than 800 nm, on the other hand, result in unduly large grains so that the Al matrix cannot retain its strength and the intermetallic compounds cannot serve as strengthening elements. The restriction to the above ranges, therefore, leads to improvements in Young's modulus, high-temperature strength and fatigue strength.
- the mean crystal grain size of the matrix and the mean grain size of the intermetallic compounds can be controlled by choosing suitable conditions for its production.
- the mean crystal grain size of the matrix and the mean grain size of the intermetallic compounds should be controlled to be small where an importance is placed on the strength. In contrast, they should be controlled to be large where the ductility is considered important. In this manner, it is possible to obtain consolidated aluminum-based alloy materials which are suited for various purposes, respectively.
- control of the mean crystal grain size of the matrix to the range of 40-1000 nm makes it possible to impart properties so that the resulting material can be used as an excellent superplastic working material.
- Aluminum-based alloy powder having a desired composition (Al 90-x Ni 8 Mm 2 Zr x ) was produced by a gas atomizing apparatus.
- the aluminum-based alloy powder so produced was filled in a metal capsule and, while being degassed, was formed into an extrusion billet.
- the billet was extruded at 200-550 °C through an extruder.
- the minimum elongation (2%) required for general working can be obtained at the Zr content of 1.5 at.%.
- the working is feasible at a Zr content not higher than 1.5 at.%.
- the tensile strength of a conventional, consolidated high-strength aluminum-based alloy material was also measured at room temperature. As a result, the tensile strength was found to be about 650 MPa. It is also understood from this value that the above solidified material of the present invention is excellent in strength at a Zr content not greater than 2.5 at.%.
- the Young's moduli of consolidated materials obtained under the above production conditions were also investigated.
- the Young's moduli of the consolidated materials according to the present invention were as high as 8000-12000 kg /mm 2 as opposed to about 7000 kg/mm 2 of the conventional high-strength Al alloy (duralumin).
- the consolidated materials according to the present invention therefore exhibit the advantages that their deflection and deformation are smaller under the same load.
- Example 2 Al 90.5 Ni 7 Mm 2.5-x Zr x powders were prepared. Billets were then produced likewise and extruded materials (consolidated materials) were obtained eventually. Mechanical properties (tensile strength and elongation) of these extruded materials at room temperature are diagrammatically shown in FIG. 2. As is shown in FIG. 2, it is understood that the tensile strength of the consolidated material at room temperature gradually increased from the Zr content of 2.5 at.% and downward but abruptly dropped at Zr content less than 0.1%. It is also envisaged that the elongation gradually increased from the Zr content of 2.5 at.% and downward but abruptly decreased at Zr content less than 0.3 at.%.
- thin solid curves indicate Al 92.3 Ni 7.5 Zr 0.2 Mm x
- thick solid curves designate Al 92.1-x Ni 7.5 Zr 0.2 Cu 0.2 Mm x
- dotted curves correspond to Al 92.5-x Ni 7.5 Mm x
- the consolidated materials Al 92.3-x Ni 7.5 Zr 0.2 Mm x and Al 92.1-x Ni 7.5 Zr 0.2 Cu 0.2 Mm x
- the consolidated materials Al 92.3-x Ni 7.5 Zr 0.2 Mm x and Al 92.1-x Ni 7.5 Zr 0.2 Cu 0.2 Mm x
- extruded materials having the various compositions shown in Table 1 were prepared and their mechanical properties (tensile strength ⁇ , elongation ⁇ ) at room temperature were investigated. The results are also shown in Table 1. It is to be noted that the minimum elongation (2%) required for ordinary working operations was obtained by all the consolidated materials shown in Table 1. It is understood from Table 1 that the consolidated materials according to the present invention have excellent properties in tensile strength and elongation.
- the above solidified materials were found to be formed of a matrix of aluminum or a supersaturated solid solution of aluminum, the aluminum or solid solution having a mean crystal grain size of 40-1000 nm, and to contain grains of a stable or metastable phase of various intermetallic compounds formed of the matrix element and the other alloying elements and/or of various intermetallic compounds formed of the other alloying elements, said grains being distributed evenly in the matrix, and the intermetallic compounds have a mean grain size of 10-800 nm.
