EP0530893A1 - Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei - Google Patents

Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei Download PDF

Info

Publication number
EP0530893A1
EP0530893A1 EP92202548A EP92202548A EP0530893A1 EP 0530893 A1 EP0530893 A1 EP 0530893A1 EP 92202548 A EP92202548 A EP 92202548A EP 92202548 A EP92202548 A EP 92202548A EP 0530893 A1 EP0530893 A1 EP 0530893A1
Authority
EP
European Patent Office
Prior art keywords
lead
slag
phase
primary
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92202548A
Other languages
English (en)
French (fr)
Other versions
EP0530893B1 (de
Inventor
Lutz Dr. Deininger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0530893A1 publication Critical patent/EP0530893A1/de
Application granted granted Critical
Publication of EP0530893B1 publication Critical patent/EP0530893B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes

Definitions

  • the invention relates to a process for the continuous melting of metallic lead from precious metal-containing and lead-containing precursors.
  • Lead ores practically always contain silver and in many cases gold and platinum. Precious metals can also be contained in lead-containing intermediates or waste. In the pyrometallurgical extraction of lead, the precious metals go into the lead. After refining to remove copper, nickel, cobalt, tin, arsenic and antimony, the removal and extraction of the noble metals from the pre-refined lead lead is generally carried out using the Parkes process. An excess of zinc is introduced into the liquid lead and by cooling silver-zinc-lead mixed crystals are separated out, which are skimmed off as so-called foams or crusts from the lead bath. These foams also contain the other precious metals.
  • the excess zinc present in the desilvered lead is removed either by the Harris method by adding NaOH, by the Betterton method by chlorination or by vacuum dezincification.
  • the zinc is mechanically adhered to the foams by pressing or segregation and the zinc is removed by distillation and the so-called rich lead is produced, which contains the precious metals in high concentration.
  • the rich lead which can contain up to about 50% silver
  • the lead is oxidized to PbO in the so-called propellant process by selective oxidation with air and drawn off as a liquid smoothness, leaving behind the silver or Güldisch silver.
  • the Güldisch silver is then subjected to refining electrolysis.
  • the gold and platinum content in the lead is higher, the gold and platinum content before the actual one can be added by adding small amounts of zinc Desilvering can be enriched in a gold foam that contains little silver. This gold foam is then processed separately to Güldisch silver. In the usual desilvering, the entire lead must be subjected to the process described.
  • a method for lead extraction in which a mixture of oxidic and sulfidic lead compounds in a first stage in a moving furnace, e.g. a rotary kiln is melted down, whereby in addition to primary lead, a high-lead-containing slag is formed, which contains the lead partly as oxide and partly as silicate. Lead and slag are withdrawn from the first stage, the slag being extracted in pieces. In a second stage, the slag is melted in a shaft furnace to reduce it, resulting in a low-lead slag and secondary lead. Precious metals in the feed go into the primary lead almost quantitatively.
  • Part of the primary lead obtained in the first stage can be oxidized again and form the feed for the first stage as an oxidic component with fresh amounts of sulfidic ore.
  • the silver contained in the primary lead is enriched in a small amount of lead so that it can be directly subjected to the driving process.
  • This process relates to a batch process in which the slag tapped from the first stage has to be melted down again in the second stage.
  • the lead tapped from the first stage must be oxidized to produce a lead worthy of driving.
  • a method for processing lead, copper and sulfur containing materials in two separate stages is known, a copper stone phase and a lead containing primary lead phase being formed in the first stage.
  • the separated slag phase is reduced in a second stage, with low-lead slag and secondary lead and possibly a cobalt-containing arsenic alloy.
  • Both stages can be carried out in shaft furnaces, flame furnaces, short drum furnaces, head-blown rotary converters or bottom-blown tilting converters.
  • Arc resistance furnaces are specified as advantageous units.
  • Most of the leading silver is accumulated in the first stage in the primary lead and in the copper stone.
  • the lead content of the slag in the first stage is set at 20 to 40%.
  • the silver content of the lead is largely in the copper stone and the primary lead.
  • the silver content of the primary lead is less than 1%, so that the primary lead must be subjected to the usual refining in order to obtain the silver.
  • this process is only intended for copper-rich lead materials.
  • the precursors can be in any form, for example as oxides, sulfides, sulfates, silicates.
  • Metallic precursors such as computer scrap can also be added or used, in which case additives for slag formation may have to be added.
  • the precursors do not contain any fuel, for example in sulfidic form, or if their fuel content is insufficient to cover the heat requirement in the oxidation zone, the required fuel is added to the oxidation zone in solid, gaseous or liquid form.
  • the fuel can be added by means of nozzles from below or laterally into the melt and / or into the gas space or with the raw material mixture.
  • the metal phases in the oxidation zone and the reduction zone are separated from one another by a partition arranged on the bottom of the reactor.
  • the slag flows out of the oxidation zone via this partition or through an opening in the partition into the reduction zone.
  • the gas spaces of the oxidation and reduction zones can be separated from one another or the gas from the reduction zone flows into the oxidation zone and is used there for after-combustion to cover the heat.
  • gases containing oxygen are blown into the lead phase from below or from the side.
  • the partial pressure of oxygen in the oxidation zone is set so that only the desired amount of primary lead is obtained from the lead amount and the remaining lead content is driven into the slag as oxide. When starting up, a corresponding rich lead with the desired silver content can be presented, then the oxygen partial pressure required for continuous operation can be set directly.
  • an oxygen partial pressure must first be used, in which the lead is enriched with silver to the desired value and little or no primary lead is obtained. To When the desired concentration is reached, the oxygen partial pressure is then set to the value for continuous operation. The oxygen partial pressure is adjusted by regulating the ratio of the amount of oxygen blown in to the amount of the oxidizable constituents contained in the precursors. If fuels are blown into the melt, these must be taken into account. Oxygen, oxygen-enriched air or air can be used as the oxygen-containing gases. By precisely controlling the oxygen partial pressure, the silver content in the primary lead can be increased to such an extent that, for example, Güldischsilver is obtained with a high silver content in the primary materials.
