EP0518867A1 - Vollautomatische stromsteuerung für metallabreicherungszellen - Google Patents

Vollautomatische stromsteuerung für metallabreicherungszellen

Info

Publication number
EP0518867A1
EP0518867A1 EP91902217A EP91902217A EP0518867A1 EP 0518867 A1 EP0518867 A1 EP 0518867A1 EP 91902217 A EP91902217 A EP 91902217A EP 91902217 A EP91902217 A EP 91902217A EP 0518867 A1 EP0518867 A1 EP 0518867A1
Authority
EP
European Patent Office
Prior art keywords
current
hydrogen
solution
cell
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91902217A
Other languages
German (de)
English (en)
French (fr)
Inventor
Max Mayr
Wolfgang Blatt
Harri Heinke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Deutschland GmbH
Original Assignee
Heraeus Elektrochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Elektrochemie GmbH filed Critical Heraeus Elektrochemie GmbH
Publication of EP0518867A1 publication Critical patent/EP0518867A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the invention relates to a method for the electrolytic demetallization of a solution containing metal ions, in which an electrical direct current between an immersed in the solution anode and cathode is controlled by means of programmable control in such a way that the current intensity gradually increases to an approximately constant value at intervals which follow one another in time is lowered until the residual concentration of the metal ions falls below a predetermined value, and a device for current control of an electrolytic demetallization cell.
  • Electrode loading is in chronological order Levels reduced; A ph-regulating redox system is added to the solution to be desilvered.
  • a constant current is gradually lowered with the aid of a programmable controller at successive intervals until the residual concentration falls below a predetermined value.
  • the electrode loading can be carried out by a pre-programmable, automatic control with the aid of a programmable controller, in which all or at least some of the variables to be controlled are automatically controlled according to a preselectable program.
  • the object of the invention is to provide a method for automatic current control in metal depletion cells using the highest possible current density on the electrodes; furthermore, a device is to be created with an independent regulator which takes the course of the electrochemical process into account and which gradually reduces the cell current; In addition, the automatic current control is also to be used in cells with a large number of cathodes which face one or two anodes.
  • the task is solved with regard to the procedural task by d characterizing features of claim 1.
  • An advantageous embodiment of the method is specified in claim 2.
  • the setpoint value of the current is preferably lowered by an amount in each case which is in the range from 1: 1.5 to 1: 7 in relation to the previous setpoint value.
  • the solution is fed to the metal depletion cell in batches.
  • the evaluation electronics have a monostable multivibrator for pulse generation; the input of the setpoint generator is provided with a pulse counter, the counter reading corresponding in each case to a predetermined setpoint value of the current.
  • Figure 1 shows the relationship between the maximum possible current densities and the concentration of the solution in mg / 1 for copper deposition
  • Figure 2 shows the course of action using a control loop
  • FIG. 3 shows the schematic assignment of individual components of the device according to the invention.
  • the function shown in FIG. 1 divides the diagram into an area I in which no gassing takes place and an area II in which the current density on the electrodes of the demetallization cell is so high in relation to the content of the solution that hydrogen evolution takes place .
  • the electrode plate serving as cathode has an area of 480 x 690 mm and is made of expanded copper.
  • depletion takes place in stage 1 with a current of 10 A per cathode.
  • the functional relationship between a solution with a content of 280 mg / 1 is shown using position A in area I.
  • the depletion takes place in stage 1 with a constant current of 10 A until point X. the characteristic curve of the gassing range II is reached and the evolution of hydrogen begins.
  • a predetermined hydrogen content of 1% in point B is reached, the content has dropped to approximately 215 mg / l.
  • the current per cathode is reduced to 9 A in stage 2, this switching point being designated C.