- Examples 1-5 the mechanical properties at room temperature were described.
- consolidated Al-Ni-Mm materials, on which the consolidated materials according to the present invention were developed have excellent strength at elevated temperatures as disclosed in Japanese Patent ApplicaLion Laid-Open (Kokai) No. HEI 3-181065, the consolidated materials according to the present invention are also excellent in mechanical properties (tensile strength, elongation) at elevated temperatures and can be effectively worked into shaped high-strength materials by warm or hot working (at temperatures ranging from room temperature to about 400 °C).
- Consolidated aluminum-based alloy materials according to the present invention are excellent in elongation (toughness) so that they can withstand secondary working operations when the secondary working operations are conducted.
- the secondary operations can therefore be performed with ease while retaining the excellent properties of their raw materials as they are.
- such consolidated materials can be obtained by a simple process, that is, by simply compacting powder or flakes, which have been obtained by quench solidification, and then subjecting the thus-compacted powder or flakes to plastic working.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Claims (6)
- Verdichtetes und verfestigtes Material aus einer Legierung auf Aluminiumgrundlage, das eine Al-Matrix und Körner aus intermetallischen Verbindungen aufweist, und welches durch Verdichten und Verfestigen eines rasch erstarrten Materials mit einer durch die folgende allgemeine Formel dargestellten Zusammensetzung erhalten wurde: Ala Nib Xc Md, wobei X La und/oder Ce darstellt oder Mm (Mischmetall) darstellt; M Zr und/oder Ti darstellt und a, b, c und d Angaben in at% sind, für die gilt 84 ≤ a ≤ 94,8; 5 ≤ b ≤ 10; 0,1 ≤ c ≤ 3 sowie 0,1 ≤ d ≤ 3, und wobei die mittlere Kristallkorngröße der Matrix 40 bis 1000 nm beträgt und die mittlere Korngröße der intermetallischen Verbindungen 10 bis 800 nm beträgt,mit Ausnahme einer hochfesten Legierung auf Aluminiumgrundlage mit einer durch die allgemeine Formel Ale Nf Pg Qh dargestellten Zusammensetzung, wobei:N Ni darstellt,P mindestens ein aus der aus Ti und Zr bestehenden Gruppe ausgewähltes Metallelement ist,Q mindestens ein aus der aus Y, den Elementen der seltenen Erden und Mm (Mischmetall), was ein Komposit aus Elementen der seltenen Erden ist, bestehenden Gruppe ausgewähltes Element darstellt unde, f, g und h Angaben in at% sind, für die gilt 75 < e ≤ 97; 0,5 ≤ f ≤ 15, 0,5 ≤ g ≤ 10 und 0,5 ≤ h ≤ 3,5, wobei die Legierung aus einer Aluminiummatrix oder einer übersättigten Aluminiumfeststofflösung mit einer mittleren Kristallkorngröße von 0,1 bis 80 µm gebildet ist und darin eine gleichmäßige Verteilung von Teilchen aus einer metastabilen oder stabilen Phase intermetallischer Verbindungen enthält, die zwischen dem Wirtelement (Matrixelement) und den oben angegebenen legierenden Elementen und/oder den legierenden Elementen gebildet sind, wobei die intermetallischen Verbindungen eine mittlere Teilchengröße von 10 bis 500 nm aufweisen.