  • the secondary lead phase is located under the slag phase in the reduction zone.
  • the reducing agent is blown into the lead phase from below or from the side and flows from there into the slag phase and then into the free reactor space.
  • Carbon-containing solid, liquid or gaseous materials are used as reducing agents. They are blown in with oxygen-containing gases and at least partially converted to CO and possibly H2 in the lead phase, so that a reducing gas from the lead phase enters the slag phase.
  • the combustible components can be post-burned in the escaping gas. If necessary, fuel is burned in the gas space of the reduction zone to cover the heat requirement.
  • the advantage of the method of operation according to the invention is that no classical enrichment by adding zinc, Seigers and distillation is required to remove the precious metals from the lead, but the primary lead can be used directly in the driving work. in addition, there is only a very small amount of precious metal in the cycle and / or intermediate products.
  • the secondary lead in the reduction zone is largely free of precious metals and does not require desilvering.
  • a preferred embodiment consists in that, according to c), the oxygen partial pressure in the oxidation zone is controlled in such a way that the molten primary lead has a silver content of at least 50% and the amount of primary lead is less than 5% of the leading lead content. This makes the extraction of precious metals from the primary lead particularly economical.
  • the starting materials used contain sulfidic lead materials.
  • Sulfidic lead materials are primarily lead ore concentrates. They are processed according to the QSL procedure, e.g. in U.S. Patent 4,266,971 and U.S. Patent 4,895,595. Other materials containing precious metals can be added to the lead ore.
  • the fuel required in the form of sulfide sulfur is already contained in the feedstock in a very uniform distribution, so that very good operating conditions result.
  • a preferred embodiment is that in the reduction zone carbon-containing reducing agents and oxygen-containing gases are blown into the secondary lead phase by means of nozzles and a level of the lead phase is set which converts the reducing agent to CO and possibly H2 of at least 50% in the lead phase before Entry into the slag phase causes.
  • the amount of oxygen introduced in the oxygen-containing gases is such that the reducing agent in the lead phase is converted to CO and possibly H2 in the desired percentage.
  • the education of H2 takes place when using hydrocarbons or through the implementation of volatile constituents contained in the coal.
  • the height of the lead phase required for the desired implementation of the reducing agent in the lead phase depends on the type of reducing agent and the oxygen-containing gas, the temperature of the lead phase and the strength and speed of the injection jets.
  • the required height can, however, be determined relatively easily empirically for each operating case.
  • a protective gas can be blown in as a jacket gas in multi-component nozzles.
  • the resulting CO and H2-containing reducing gas is simultaneously heated up in the metal layer and accordingly occurs at high temperature in the slag, creating very good reduction conditions.
  • this favors a further conversion to CO and H2 in the slag layer. This ensures that, despite the high lead oxide content of the slag entering the reduction zone, a low-lead slag is generated in the reduction zone.
  • the height of the lead phase above floor-blowing nozzles is at least 4 cm and is preferably above 20 cm.
  • the QSL reactor has a length of 33 m, an inner diameter of 3 m in the oxidation zone and 2.5 m in the reduction zone.
  • a weir is arranged between the oxidation zone and the reduction zone, which mixes the lead phases of the oxidation and reduction zones prevented, but allows the high lead-containing slag to flow out of the oxidation zone into the reduction zone.
  • the reactor is equipped with six bottom-blowing nozzles in the oxidation zone and five in the reduction zone.
  • Technically pure oxygen is blown into the oxidation zone. Fine-grained coal, technically pure oxygen and nitrogen or natural gas or mixtures as a protective gas for the nozzles are blown into the reduction zone.
  • Secondary lead and slag are alternately tapped from the reduction zone, whereby a lead bath of approx. 250 mm is maintained.
  • the primary lead or rich lead is continuously withdrawn from the oxidation zone.
  • the exhaust gas from the oxidation zone and the reduction zone is drawn off together on the side of the lead of the oxidation zone.
  • Approx. 25 t / h of a feed mixture with 10% Ag, 40% Pb and the rest of the slag components are charged onto the slag layer in the oxidation zone.
  • the oxygen potential in the oxidation zone is adjusted by adjusting the amount of oxygen blown in so that 10% of the lead lead is obtained as the primary lead and about 99% of the silver lead is collected in this primary lead.
  • a rich lead or raw silver with about 70% Ag is generated in the oxidation zone and drawn off from it.
  • the low-silver secondary lead with a silver content of approximately 0.01 to 0.02% and the slag are drawn off from the reduction zone.
  • the feed mixture corresponds to Example 1.
  • the oxygen potential in the oxidation zone is set so that 5% of the lead flow as primary lead accumulate and about 99% of the silver lead is collected in the primary lead. A rich lead or raw silver with about 83% Ag is produced.
  • Approx. 25 t / h of a feed mixture with 1% Ag, 40% Pb and the rest of the slag components are fed into the oxidation zone.
  • the oxygen potential is adjusted in such a way that about 10% of the lead flow is obtained as primary lead and about 99% of the silver lead is collected in this primary lead.
  • a rich lead with about 20% Ag is generated in the oxidation zone and drawn off from it.
  • the low-silver secondary lead with a silver content of approximately 0.01% and the slag are drawn off from the reduction zone.
  • the feed mixture corresponds to example 3.
  • the oxygen potential in the oxidation zone is set so that 5% of the lead lead is obtained as the primary lead and about 99% of the silver lead is collected in the primary lead. A rich lead with about 32% Ag is produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Metallisches, edelmetallhaltiges Blei wird in einem länglichen Reaktor mit zwei getrennten Bleiphasen und einer gemeinsamen Schlackenphase erschmolzen. In der Oxidationszone wird die Beschickung auf die Schlackenphase chargiert und der Sauerstoffpartialdruck durch Einblasen sauerstoffhaltiger Gase in die Bleiphase so gesteuert, daß das Primärblei in geringer Menge und mit hohem Silbergehalt anfällt. Die hochbleihaltige Schlacke fließt in die Reduktionszone und wird durch Einbringen reduzierender Stoffe reduziert, wobei ein silberarmes Sekundärblei und eine bleiarme Schlacke anfallen. Primärblei und Sekundärblei werden separat abgezogen.