  • the content of the solution is demetallized with the constant current until the hydrogen evolution starts again at the point and, after reaching the predetermined hydrogen content of 1% in point D, again a reduction to a current of 8 A in Switching point E occurs in stage 3.
  • the solution is constantly de-metallized with a current of 8 A until the characteristic line is broken through at point X- and hydrogen evolution begins again.
  • the predetermined hydrogen value of, for example, 1% in point F of the diagram the system switches to a lower level, which results in a cathode current of 7 A; this stage 4 begins at point G, again demetalizing until the characteristic curve is passed at point X.
  • the cathode current is again reduced by one stage to 6 A per cathode at switching point I.
  • This cycle repeats itself until the depletion in point K has a residual content of approx. 10 mg 1; after reaching point K, a signal is triggered and the solution is changed in batches.
  • the setpoints of the currents of the individual stages are stored in the setpoint generator 1; from the output from the setpoint adjuster control variable W and the size of the cell current Ist ⁇ X and the difference is formed as Regelabwei ⁇ monitoring the controller 2 supplied.
  • Controller 2 generates a manipulated variable Y, which is fed to the actuator 3 for controlling the current in the cell.
  • the actuator 3 passes the control signal as a current or signal of the strength of the cell current to the cell 4, while at the same time the signal X is supplied as the actual variable to the differential input of the controller 2.
  • the setpoint W. is specified as the command variable for the current strength in the cell, where, for example, due to a control deviation due to an actual variable X which is too small.
  • the current intensity of the controller 2 outputs a manipulated variable Y until the actuator 3 generates an actual variable X that the command variable W_. corresponds and the control deviation thus becomes zero;
  • the controlled current X .. is now supplied to the cell 4 until a pulse Z is emitted due to the hydrogen development in the cell, which switches the counter of the setpoint generator 1 from position 1 to position 2 and thus from setpoint W.
  • FIG. 3 schematically shows the device according to the invention in a block diagram; the reference numbers of the cycle of effects used in FIG. 2 are adopted as far as possible.
  • the cell shown up to now with reference number 4 is divided here into the actual electrolytic cell 5 and the measuring head acting as a hydrogen sensor 6, which is connected via an electrical line to the evaluation electronics 7, which in turn connects to the input of the setpoint generator 1 connected is.
  • the setpoint generator 1 has a counter 8, which counts the pulses Z generated by the evaluation electronics 7 for each hydrogen gas evolution detected by the measuring head 6 and exceeding a predetermined threshold value, and a setpoint w for each of the counter readings Strength of cell current I generated; the target values correspond in number to the levels of the counter; for example, eight setpoints W for the current strengths, which are fed to the differential input 9 of the controller 2, are also stored at eight counting positions.
  • the output of the controller 2 emits its control signal a from the input 10 of the actuator 3 serving for current control.
  • the actuator 3 works as a voltage-controlled current source and uses the voltage transmitted as the control signal Y to generate an output current proportional to the voltage, which is supplied to the cell 5.
  • the current I output via the terminals 11, 12 generates a voltage proportional to the current I at the shunt 13, which voltage is supplied to the differential input 9 of the controller 2 as the control variable X for the actual value of the current.
  • the hydrogen sensor 6 sends an electrical signal to the evaluation electronics 7, which forms a pulse from the signal emitted by the measuring head and sends this to the input of the counter 8 of the setpoint generator 1 forwards.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)
EP91902217A 1990-03-03 1991-01-12 Vollautomatische stromsteuerung für metallabreicherungszellen Withdrawn EP0518867A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4006751 1990-03-03
DE4006751A DE4006751A1 (de) 1990-03-03 1990-03-03 Vollautomatische stromsteuerung fuer metallabreicherungszellen