- Verdichtetes und verfestigtes Material aus einer Legierung auf Aluminiumgrundlage, das eine Al-Matrix und Körner aus intermetallischen Verbindungen aufweist, und welches durch Verdichten und Verfestigen eines rasch erstarrten Materials mit einer durch die allgemeine Formel Ala, Nib Xc Md Qe dargestellten Zusammensetzung erhalten wurde, wobei X La und/oder Ce darstellt oder Mm (Mischmetall) darstellt; M Zr und/oder Ti darstellt; Q mindestens ein aus der aus Mg, Si, Cu und Zn bestehenden Gruppe ausgewähltes Element darstellt und a', b, c, d und e Angaben in at% sind, für die gilt: 82 ≤ a' ≤ 94,6; 5 ≤ b ≤ 10; 0,1 ≤ c ≤ 3; 0,1 ≤ d ≤ 3 sowie 0,2 ≤ e ≤ 2, und wobei die mittlere Kristallkorngröße der Matrix 40 bis 1000 nm beträgt und die mittlere Korngröße der intermetallischen Verbindungen 10 bis 800 nm beträgt;Mit Ausnahme einer hochfesten Legierung auf Aluminiumgrundlage mit einer durch die allgemeine Formel Alf Ng Ph Qi dargestellten Zusammensetzung, wobei:N mindestens ein aus der aus Ni und Cu bestehenden Gruppe ausgewähltes Metallelement ist;P mindestens ein aus der aus Ti und Zr bestehenden Gruppe ausgewähltes Metallelement ist;Q mindestens ein aus der aus Y, den Elementen der seltenen Erden und Mm (Mischmetall), was ein Komposit aus Elementen der seltenen Erden ist, bestehenden Gruppe ausgewähltes Element ist undf, g, h und i Angaben in at% sind, für die gilt: 75 ≤ f ≤ 97; 0,5 ≤ g ≤ 15; 0,5 ≤ h ≤ 10 und 0,5 ≤ i ≤ 3,5, wobei die Legierung aus einer Aluminiummatrix oder einer übersättigten Aluminiumfeststofflösung mit einer mittleren Kristallkorngröße von 0,1 bis 80 µm gebildet ist und darin eine gleichmäßige Verteilung von Teilchen aus einer metastabilen oder einer stabilen Phase intermetallischer Verbindungen enthält, welche zwischen dem Wirtelement (Matrixelement) und den oben angegebenen legierenden Elementen und/oder zwischen den legierenden Elementen gebildet sind, wobei die intermetallischen Verbindungen eine mittlere Teilchengröße von 10 bis 500 nm aufweisen.
- Verdichtetes und verfestigtes Material aus einer Legierung auf Aluminiumgrundlage nach Anspruch 1 oder 2, bei dem die Al-Matrix eine Matrix aus Aluminium oder einer übersättigten Aluminiumfeststofflösung ist und die Körner aus einer intermetallischen Verbindung eine stabile oder eine metastabile Phase aus verschiedenartigen Verbindungen aufweisen, die aus dem Matrixelement und den anderen legierenden Elementen gebildet sind, und/oder aus verschiedenartigen Verbindungen, die aus den anderen legierenden Elementen gebildet sind, und gleichmäßig in der Matrix verteilt sind.
- Verfahren zum Herstellen eines verdichteten und verfestigten Materials aus einer Legierung auf Aluminiumgrundlage, welches eine Al-Matrix mit einer mittleren Kristallkorngröße von 40 bis 1000 nm und Körner aus intermetallischen Verbindungen mit einer mittleren Korngröße von 10 bis 800 nm aufweist, wobei das Verfahren umfaßt:Schmelzen eines Materials mit einer durch die folgende allgemeine Formel dargestellten Zusammensetzung: Ala Nib Xc Md, wobei X La und/oder Ce darstellt oder Mm (Mischmetall) darstellt; M Zr und/oder Ti darstellt; a, b, c und d Angaben in at% sind, für die gilt: 84 ≤ a ≤ 94,8; 5 ≤ b ≤ 10; 0,1 ≤ c ≤ 3 sowie 0,1 ≤ d ≤ 3;mit Ausnahme einer durch die allgemeine Formel Ale Nf Pg Qh dargestellten Zusammensetzung, wobei N Ni darstellt; P mindestens ein aus der aus Ti und Zr bestehenden Gruppe ausgewähltes Metallelement ist; Q mindestens ein aus der aus Y, den Elementen der seltenen Erden und Mm (Mischmetall), was ein Komposit aus den Elementen der seltenen Erden ist, bestehenden Gruppe ausgewähltes Element ist und e, f, g und h Angaben in at% sind, für die gilt: 75 ≤ e ≤ 97; 0,5 ≤ f ≤ 15; 0,5 ≤ g ≤ 10 sowie 0,5 ≤ h ≤ 3,5;Abschrecken und rasches Erstarren des resultierenden geschmolzenen Materials zum Erhalt eines Pulvers oder von Flocken;Verdichten des Pulvers oder der Flocken; undKomprimieren, Formen und Verfestigen des so verdichteten Pulvers oder der so verdichteten Flocken durch eine herkömmliche plastische Bearbeitung.