Description

  • Die Erfindung betrifft ein Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei aus edelmetallhaltigen und bleihaltigen Vorstoffen.
  • Bleierze enthalten praktisch immer Silber und in vielen Fällen auch Gold und Platin. Auch in bleihaltigen Zwischenprodukten oder Abfällen können Edelmetalle enthalten sein. Bei der pyrometallurgischen Gewinnung von Blei gehen die Edelmetalle in das Werkblei. Nach einer Raffination zur Entfernung von Kupfer, Nickel, Kobalt, Zinn, Arsen und Antimon erfolgt die Entfernung und Gewinnung der Edelmetalle aus dem vorraffinierten Werkblei im allgemeinen nach dem Parkes-Verfahren. Dabei wird Zink im Überschuß in das flüssige Blei eingebracht und durch Abkühlen werden Silber-Zink-Blei-Mischkristalle ausgeschieden, die als sog. Schäume oder Krusten vom Bleibad abgeschöpft werden. Diese Schäume enthalten auch die anderen Edelmetalle. Der im entsilberten Blei vorhandene Überschuß an Zink wird entweder nach dem Harris-Verfahren durch Zugabe von NaOH, nach dem Betterton-Verfahren durch Chlorierung oder durch Vakuumentzinkung entfernt. Aus den Schäumen wird durch Abpressen oder Seigern mechanisch anhaftendes Blei und durch Abdestillieren das Zink entfernt und das sog. Reichblei erzeugt, das die Edelmetalle in hoher Konzentration enthält. Aus dem Reichblei, das bis zu etwa 50% Silber enthalten kann, wird im sog. Treibprozeß durch selektive Oxidation mit Luft das Blei zu PbO oxidiert und als flüssige Glätte abgezogen, wobei dann das Blicksilber oder Güldischsilber zurückbleibt. Das Güldischsilber wird dann einer Raffinationselektrolyse unterworfen. Bei höherem Gold- und Platingehalt im Werkblei kann durch Zugabe von geringen Mengen Zink der Gold- und Platingehalt vor der eigentlichen Entsilberung in einem Goldschaum angereichert werden, der nur wenig Silber enthält. Dieser Goldschaum wird dann separat zu Güldischsilber verarbeitet. Bei der üblichen Entsilberung muß also das gesamte Werkblei dem beschriebenen Verfahrensgang unterworfen werden.
  • Aus der DE-PS 589738 ist ein Verfahren zur Bleigewinnung bekannt, bei dem ein Gemisch aus oxidischen und sulfidischen Bleiverbindungen in einer ersten Stufe in einem bewegten Ofen, z.B. einem Drehrohrofen, eingeschmolzen wird, wobei neben Primärblei eine hochbleihaltige Schlacke entsteht, die das Blei teils als Oxid und teils als Silikat enthält. Blei und Schlacke werden aus der ersten Stufe abgezogen, wobei die Schlacke in Stückform gewonnen wird. Die Schlacke wird in einer zweiten Stufe in einem Schachtofen reduzierend verschmolzen, wobei eine bleiarme Schlacke und Sekundärblei anfallen. Im Einsatzgut vorhandene Edelmetalle gehen nahezu quantitativ in das Primärblei. Ein Teil des in der ersten Stufe gewonnenen Primärbleis kann wieder oxidiert werden und als oxidischer Bestandteil mit frischen Mengen sulfidischen Erzes die Beschickung für die erste Stufe bilden. Dabei wird das im Primärblei enthaltene Silber in einer kleinen Menge Blei angereichert, so daß diese direkt dem Treibprozeß unterworfen werden kann. Dieses Verfahren betrifft ein diskontinuierliches Verfahren, bei dem die aus der ersten Stufe abgestochene Schlacke in der zweiten Stufe wieder eingeschmolzen werden muß. Außerdem muß zur Erzeugung eines treibwürdigen Bleis das aus der ersten Stufe abgestochene Blei oxidiert werden.
  • Aus der DE-PS 590 505 ist eine Abänderung des vorstehend beschriebenen Verfahrens bekannt, bei dem die oxidische Komponente durch Einblasen von Luft in ein Bleibad in der ersten Stufe selbst erzeugt wird, so daß nur noch die sulfidische Komponente in die erste Stufe chargiert werden muß. Die im Laufe des Verfahrens entstehenden Metallmengen sowie ein Teil der oxidischen Bleischlacke werden in gegebenen Zeitabständen aus dem Ofen entfernt. Die Schlacke wird zweckmäßigerweise wieder in einem Schachtofen weiterverarbeitet. Auch dieses Verfahren arbeitet diskontinuierlich. Außerdem muß das gesamte Primärblei dem üblichen Raffinationsgang für die Edelmetallgewinnung unterworfen werden.