Publications (1)

Publication Number Publication Date
EP0518867A1 true EP0518867A1 (de) 1992-12-23

Family

ID=6401379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91902217A Withdrawn EP0518867A1 (de) 1990-03-03 1991-01-12 Vollautomatische stromsteuerung für metallabreicherungszellen

Country Status (6)

Country Link
US (1) US5362369A (enrdf_load_stackoverflow)
EP (1) EP0518867A1 (enrdf_load_stackoverflow)
JP (1) JPH05504791A (enrdf_load_stackoverflow)
CA (1) CA2076759A1 (enrdf_load_stackoverflow)
DE (1) DE4006751A1 (enrdf_load_stackoverflow)
WO (1) WO1991014023A2 (enrdf_load_stackoverflow)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012024893B4 (de) * 2012-12-20 2017-01-26 Krohne Messtechnik Gmbh Messanordnung zur Bestimmung einer Messgröße und Verfahren zur Erzeugung eines Ausgangssignals

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1024081B (it) * 1974-12-12 1978-06-20 Galarit S N O Di Prigone Procedimento elettrolitico per il ricupero dell argento nelle vasche di fissaggio fotografico e mezzi per effetura tale procedimento
CH626409A5 (enrdf_load_stackoverflow) * 1977-02-28 1981-11-13 Ciba Geigy Ag
GB1534117A (en) * 1977-07-19 1978-11-29 Rode Kg E Electroplating baths
US4666567A (en) * 1981-07-31 1987-05-19 The Boeing Company Automated alternating polarity pulse electrolytic processing of electrically conductive substances
US4619749A (en) * 1985-03-25 1986-10-28 Nusbaum Ronald C System for extracting silver from liquid solutions
US4776931A (en) * 1987-07-27 1988-10-11 Lab Systems, Inc. Method and apparatus for recovering metals from solutions
SU1527330A1 (ru) * 1987-12-22 1989-12-07 Предприятие П/Я А-3667 Устройство управлени процессом электроосаждени металлов и сплавов
SU1498828A1 (ru) * 1988-01-20 1989-08-07 Предприятие П/Я В-2661 Устройство дл питани гальванических ванн импульсным током
DD277816A3 (de) * 1988-08-05 1990-04-18 Defa Zentralstelle Fuer Filmte Verfahren und schaltungsanordnung zur regelung eines elektrodenpotentials bei der elektrolyse
US4906340A (en) * 1989-05-31 1990-03-06 Eco-Tec Limited Process for electroplating metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9114023A2 *

Also Published As

Publication number Publication date
DE4006751A1 (de) 1991-09-05
DE4006751C2 (enrdf_load_stackoverflow) 1993-09-02
WO1991014023A3 (de) 1991-10-31
CA2076759A1 (en) 1991-09-04
JPH05504791A (ja) 1993-07-22
WO1991014023A2 (de) 1991-09-19
US5362369A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
DE2061225A1 (de) Verfahren zum elektrolytischen Abscheiden von legierten Duennschichten
EP0638664A1 (de) Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden Lösung
EP2935661B1 (de) Vorrichtung zum elektrolytischen beschichten eines drahtes
DE69910315T2 (de) Elektrolytische Rückgewinnung von Metall aus einer Lösung
EP0146732A1 (de) Arbeitsverfahren und Vorrichtung zur Ausübung des Verfahrens zur Abscheidung von z.B. Kupfer aus flüssigen Elektrolyten, der durch einen mehrzelligen Elektrolysebehälter geführt wird
DE2605669A1 (de) Verfahren und anlage zur regelung der kathodischen stromdichte in galvanischen baedern
DE1925201B2 (de) Verfahren zum Betreiben eines Elektrolyseofens für die Reduktion von Aluminiumoxyd
DE1812138A1 (de) Verfahren und Vorrichtung zur Regelung der Aluminium-Schmelzflusselektrolyse
DE2308565A1 (de) Verfahren und vorrichtung zur gewinnung von metallen
DE2729945C2 (de) Verfahren zum Betreiben einer elektrolytischen Zelle
EP0518867A1 (de) Vollautomatische stromsteuerung für metallabreicherungszellen
EP1015667A2 (de) Verfahren und vorrichtung zur konzentrationsregulierung von stoffen in elektrolyten
EP0154705B1 (de) Verfahren zur vollautomatischen Steuerung der galvanischen Abscheidung von Kupferüberzügen aus sauren Kupferbädern
DE2044068A1 (de) Brennstoffbatterie
DE2239658A1 (de) Elektrolytische wasserstoffquelle
DE3002520A1 (de) Galvanoplastikvorrichtung
EP0575699A2 (de) Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wässrigen Lösung sowie Verwendung
DE2803631C3 (de) Verfahren zur Erzeugung von elektrischem Strom und galvanisches Element zur Durchführung dieses Verfahrens
DE2818306A1 (de) Verfahren zur in-situ-reduktion von elektroden-ueberspannung und elektrolysezelle zur durchfuehrung des verfahrens
DE2246567A1 (de) Verfahren und vorrichtung zur vorausbestimmung und verhinderung eines kurzschlusses in elektrolytischen zellen mit quecksilberkathode
DE1521873A1 (de) Verfahren und Vorrichtung zum Schutz von metallischen,mit einem Elektrolyten in Beruehrung stehenden Gegenstaenden gegen Korrosion
DE2637232A1 (de) Vorrichtung zum einstellen des abstandes zwischen den elektroden einer elektrolytischen zelle
DE10042002B4 (de) Vorrichtung zur galvanischen Abscheidung eines Werkstoffes und deren Verwendung
EP0963463B1 (de) Verfahren und vorrichtung zum herstellen einer elektrodenschicht
DE2648538B1 (de) Verfahren zur automatisch geregelten Konstanthaltung der Zusammensetzung von Baedern und Vorrichtung zur Durchfuehrung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

D17D Deferred search report published (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950801