- Verfahren zum Herstellen eines verdichteten und verfestigten Materials aus einer Legierung auf Aluminiumgrundlage, welches eine Al-Matrix mit einer mittleren Kristallkorngröße von 40 bis 1000 nm sowie Körner aus intermetallischen Verbindungen mit einer mittleren Korngröße von 10 bis 800 nm aufweist, wobei das Verfahren umfaßt:Schmelzen eines Materials mit einer durch die folgende allgemeine Formel dargestellten Zusammensetzung: Ala, Nib Xc Md Qe, wobei X La und/oder Ce darstellt oder Mm (Mischmetall) darstellt; M Zr und/oder Ti darstellt; Q mindestens ein aus der aus Mg, Si, Cu und Zn bestehenden Gruppe ausgewähltes Element darstellt und a', b, c, d und e Angaben in at% sind, für die gilt 82 ≤ a' ≤ 94,6; 5 ≤ b ≤ 10; 0,1 ≤ c ≤ 3; 0,1 ≤ d ≤ 3 sowie 0,2 ≤ e ≤ 2;mit Ausnahme einer durch die allgemeine Formel Alf Ng Ph Qi dargestellten Zusammensetzung, wobei N mindestens ein aus der aus Ni und Cu bestehenden Gruppe ausgewähltes Metallelement ist; P mindestens ein aus der aus Ti und Zr bestehenden Gruppe ausgewähltes Metallelement ist; Q mindestens ein aus der aus Y, den Elementen der seltenen Erden und Mm (Mischmetall), was ein Komposit aus Elementen der seltenen Erden ist, bestehenden Gruppe ausgewähltes Element ist und f, g, h und i Angaben in at% sind, für die gilt: 75 ≤ f ≤ 97; 0,5 ≤ g ≤ 15; 0,5 ≤ h ≤ 10 sowie 0,5 ≤ i ≤ 3,5;Abschrecken und rasches Erstarren des resultierenden geschmolzenen Materials zum Erhalt eines Pulvers oder von Flocken;Verdichten des Pulvers oder der Flocken undKomprimieren, Formen und Verfestigen des so verdichteten Pulvers oder der so verdichteten Flocken durch eine herkömmliche plastische Bearbeitung.