  • Aus der DE-PS 27 39 963 ist ein Verfahren zur Verarbeitung von blei-, kupfer- und schwefelhaltigen Materialien in zwei separaten Stufen bekannt, wobei in der ersten Stufe eine Kupfersteinphase und eine bleihaltige Primärbleiphase gebildet werden. Nach Trennung der Phasen wird die abgetrennte Schlackenphase in einer zweiten Stufe reduziert, wobei bleiarme Schlacke und Sekundärblei sowie evtl. eine kobalthaltige Arsenlegierung anfallen. Beide Stufen können in Schachtöfen, Flammöfen, Kurztrommelöfen, kopfbeblasenen Drehkonvertern oder bodenbeblasenen Kipppkonvertern durchgeführt werden. Als vorteilhafte Aggregate werden Lichtbogenwiderstandsöfen angegeben. Der größte Teil des vorlaufenden Silbers wird in der ersten Stufe im Primärblei und im Kupferstein angesammelt. Der Bleigehalt der Schlacke in der ersten Stufe wird auf 20 bis 40% eingestellt. Der Silbergehalt des Vorlaufes geht zum größten Teil in den Kupferstein und das Primärblei. Der Silbergehalt des Primärbleis liegt unter 1%, so daß das Primärblei der üblichen Raffination zur Gewinnung des Silbers unterworfen werden muß. Außerdem ist dieses Verfahren nur für kupferreiche Bleimaterialien bestimmt.
  • Der Erfindung liegt die Aufgabe zugrunde, bei einem kontinuierlichen Verfahren zum Verschmelzen von Blei aus edelmetall- und bleihaltigen Vorstoffen den Edelmetallgehalt der Beschickung in einer Blei-Silber-Legierung zu sammeln, die direkt in die Treibarbeit eingesetzt werden kann. Die Lösung dieser Aufgabe erfolgt erfindungsgemäß durch ein Verfahren zum kontinuierlichen Erschmelzen von metallischen Blei aus edelmetallhaltigen und bleihaltigen Vorstoffen, das dadurch gekennzeichnet ist, daß
    • a) das Erschmelzen der Beschickung in einem länglichen, liegenden Reaktor mit einer Schmelze aus Schlackenphase und zwei getrennten Bleiphasen erfolgt,
    • b) die Beschickung auf einer Seite des Reaktors in einer Oxidationszone auf die Schlackenphase chargiert wird und sauerstoffhaltige Gase in die Bleiphase eingeblasen werden,
    • c) der Sauerstoffpartialdruck in der Oxidationszone so gesteuert wird, daß das erschmolzene Primärblei einen Silbergehalt von mindestens 20% aufweist, die Menge an Primärblei unter 10% des vorlaufenden Bleigehaltes beträgt und eine Bleioxid enthaltende Schlacke anfällt,
    • d) das Primärblei aus der Oxidationszone abgezogen wird und die Bleioxid enthaltende Schlacke in eine Reduktionszone auf die andere Seite des Reaktors fließt,
    • e) in der Reduktionszone reduzierende Stoffe in die Schlackenphase eingebracht werden und
    • f) aus der Reduktionszone ein bleiarme Schlacke und Sekundärblei aus ihren Phasen abgezogen werden.
  • Die Vorstoffe können in beliebiger Form vorliegen, z.B. als Oxide, Sulfide, Sulfate, Silikate. Es können auch metallische Vorstoffe wie z.B. Computerschrott zugesetzt oder eingesetzt werden, wobei dann evtl. Zuschlagstoffe für die Schlackenbildung zugesetzt werden müssen. Wenn die Vorstoffe keinen Brennstoff, z.B. in sulfidischer Form, enthalten oder ihr Brennstoffgehalt nicht zur Deckung des Wärmebedarfs in der Oxidationszone ausreicht, wird in die Oxidationszone der erforderliche Brennstoff in fester, gasförmiger oder flüssiger Form zugegeben. Der Brennstoff kann mittels Düsen von unten oder seitlich in die Schmelze und/oder in den Gasraum oder mit der Vorstoffmischung zugegeben werden. Die Metallphasen in der Oxidationszone und der Reduktionszone werden durch eine auf dem Boden des Reaktors angeordnete Trennwand voneinander getrennt. Die Schlacke fließt aus der Oxidationszone über diese Trennwand oder durch eine Öffnung in der Trennwand in die Reduktionszone. Die Gasräume der Oxidations- und der Reduktionszone können voneinander getrennt werden oder das Gas aus der Reduktionszone strömt in die Oxidationszone und wird dort durch Nachverbrennung zur Wärmedeckung ausgenutzt. In der Oxidationszone werden sauerstoffhaltige Gase mittels Düsen von unten oder von der Seite in die Bleiphase eingeblasen. Der Sauerstoffpartialdruck in der Oxidationszone wird so eingestellt, daß von der vorlaufenden Bleimenge nur die gewünschte Menge an Primärblei anfällt und der restliche Bleigehalt als Oxid in die Schlacke getrieben wird. Beim Anfahren kann ein entsprechendes Reichblei