- Verfahren zum Herstellen eines verdichteten und verfestigten Materials aus einer Legierung auf Aluminiumgrundlage nach Anspruch 4 oder 5, bei dem die Al-Matrix eine Matrix aus Aluminium oder einer übersättigten Aluminiumfeststofflösung ist und die intermetallischen Verbindungen Körner aus einer stabilen oder einer metastabilen Phase aus verschiedenartigen Verbindungen aufweisen, die aus dem Matrixelement und den anderen legierenden Elementen gebildet sind, und/oder aus verschiedenartigen Verbindungen, die aus den anderen legierenden Elementen gebildet sind, und gleichmäßig in der Matrix verteilt sind.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP249396/91 | 1991-09-27 | ||
JP24939691 | 1991-09-27 | ||
JP29366/92 | 1992-02-17 | ||
JP4029366A JP2790935B2 (ja) | 1991-09-27 | 1992-02-17 | アルミニウム基合金集成固化材並びにその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0534155A1 EP0534155A1 (de) | 1993-03-31 |
EP0534155B1 true EP0534155B1 (de) | 1996-12-11 |
Family
ID=26367561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92114540A Expired - Lifetime EP0534155B1 (de) | 1991-09-27 | 1992-08-26 | Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung |
Country Status (4)
Country | Link |
---|---|
US (1) | US5264021A (de) |
EP (1) | EP0534155B1 (de) |
JP (1) | JP2790935B2 (de) |
DE (1) | DE69215813T2 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05125473A (ja) * | 1991-11-01 | 1993-05-21 | Yoshida Kogyo Kk <Ykk> | アルミニウム基合金集成固化材並びにその製造方法 |
JP2785910B2 (ja) * | 1994-08-25 | 1998-08-13 | 本田技研工業株式会社 | 耐熱・耐摩耗性アルミニウム合金、アルミニウム合金製リテーナ及びアルミニウム合金製バルブリフタ |
JP4080013B2 (ja) * | 1996-09-09 | 2008-04-23 | 住友電気工業株式会社 | 高強度高靱性アルミニウム合金およびその製造方法 |
US11986904B2 (en) | 2019-10-30 | 2024-05-21 | Ut-Battelle, Llc | Aluminum-cerium-nickel alloys for additive manufacturing |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0475101A1 (de) * | 1990-08-14 | 1992-03-18 | Ykk Corporation | Hochfeste Legierungen auf Aluminiumbasis |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3020154A (en) * | 1958-04-24 | 1962-02-06 | Martin Marietta Corp | Aluminum alloy |
US4033794A (en) * | 1973-01-19 | 1977-07-05 | The British Aluminum Company, Limited | Aluminium base alloys |
US4464199A (en) * | 1981-11-20 | 1984-08-07 | Aluminum Company Of America | Aluminum powder alloy product for high temperature application |
US4948558A (en) * | 1983-10-03 | 1990-08-14 | Allied-Signal Inc. | Method and apparatus for forming aluminum-transition metal alloys having high strength at elevated temperatures |
US4743317A (en) * | 1983-10-03 | 1988-05-10 | Allied Corporation | Aluminum-transition metal alloys having high strength at elevated temperatures |
US4917730A (en) * | 1984-04-16 | 1990-04-17 | Minnesota Mining And Manufacturing Company | Prevention of spotting in thermal imaging compositions |
DE3524276A1 (de) * | 1984-07-27 | 1986-01-30 | BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau | Aluminiumlegierung zur herstellung von ultra-feinkoernigem pulver mit verbesserten mechanischen und gefuegeeigenschaften |
JPS6148551A (ja) * | 1984-08-13 | 1986-03-10 | Sumitomo Light Metal Ind Ltd | 高温強度に優れたアルミニウム合金成形材 |
CH673240A5 (de) * | 1986-08-12 | 1990-02-28 | Bbc Brown Boveri & Cie | |
JPS6487785A (en) * | 1987-09-29 | 1989-03-31 | Showa Aluminum Corp | Production of aluminum alloy material having excellent surface hardness and wear resistance |
JPH01240631A (ja) * | 1988-03-17 | 1989-09-26 | Takeshi Masumoto | 高力、耐熱性アルミニウム基合金 |
US4891068A (en) * | 1988-05-12 | 1990-01-02 | Teikoku Piston Ring Co., Ltd. | Additive powders for coating materials or plastics |
US4851193A (en) * | 1989-02-13 | 1989-07-25 | The United States Of America As Represented By The Secretary Of The Air Force | High temperature aluminum-base alloy |