mit dem gewünschten Silbergehalt vorgelegt werden, dann kann direkt der für den kontinuierlichen Betrieb erforderliche Sauerstoffpartialdruck eingestellt werden. Wenn beim Anfahren Blei vorgelegt wird, muß zunächst mit einem Sauerstoffpartialdruck gearbeitet werden, bei dem sich das vorgelegte Blei mit Silber auf den gewünschten Wert anreichert und kein oder nur wenig Primärblei anfällt. Nach Erreichen der gewünschten Konzentration wird dann der Sauerstoffpartialdruck auf den Wert für den kontinuierlichen Betrieb eingestellt. Der Sauerstoffpartialdruck wird durch Regelung des Verhältnisses von eingeblasener Sauerstoffmenge zur Menge der in den Vorstoffen enthaltenen oxidierbaren Bestandteile eingestellt. Wenn Brennstoffe in die Schmelze eingeblasen werden, müssen diese berücksichtigt werden. Als sauerstoffhaltige Gase können Sauerstoff, sauerstoffangereicherte Luft oder Luft verwendet werden. Durch präzise Steuerung des Sauerstoffpartialdruckes kann bei einem hohen Silbergehalt in den Vorstoffen der Silbergehalt im Primärblei soweit gesteigert werden, daß etwa ein Güldischsilber anfällt. In der Reduktionszone befindet sich unter der Schlackenphase die Sekundärbleiphase. Das Reduktionsmittel wird mittels Düsen von unten oder von der Seite in die Bleiphase geblasen und strömt von dort in die Schlackenphase und dann in den freien Reaktorraum. Als Reduktionsmittel werden kohlenstoffhaltige feste, flüssige oder gasförmige Materialien verwendet. Sie werden mit sauerstoffhaltigen Gasen eingeblasen und in der Bleiphase zu CO und evtl. H₂ wenigstens teilweise umgesetzt, so daß ein reduzierendes Gas aus der Bleiphase in die Schlackenphase eintritt. Im Gasraum der Reduktionszone kann eine Nachverbrennung der brennbaren Bestandteile im austretenden Gas vorgenommen werden. Falls erforderlich wird im Gasraum der Reduktionszone Brennstoff zur Deckung des Wärmebedarfs verbrannt.
  • Der Vorteil der erfindungsgemäßen Arbeitsweise besteht darin, daß zur Entfernung der Edelmetalle aus dem Blei keine klassische Anreicherung durch Zinkzusatz, Seigern und Destillation erforderlich ist, sondern das Primärblei direkt in die Treibarbeit eingesetzt werden kann. außerdem befindet sich nur eine sehr geringe Menge an Edelmetall in den Kreislauf- und/oder Zwischenprodukten.
  • Das in der Reduktionszone anfallende Sekundärblei ist weitgehend frei von Edelmetallen und bedarf keiner Entsilberung.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß gemäß c) der Sauerstoffpartialdruck in der Oxidationszone so gesteuert wird, daß das erschmolzene Primärblei einen Silbergehalt von mindestens 50% aufweist und die Menge an Primärblei unter 5% des vorlaufenden Bleigehaltes beträgt. Dadurch wird die Gewinnung der Edelmetalle aus dem Primärblei besonders wirtschaftlich.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die eingesetzten Vorstoffe sulfidische Bleimaterialien enthalten. Sulfidische Bleimaterialien sind in erster Linie Bleierzkonzentrate. Ihre Verarbeitung erfolgt nach dem QSL-Verfahren, wie es z.B. in der US-PS 4,266,971 und der US-PS 4,895,595 beschrieben ist. Dem Bleierz können andere, edelmetallhaltige Materialen zugesetzt werden. Bei der Verarbeitung von Bleierzen ist der erforderliche Brennstoff in Form des Sulfidschwefels in sehr gleichmäßiger Verteilung im Einsatzmaterial bereits enthalten, so daß sich sehr gute Betriebsbedingungen ergeben.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß in der Reduktionszone kohlenstoffhaltige Reduktionsmittel und sauerstoffhaltige Gase mittels Düsen in die Sekundärbleiphase eingeblasen werden und eine Höhe der Bleiphase eingestellt wird, die eine Umsetzung des Reduktionsmittels zu CO und ggf. H₂ von mindestens 50% in der Bleiphase vor dem Eintritt in die Schlackenphase bewirkt. Die eingeleitete Menge an Sauerstoff in den sauerstoffhaltigen Gasen wird so bemessen, daß das Reduktionsmittel in der Bleiphase zu dem gewünschten Prozentsatz zu CO und ggf. H₂ umgesetzt wird. Die Bildung von H₂ erfolgt beim Einsatz von Kohlenwasserstoffen oder durch die Umsetzung flüchtiger Bestandteile, die in der Kohle enthalten sind. Die zur gewünschten Umsetzung des Reduktionsmittels in der Bleiphase erforderliche Höhe der Bleiphase ist abhängig von der Art des Reduktionsmittels und des sauerstoffhaltigen Gases, der Temperatur der Bleiphase sowie der Stärke und Geschwindigkeit der Einblasstrahlen. Die erforderliche Höhe kann jedoch empirisch für jeden Betriebsfall relativ einfach ermittelt werden. Zum Schutz der Düsenmundstücke gegen starken Abbrand kann ein Schutzgas als Mantelgas bei Mehrstoffdüsen eingeblasen werden. Das durch die Umsetzung entstandene CO und H₂ enthaltende Reduktionsgas wird gleichzeitig in der Metallschicht stark aufgeheizt und tritt dementsprechend mit hoher Temperatur in die Schlacke ein, wodurch sehr gute Reduktionsbedingungen geschaffen werden. Außerdem wird im Falle einer unvollständigen Umsetzung dadurch eine weitere Umsetzung zu CO und H₂ in der Schlackenschicht begünstigt. Dadurch wird sichergestellt, daß trotz des hohen Bleioxidgehaltes der in die Reduktionszone eintretenden Schlacke eine bleiarme Schlacke in der Reduktionszone erzeugt wird. Die Höhe der Bleiphase über bodenblasenden Düsen beträgt mindestens 4 cm und liegt vorzugsweise über 20 cm.
  • Das erfindungsgemäße Verfahren wird anhand von Beispielen für einen QSL-Reaktor erläutert.
  • Der QSL-Reaktor hat eine Länge von 33 m, einen Innendurchmesser in der Oxidationszone von 3 m und in der Reduktionszone von 2,5 m. Zwischen Oxidationszone und Reduktionszone ist ein Wehr angeordnet, das eine Vermischung der Bleiphasen von Oxidations- und Reduktionszone verhindert, jedoch das Abfließen der hochbleihaltigen Schlacke aus der Oxidationszone in die Reduktionszone ermöglicht. Der Reaktor ist in der Oxidationszone mit sechs und in der Reduktionszone mit fünf bodenblasenden Düsen ausgerüstet. In die Oxidationszone wird technisch reiner Sauerstoff eingeblasen. In die Reduktionszone werden feinkörnige Kohle, technisch reiner Sauerstoff und als Schutzgas für die Düsen Stickstoff oder Erdgas oder Mischungen eingeblasen. Sekundärblei und Schlacke werden alternierend aus der Reduktionszone abgestochen, wobei ein Bleibad von ca. 250 mm aufrechterhalten bleibt. Das Primärblei oder Reichblei wird kontinuierlich aus der Oxidationszone abgezogen. Das Abgas aus der Oxidationszone und der Reduktionszone wird gemeinsam an der Seite des Bleistiches der Oxidationszone abgezogen.
  • Beispiel 1:
  • In die Oxidationszone werden ca. 25 t/h einer Aufgabemischung mit 10% Ag, 40% Pb und Rest Schlackenkomponenten auf die Schlackenschicht chargiert. Das Sauerstoffpotential in der Oxidationszone wird durch Einstellung der eingeblasenen Sauerstoffmenge so eingeregelt, daß 10% des Bleivorlaufes als Primärblei anfallen und etwa 99% des Silbervorlaufes in diesem Primärblei gesammelt werden. Dabei wird ein Reichblei oder Rohsilber mit etwa 70% Ag in der Oxidationszone erzeugt und aus ihr abgezogen. Aus der Reduktionszone werden das silberarme Sekundärblei mit einem Silbergehalt von etwa 0,01 bis 0,02% und die Schlacke abgezogen.
  • Beispiel 2:
  • Die Aufgabemischung entspricht dem Beispiel 1. Das Sauerstoffpotential in der Oxidationszone wird so eingestellt, daß 5% des Bleivorlaufes als Primärblei anfallen und etwa 99% des Silbervorlaufes in dem Primärblei gesammelt werden. Dabei wird ein Reichblei oder Rohsilber mit etwa 83% Ag erzeugt.
  • Beispiel 3:
  • In der Oxidationszone werden ca. 25 t/h einer Aufgabemischung mit 1% Ag, 40% Pb und Rest Schlackenkomponenten aufgegeben. Das Sauerstoffpotential wird so eingeregelt, daß etwa 10% des Bleivorlaufes als Primärblei anfallen und etwa 99% des Silbervorlaufes in diesem Primärblei gesammelt werden. Dabei wird ein Reichblei mit etwa 20% Ag in der Oxidationszone erzeugt und aus ihr abgezogen. Aus der Reduktionszone werden das silberarme Sekundärblei mit einem Silbergehalt von etwa 0,01% und die Schlacke abgezogen.
  • Beispiel 4:
  • Die Aufgabemischung entspricht dem Beispiel 3. Das Sauerstoffpotential in der Oxidationszone wird so eingestellt, daß 5% des Bleivorlaufes als Primärblei anfallen und etwa 99% des Silbervorlaufes in dem Primärblei gesammelt werden. Dabei wird ein Reichblei mit etwa 32% Ag erzeugt.

Claims (4)

  1. Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei aus edelmetallhaltigen und bleihaltigen Vorstoffen, dadurch gekennzeichnet, daß
    a) das Erschmelzen der Beschickung in einem länglichen, liegenden Reaktor mit einer Schmelze aus Schlackenphase und zwei getrennten Bleiphasen erfolgt,
    b) die Beschickung auf einer Seite des Reaktors in einer Oxidationszone auf die Schlackenphase chargiert wird und sauerstoffhaltige Gase in die Bleiphase eingeblasen werden,
    c) der Sauerstoffpartialdruck in der Oxidationszone so gesteuert wird, daß das erschmolzene Primärblei einen Silbergehalt von mindestens 20% aufweist, die Menge an Primärblei unter 10% des vorlaufenden Bleigehaltes beträgt und eine Bleioxid enthaltende Schlacke anfällt,
    d) das Primärblei aus der Oxidationszone abgezogen wird und die Bleioxid enthaltende Schlacke in eine Reduktionszone auf die andere Seite des Reaktors fließt,
    e) in der Reduktionszone reduzierende Stoffe in die Schlackenphase eingebracht werden und
    f) aus der Reduktionszone ein bleiarme Schlacke und Sekundärblei aus ihren Phasen abgezogen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß gemäß c) der Sauerstoffpartialdruck in der Oxidationszone so gesteuert wird, daß das erschmolzene Primärblei einen Silbergehalt von mindestens 50% aufweist und die Menge an Primärblei unter 5% des vorlaufenden Bleigehaltes beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die eingesetzten Vorstoffe sulfidische Bleimaterialien enthalten.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in der Reduktionszone kohlenstoffhaltige Reduktionsmittel und sauerstoffhaltige Gase mittels Düsen in die Sekundärbleiphase eingeblasen werden und eine Höhe der Bleiphase eingestellt wird, die eine Umsetzung des Reduktionsmittels zu CO und ggf. H₂ von mindestens 50% in der Bleiphase vor dem Eintritt in die Schlackenphase bewirkt.
EP92202548A 1991-09-05 1992-08-20 Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei Expired - Lifetime EP0530893B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4129475A DE4129475A1 (de) 1991-09-05 1991-09-05 Verfahren zum kontinuierlichen erschmelzen von metallischem blei
DE4129475 1991-09-05

Publications (2)

Publication Number Publication Date
EP0530893A1 true EP0530893A1 (de) 1993-03-10
EP0530893B1 EP0530893B1 (de) 1995-11-08

Family

ID=6439879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92202548A Expired - Lifetime EP0530893B1 (de) 1991-09-05 1992-08-20 Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei

Country Status (4)

Country Link
EP (1) EP0530893B1 (de)
DE (2) DE4129475A1 (de)
ES (1) ES2081034T3 (de)
GR (1) GR3018515T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200777B (zh) * 2007-09-24 2010-06-16 云南锡业集团(控股)有限责任公司 硫化铅精矿连续冶炼的方法及设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110804701A (zh) * 2019-12-06 2020-02-18 湖北大江环保科技股份有限公司 侧吹转炉过饱和富氧熔炼工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2739963A1 (de) * 1976-09-06 1978-03-09 Metallurgie Hoboken Verfahren zur behandlung von blei- kupfer-schwefel-beschickungen
EP0045531A1 (de) * 1980-08-06 1982-02-10 Metallgesellschaft Ag Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten
DE3539164C1 (en) * 1985-11-05 1987-04-23 Kloeckner Humboldt Deutz Ag Process and smelting furnace for producing non-ferrous metals
US4741770A (en) * 1985-04-03 1988-05-03 Cra Services Limited Zinc smelting process using oxidation zone and reduction zone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2739963A1 (de) * 1976-09-06 1978-03-09 Metallurgie Hoboken Verfahren zur behandlung von blei- kupfer-schwefel-beschickungen
EP0045531A1 (de) * 1980-08-06 1982-02-10 Metallgesellschaft Ag Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten
US4741770A (en) * 1985-04-03 1988-05-03 Cra Services Limited Zinc smelting process using oxidation zone and reduction zone
DE3539164C1 (en) * 1985-11-05 1987-04-23 Kloeckner Humboldt Deutz Ag Process and smelting furnace for producing non-ferrous metals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200777B (zh) * 2007-09-24 2010-06-16 云南锡业集团(控股)有限责任公司 硫化铅精矿连续冶炼的方法及设备

Also Published As

Publication number Publication date
ES2081034T3 (es) 1996-02-16
GR3018515T3 (en) 1996-03-31
DE4129475A1 (de) 1993-03-11
EP0530893B1 (de) 1995-11-08
DE59204246D1 (de) 1995-12-14

Similar Documents

Publication Publication Date Title
DE3415813C2 (de)
DE2417978C3 (de) Verfahren zur kontinuierlichen Gewinnung von Kupfer, Nickel, Kobalt und Blei oder deren Mischunggen aus ihren Sulfidkonzentraten
DE3042222C2 (de) Verfahren zur Reduktion von feinkörnigen, unter anderem Eisenoxide enthaltenden Metalloxiden unter Gewinnung von bei der Temperatur der Eisenschmelze flüchtigen Metallen
DE2710970C2 (de) Verfahren zur Gewinnung von Roh- bzw. Blasenkupfer aus sulfidischem Kupferrohmaterial
DE2739963C2 (de)
DE112007001820B4 (de) Bleischlackenreduzierung
DE2521830A1 (de) Verfahren und vorrichtung zur thermischen raffination von stark verunreinigtem kupfer in schmelzfluessiger phase
DE3611159C2 (de)
EP0171845B1 (de) Verfahren und Vorrichtung zur kontinuierlichen pyrometallurgischen Verarbeitung von Kupferbleistein
EP0530893B1 (de) Verfahren zum kontinuierlichen Erschmelzen von metallischem Blei
EP0045531B1 (de) Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten
EP0508501B1 (de) Verfahren zur Reduktion von NE-Metalloxiden in Schlacken
DE3115502C2 (de)
DE2645585A1 (de) Verfahren zur freisetzung von wertmetallinhalten aus schlacken durch aufblasen
DE2320548B2 (de) Verfahren zum Verhütten von Blei
DE1280479B (de) Schmelzofen zur kontinuierlichen Herstellung von Spurstein und Verfahren zu seinem Betrieb
DE2707578A1 (de) Verfahren zur gewinnung von rohkupfer aus kupfererzen oder -konzentraten, welche schaedliche oder wirtschaftlich bedeutsame mengen an anderen nichteisenmetallen enthalten
DE3304884A1 (de) Verfahren zur gewinnung von blei aus bleiglanz (bleisulfid)
DE589738C (de) Verfahren zur Gewinnung von Blei, Antimon oder Wismut
DE2019019A1 (de) Verfahren zur Abtrennung und Anreicherung von Zinn aus zinnhaltigen Schlacken, Konzentraten und dgl
DE3233338C2 (de) Verfahren zur Verarbeitung von sulfidischen Blei- oder Bleizink-Erzen oder deren Gemischen
DE3207026A1 (de) Verfahren zur konzentrierung oder gewinnung von nichteisenmetallen
DE3009934C2 (de)
DE216653C (de)
DE590505C (de) Verfahren zur Gewinnung von Blei, Antimon oder Wismut

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB GR IT SE

17P Request for examination filed

Effective date: 19930513

17Q First examination report despatched

Effective date: 19950327

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB GR IT SE

REF Corresponds to:

Ref document number: 59204246

Country of ref document: DE

Date of ref document: 19951214

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2081034

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3018515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960829

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960923

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960924

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960925

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960930

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19961031

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970821

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19970831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

EUG Se: european patent has lapsed

Ref document number: 92202548.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000121

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19980910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050820