US4964927A (en) * | 1989-03-31 | 1990-10-23 | University Of Virginia Alumini Patents | Aluminum-based metallic glass alloys |
DE69017496T2 (de) * | 1989-04-25 | 1995-09-28 | Tsuyoshi Masumoto | Korrosionsbeständige Legierung auf Aluminium-Basis. |
JPH07122119B2 (ja) * | 1989-07-04 | 1995-12-25 | 健 増本 | 機械的強度、耐食性、加工性に優れた非晶質合金 |
JP2753739B2 (ja) * | 1989-08-31 | 1998-05-20 | 健 増本 | アルミニウム基合金箔又はアルミニウム基合金細線の製造方法 |
US5154780A (en) * | 1990-06-22 | 1992-10-13 | Aluminum Company Of America | Metallurgical products improved by deformation processing and method thereof |
JPH051346A (ja) * | 1990-08-14 | 1993-01-08 | Yoshida Kogyo Kk <Ykk> | 高強度アルミニウム基合金 |
JP3203564B2 (ja) * | 1991-09-26 | 2001-08-27 | ワイケイケイ株式会社 | アルミニウム基合金集成固化材並びにその製造方法 |
-
1992
- 1992-02-17 JP JP4029366A patent/JP2790935B2/ja not_active Expired - Fee Related
- 1992-08-14 US US07/930,733 patent/US5264021A/en not_active Expired - Fee Related
- 1992-08-26 DE DE69215813T patent/DE69215813T2/de not_active Expired - Fee Related
- 1992-08-26 EP EP92114540A patent/EP0534155B1/de not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0475101A1 (de) * | 1990-08-14 | 1992-03-18 | Ykk Corporation | Hochfeste Legierungen auf Aluminiumbasis |
Also Published As
Publication number | Publication date |
---|---|
DE69215813T2 (de) | 1997-06-19 |
DE69215813D1 (de) | 1997-01-23 |
JP2790935B2 (ja) | 1998-08-27 |
EP0534155A1 (de) | 1993-03-31 |
JPH05140685A (ja) | 1993-06-08 |
US5264021A (en) | 1993-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0675209B1 (de) | Hochfeste Aluminiumlegierung | |
EP0534470B1 (de) | Superplastisches Material aus Legierung auf Aluminiumbasis und Verfahren zur Herstellung | |
EP0558957B1 (de) | Hochfestige und verschleissfestige Aluminiumlegierung | |
EP0821072B1 (de) | Hochverschleissfester Verbundwerkstoff auf Aluminium-basis und verschleissfeste Teile | |
US5607523A (en) | High-strength aluminum-based alloy | |
US5279642A (en) | Process for producing high strength aluminum-based alloy powder | |
EP0796925B1 (de) | Hochfeste und hochduktile Legierung auf Aluminiumbasis | |
US5647919A (en) | High strength, rapidly solidified alloy | |
EP0606572B1 (de) | Hochfeste und wärmebeständige Aluminiumlegierung, verdichteter und verfestigter Werkstoff daraus und Verfahren zur Herstellung | |
US6056802A (en) | High-strength aluminum-based alloy | |
EP0564814B1 (de) | Verdichteter und verfestigter Werkstoff aus einer hochfesten, hitzebeständigen Legierung auf Aluminiumbasis und Verfahren zu seiner Herstellung | |
JP2807374B2 (ja) | 高強度マグネシウム基合金およびその集成固化材 | |
EP0534155B1 (de) | Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung | |
EP0540056B1 (de) | Verdichtete und verfestigte Wirkstoffe aus Aluminium-Legierung | |
EP0577944B1 (de) | Hochfestige Legierung auf Aluminiumbasis und verdichteter und verfestigter Werkstoff daraus | |
EP0524527B1 (de) | Verdichtete und verfestigte Werkstoffe auf Aluminiumbasis und Verfahren zur Herstellung dieser Werkstoffe | |
JP3203564B2 (ja) | アルミニウム基合金集成固化材並びにその製造方法 | |
EP0530710B1 (de) | Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung | |
JP3485961B2 (ja) | 高強度アルミニウム基合金 | |
JP3299404B2 (ja) | 高強度アルミニウム合金およびその製造方法 | |
JPH09310160A (ja) | 高強度、高延性アルミニウム合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19930730 |
|
17Q | First examination report despatched |
Effective date: 19940504 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: YKK CORPORATION |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69215813 Country of ref document: DE Date of ref document: 19970123 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020808 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020821 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020904 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040302 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |