EP0500492B1 - Appareil de pulvérisation par plasma de matériaux en poudre ou gazeux - Google Patents
Appareil de pulvérisation par plasma de matériaux en poudre ou gazeux Download PDFInfo
- Publication number
- EP0500492B1 EP0500492B1 EP92810095A EP92810095A EP0500492B1 EP 0500492 B1 EP0500492 B1 EP 0500492B1 EP 92810095 A EP92810095 A EP 92810095A EP 92810095 A EP92810095 A EP 92810095A EP 0500492 B1 EP0500492 B1 EP 0500492B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cathode
- plasma
- spray gun
- plasma spray
- gun according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3452—Supplementary electrodes between cathode and anode, e.g. cascade
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3468—Vortex generators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/44—Plasma torches using an arc using more than one torch
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3484—Convergent-divergent nozzles
Definitions
- the invention relates to a plasma spraying device for spraying powdery or gaseous material according to the preamble of claim 1.
- a plasma spraying device is known from EP 0 249 238 A2, in which the cathode arrangement consists of a rod cathode and the spray material is supplied at the anode-side end of the plasma guide channel through a tube inserted laterally into this channel with a tube end bent into the channel axis.
- the invention seeks to avoid these disadvantages by moving the spray material supply to the cathode-side end of the plasma channel. Proposals in this direction are known per se; however, their use in connection with a plasma spraying device of the type mentioned at the outset has not led to satisfactory results.
- DE-GM 1 932 150 shows a plasma spraying device with an indirect plasmatron that works with a short arc.
- a hollow cylindrical cathode works together with a likewise hollow cylindrical, nozzle-shaped anode, the cathode protruding into the anode arranged coaxially to this.
- the hollow cathode also serves as a feed pipe for the spray material, which is introduced axially into the arc space in this way.
- the plasma gas passes through the annular gap between the cathode and anode into the arc space and then into the anode nozzle, through which the plasma jet is constricted.
- DE-OS 33 12 232 A1 shows an example of such a solution on a plasma spraying device with a direct plasmatron, i.e. with an arc transferred to the workpiece.
- a corresponding plasma spraying device with indirect plasma matron which works with a long arc, is known from WO 90/15516 A1.
- the main components of the plasma spraying device and the mutual arrangement thereof are shown schematically therein; the structural design of the plasma spraying device, in particular in the area of the cathode arrangement and the spray material supply, is not discussed in more detail here.
- the cathode arrangement likewise comprises a plurality of rod-shaped cathodes which are arranged in a circle distributed around a central longitudinal axis, these rod cathodes tapering toward one another.
- Auxiliary anodes for igniting pilot arcs are assigned to the cathodes, from which individual arcs are drawn to the anode nozzle under the action of the plasma gas flowing along the cathodes and which generate a plasma stream combined in the center of the anode nozzle.
- the spray material is introduced axially into the arc space through a tube located in the center of the cathode arrangement, and that directly to the point of union of the individual plasma flows.
- the invention aims to achieve the highest possible energy concentration that begins in the vicinity of the cathode arrangement and extends to the anode or even beyond.
- the selected cathode arrangement in an indirect plasmatron working with a long arc in conjunction with the constriction formed by the inlet nozzle, ensures the greatest possible energy concentration in the nozzle cavity.
- the spray material which is introduced through the feed pipe arranged in the central axis, normally with the aid of a carrier gas, already penetrates into the hot core of the plasma jet in the vicinity of the cathode, in which the spray material, e.g. the powder particles are melted and further accelerated.
- the carrier gas flow By varying the carrier gas flow, the initial speed of the powder particles and thus also the technically important residence time of the powder particles can be set in a simple manner. With these sizes, in combination with a suitable choice of plasma gas flow and arc current, optimal operating conditions can be achieved.
- the central insulation body not only serves to electrically insulate the rod cathodes from one another and from the feed tube, but also has the task of forming an annular channel together with the inlet nozzle, through which the plasma gas flows into the cathode space in the most laminar form possible. It is also important that the plasma gas flows along the cathode tips protruding from the insulating body, which tips are additionally cooled as a result. This leads to an increase in cathode life.
- the insulation body directly adjoins the arcing space and is therefore highly thermally stressed. It is therefore preferably made of a high-melting material, e.g. made of ceramic or boron nitride.
- the cathodes preferably have a water-cooled cathode shaft and at their active end a cathode pin made of a high-melting material and inserted into the cathode shaft.
- the cathode shaft can be made of copper and the cathode pin of thoriated tungsten.
- the active ends of the cathodes should be as close as possible in operational terms so that the arc branches emanating from them are united as close as possible to the arc attachment points.
- the cathode shafts have a relatively large diameter due to the cavities for water cooling and must have a minimum mutual spacing for insulation reasons, the desired small mutual spacing of the cathode pins cannot be achieved when the cathode pin is arranged coaxially with the cathode shaft.
- the arrangement could be such that the cathode pins run obliquely towards one another; however, such a solution is unsatisfactory from a manufacturing standpoint.
- a preferred solution is therefore to eccentrically insert the cathode pin into the Insert cathode shaft so that the longitudinal axis of the cathode pin is closer to the central longitudinal axis than that of the cathode shaft.
- the ring channel present between the insulation body and the inlet nozzle can be preceded by a gas distribution ring seated on the insulation body and having a plurality of through bores for the inlet of the plasma gas into the ring channel.
- a gas distribution disk is arranged in front of the insulation body, which extends radially from the central tube for the supply of the spray material to the wall of the inlet nozzle and which has a plurality of circular bores arranged for the inlet of the plasma gas the ring channel is provided in the inlet nozzle.
- the through holes here have the same effect as those in the gas distribution ring mentioned above.
- this gas distribution disk shields the entire front side of the insulation body from the action of the heat of the arc, so that the insulation body no longer has to be made of relatively expensive high-melting material.
- the gas distribution disk should have a corresponding heat resistance, however, for the gas distribution disk, considerably less of the refractory material is required than otherwise for the insulation body and, moreover, has a less complicated shape than that, which leads to a simpler and cheaper solution.
- the gas distribution disk has further through-bores through which the cathode pins extend. These through bores preferably have a larger diameter than the cathode pins. This enables part of the plasma gas to be passed through the annular gap along the cathode pins due to the difference in diameter, which further improves the cooling thereof.
- passage holes for the plasma gas can run both in the gas distribution ring and in the gas distribution disk instead of axially, tangentially to virtual, central-axis helical lines. This allows a vortex flow of the plasma gas to be achieved, which has proven to be advantageous under certain operating conditions.
- the paths of the molten powder particles are subject to the shot effect, ie they run in a cone which must lie along the plasma channel up to the mouth of the ring-shaped anode within the channel cross-section so that no molten particles adhere to the channel wall can deposit.
- This condition can also be achieved by a suitable choice of the operating parameters and by a corresponding longitudinal profile of the plasma channel, for example by the plasma channel continuously expanding towards the anode following the inlet nozzle.
- the plasma channel 4 is formed by a number of ring-shaped neutrodes 6 to 12 which are electrically insulated from one another and the ring-shaped anode 3.
- the cathodes 1 each have a cathode shaft consisting of two parts 51 and 52, for example made of copper, which is anchored in a cathode support 13 made of insulating material. This is followed by a sleeve-shaped anode carrier 14 made of insulating material, which surrounds the neutrodes 6 to 12 and the anode 3.
- the whole thing is held together by three metal sleeves 15, 16, 17, the first sleeve 15 being screwed to the end on the end face and the second sleeve 16 being circumferentially screwed to the first, while the third sleeve 17 is loosely anchored to the second sleeve 16 on the one hand and screwed to the anode holder 14 on the other hand .
- the third sleeve 17 also presses with an inwardly directed flange 18 against the anode ring 3 and thus holds the elements forming the plasma channel 4 together, the neutrode 6 closest to the cathodes 1 being supported on an inner collar 19 of the anode carrier 4.
- the cathodes 1 carry at their ends cathode pins 20, which are made of an electrically and thermally particularly conductive and also high-melting material, e.g. Tungsten.
- the cathode pins 20 are arranged eccentrically to the respective axis of the cathode shafts 51, 52 such that their longitudinal axes are closer to the central longitudinal axis 2 than those of the cathode shafts.
- the exposed part of the outer circumferential surface of the insulating body 21 is located radially opposite a part of the nozzle wall and forms with this wall part an annular channel 23 for the inlet of the plasma gas into the nozzle cavity 22.
- the supply of the spray material SM, e.g. Metal or ceramic powder in the plasma jet is carried out with the aid of a carrier gas TG at the cathode-side end of the plasma channel 4.
- a pipe 24 is provided which runs in the longitudinal axis 2 and is held by the insulating body 21 and also opens into the nozzle cavity 22, whereby the cathode pins 20 extend beyond the mouth 25 of the tube 24.
- the plasma gas PG is fed through a transverse channel 26 provided in the cathode carrier 13, which transitions into a longitudinal channel 27, from which the plasma gas reaches an annular space 28 and from there into the annular channel 23.
- a gas distribution ring 29 is provided on the insulating body 21 and has a plurality of through bores 30 which connect the annular space 28 to the annular channel 23.
- the elements forming the plasma channel 4, namely the anode 3 and the neutrodes 6 to 12, are electrically insulated from one another by ring disks 31 made of insulating material, for example boron nitride, and are gas-tightly connected to one another by sealing rings 32.
- the plasma channel 4 has in the area close to the cathode a constriction zone 33 and, following this constriction zone 33, widens towards the anode 3 to a diameter which is at least 1.5 times as large as the channel diameter at the narrowest point of the constriction zone 33. After this expansion, the plasma channel 4 is cylindrical to its anode end.
- the anode 3 is made up of an outer ring 34, for example of copper, and an inner ring 35 of an electrically and thermally particularly conductive and also high-melting material, for example tungsten.
- the neutrode 6 closest to the cathode rods 1 extends over the entire constriction zone 33, so that the channel wall 5 unites beyond the narrowest point of the constriction zone has a steady course.
- the parts directly exposed to the arc and plasma heat are largely water-cooled.
- different cavities for the circulation of the cooling water KW are provided in the cathode holder 13, in part 52 of the cathode shaft and in the anode holder 14.
- the cathode holder 13 has three annular spaces 36, 37 and 38, which are connected to connecting lines 39, 40 and 41, and the anode holder 14 has an annular space 42 in the region of the anode 3 and all neutrodes in the region of the neutrodes 6 to 12 surrounding cavity 43 on.
- Cooling water KW is supplied via the connecting lines 39 and 41.
- the cooling water of the connecting line 39 first passes through a longitudinal channel 44 to the annular space 42 surrounding the most thermally stressed anode 3.
- the cooling water flows through the cavity 43 of the lateral surface of the neutrodes 6 to 12 back through a longitudinal channel 45 into the annular space 37
- the cooling water of the connecting line 41 flows into an annular space 38 and out of this into a cavity 46 of the cathode shaft part 52, which is divided by a cylindrical partition wall 47.
- the cooling water finally arrives from the cathode shafts into the annular space 37, from which it flows out via the connecting line 40.
- FIG. 3 shows the approximate course of the arc 48 during operation of the plasma spraying device according to FIGS. 1 and 2, as well as the flow course of the plasma gas PG and the trajectory of the spray material SM.
- the effect of the constriction zone 33 and the subsequent expansion of the plasma channel 4 can clearly be seen.
- the distance between the channel wall 50 and the plasma jet is relatively large. Under these circumstances, the channel wall 50 is thermally less stressed in this area, and the cooling capacity can be reduced accordingly.
- FIG. 4 and 5 show an embodiment of the plasma spraying device which has been modified in the region of the cathode space and which can otherwise be of the same design as that of FIG. 1.
- the same reference numbers as in FIG. 1 are used for the constant parts of the device been.
- the gas distribution ring 29 in FIG. 1 is replaced by a gas distribution disk 53, which is located in front of the central insulation body 54 and extends radially from the central pipe 24 for the supply of the spray material to the wall 55 of the inlet nozzle 6 extends.
- This gas distribution disk 53 is provided with a plurality of through bores 56 arranged in a circle for the inlet of the plasma gas from the ring channel 57 into the nozzle cavity 22 of the inlet nozzle 6.
- the passage bores 56 have a tangential directional component, so that the plasma gas flows into the inlet nozzle 6 in a vortex around the central longitudinal axis 2.
- the same measure can of course also be provided for the gas distribution ring 29 according to FIG. 1.
- the front surface of the insulation body 54 facing the gas distribution disk 53 is recessed in some areas, so that a sector-shaped cavity 58 results in these areas, which is delimited by the parts 59 reaching as far as the gas distribution disk 53 (chain-dotted lines in FIG. 5).
- the through bores 60, through which the cathode pins 20 extend, have a somewhat larger diameter than the cathode pins 20. Due to the gap existing due to the difference in diameter and the cavity 58, part of the plasma gas flows out of the annular space 57 directly along the cathode pins 20 into the nozzle cavity 22. The course of the flow is indicated by the arrows 61.
- FIG. 6 to 8 show a further variant of the means for supplying the plasma gas into the cathode compartment.
- the parts that remain the same as in FIG. 4 are provided with the same reference numerals.
- a guide sleeve 70 for example made of copper, which takes up the annular space between the central insulation body 71 and the neutrode 72 near the cathode and is continuous on its outside Has longitudinal grooves 73 for the gas passage.
- the longitudinal grooves 73 run helically, so that this extends from the annular space 57 in the direction of the arrow 74 into the longitudinal grooves 73
- Incoming plasma gas exits the guide sleeve 70 in a vortex shape.
- the guide sleeve 70 extends to close to the wall 75 of the neutrode 72 delimiting the constriction region.
- sector-shaped cavities 76 are provided in the insulating body 71 on the front side of the cathode shaft parts 52, from which part of the plasma gas flows along the same in the nozzle cavity 22 for additional cooling of the cathode pins 20.
- the plasma gas enters each of these sector-shaped cavities 76 through a longitudinal gap 77, which is connected to a radial inlet bore 78 in the insulating body 71.
- the flow pattern is indicated by arrow 79.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
Claims (19)
- Appareil de projection au plasma pour la pulvérisation de matériau en poudre ou gazeux, doté d'un plasmatron indirect pour la génération d'un arc long, qui présente un dispositif à cathodes (1), une anode (3) annulaire espacée du dispositif à cathodes et un canal à plasma (4) s'étendant entre le dispositif à cathodes (1) et l'anode (3), lequel canal à plasma est constitué de la bague d'anode et d'un certain nombre de neutrodes (6-12) annulaires et isolées électriquement les unes des autres, la neutrode située le plus près du dispositif à cathodes (1) formant une buse d'entrée (6) avec une section élargie en direction du dispositif à cathodes, le dispositif à cathodes présentant également plusieurs cathodes (1) en forme de barres, lesquelles sont disposées et réparties en cercle autour d'un axe longitudinal (2) central, orienté vers l'axe longitudinal du canal à plasma (4) et parallèle à celui-ci et dont les extrémités (63) actives, sur lesquelles se forme l'arc, dépassent dans la cavité (22) de la buse d'entrée (6), et doté d'un tube (24) disposé dans l'axe longitudinal du canal à plasma (4) et débouchant dans la cavité de la buse (22) pour l'arrivée axiale du matériau à pulvériser dans le jet de plasma, caractérisé en ce que le dispositif à cathodes (1) présente un élément isolant (21) central qui est disposé dans une position fixe par rapport à la buse d'entrée (6) et dépasse à l'intérieur de la cavité (22) de celle-ci, en ce que l'enveloppe de l'élément isolant (21) fait face radialement à une partie de la paroi de la buse (5) et forme avec cette partie de paroi un canal circulaire (23) pour l'admission du gaz de plasma dans la buse d'entrée (6), en ce que également les cathodes (1) en forme de barres sont parallèles entre elles et sont insérées avec les zones d'extrémité (20) saillantes dans l'élément isolant (21) central, et en ce que le tube (24) pour l'arrivée du matériau pulvérisé est disposé dans l'axe central de l'élément isolant (21) et est maintenu par celui-ci.
- Appareil de projection au plasma selon la revendication 1, caractérisé en ce que les zones d'extrémité (20) des cathodes (1) s'étendent au-delà de la bouche (25) du tube (24) pour l'arrivée du matériau pulvérisé.
- Appareil de projection au plasma selon la revendication 1 ou 2, caractérisé en ce que l'élément isolant (21) est à base d'un matériau à haut point de fusion.
- Appareil de projection au plasma selon la revendication 3, caractérisé en ce que l'élément isolant (21) est à base de céramique ou de nitrure de bore.
- Appareil de projection au plasma selon la revendication 3, caractérisé en ce que l'élément isolant (21) est pourvu d'alésages entourant les zones d'extrémité de cathode (20) qui présentent un diamètre supérieur aux zones d'extrémité de cathode (20) afin de garantir le passage du gaz qui circule dans le sens d'écoulement de la cathode vers l'anode.
- Appareil de projection au plasma selon la revendication 1 ou 2, caractérisé en ce que les cathodes (1) présentent une broche de cathode (51, 52) refroidie par eau et sur leurs zones d'extrémité une broche de cathode (20) insérée dans la broche de cathode et à base d'un matériau à haut point de fusion.
- Appareil de projection au plasma selon la revendication 6, caractérisé en ce que la broche de cathode (51, 52) est en cuivre et la boche de cathode (20) en tungstène thorié.
- Appareil de projection au plasma selon la revendication 6, caractérisé en ce que la broche de cathode (20) est insérée de façon excentrique dans la broche de cathode (51, 52), de sorte que l'axe longitudinal de la broche de cathode (20) est plus près de l'axe longitudinal (2) centrale que celui de la broche de cathode (51, 52).
- Appareil de projection au plasma selon la revendication 1, caractérisé en ce qu'un dispositif de répartition du gaz avec un certain nombre de buses est prévu pour obtenir une introduction laminaire du gaz de plasma dans la buse d'entrée (6).
- Appareil de projection au plasma selon la revendication 9, caractérisé en ce qu'une bague de répartition du gaz (29) logée sur l'élément isolant avec un certain nombre de trous de passage (30) pour l'admission du gaz de plasma dans le canal circulaire est située en amont du canal circulaire (23) existant entre l'élément isolant (21) et la buse d'entrée (6).
- Appareil de projection au plasma selon la revendication 9, caractérisé en ce qu'en amont de l'élément isolant (21) est placé un disque de répartition de gaz (53) qui s'étend radialement du tube central (24) pour l'arrivée du matériau pulvérisé jusqu'à la paroi (55) de la buse d'entrée (6) et est pourvu d'un certain nombre de trous de passage (56) disposés en cercle pour l'admission du jet de plasma sortant du canal circulaire dans la buse d'entrée.
- Appareil de projection au plasma selon la revendication 11, caractérisé en ce que le disque de répartition du gaz (53) est à base d'un matériau à haut point de fusion.
- Appareil de projection au plasma selon la revendication 12, caractérisé en ce que le disque de répartition du gaz (53) est en céramique ou nitrure de bore.
- Appareil de projection au plasma selon l'une quelconque des revendications 11 à 13, caractérisé en ce que les trous de passage (56) sont disposés de façon tangentielle par rapport aux hélices virtuelles et à axe central.
- Appareil de projection au plasma selon la revendication 10, caractérisé en ce que le disque de répartition de gaz (53) présente d'autres trous de passage par lesquels s'étendent les broches de cathode (20) et dont le diamètre est supérieur à celui des broches de cathode.
- Appareil de projection au plasma selon la revendication 1, caractérisé en ce qu'il est prévu un manchon pour le passage du gaz (70) qui occupe l'espace annulaire entre l'élément isolant (71) central et la neutrode (72) proche de la cathode et qui présente sur sa face externe des rainures longitudinales (73) continues pour le passage du gaz.
- Appareil de projection au plasma selon la revendication 16, caractérisé en ce que les rainures longitudinales (73) ont une forme d'hélice.
- Appareil de projection selon la revendication 16 ou 17, caractérisé en ce que le manchon de guidage (70) s'étend jusqu'à proximité de la paroi (75) de la neutrode qui délimite la zone de striction.
- Appareil de projection selon la revendication 1, caractérisé en ce que le canal à plasma (4) s'élargit constamment à la suite de la buse d'entrée (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4105407A DE4105407A1 (de) | 1991-02-21 | 1991-02-21 | Plasmaspritzgeraet zum verspruehen von festem, pulverfoermigem oder gasfoermigem material |
DE4105407 | 1991-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0500492A1 EP0500492A1 (fr) | 1992-08-26 |
EP0500492B1 true EP0500492B1 (fr) | 1996-03-27 |
Family
ID=6425559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92810095A Expired - Lifetime EP0500492B1 (fr) | 1991-02-21 | 1992-02-10 | Appareil de pulvérisation par plasma de matériaux en poudre ou gazeux |
Country Status (6)
Country | Link |
---|---|
US (1) | US5332885A (fr) |
EP (1) | EP0500492B1 (fr) |
JP (1) | JP3131001B2 (fr) |
AT (1) | ATE136190T1 (fr) |
CA (1) | CA2061181C (fr) |
DE (2) | DE4105407A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1801256B2 (fr) † | 2005-12-21 | 2015-07-01 | Sulzer Metco (US) Inc. | Procedé hybride de Plasma-pulvérisation à froid et appareil |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9215133U1 (de) * | 1992-11-06 | 1993-01-28 | Plasma-Technik Ag, Wohlen | Plasmaspritzgerät |
US5420391B1 (en) * | 1994-06-20 | 1998-06-09 | Metcon Services Ltd | Plasma torch with axial injection of feedstock |
US5514848A (en) * | 1994-10-14 | 1996-05-07 | The University Of British Columbia | Plasma torch electrode structure |
DE19610015C2 (de) * | 1996-03-14 | 1999-12-02 | Hoechst Ag | Thermisches Auftragsverfahren für dünne keramische Schichten und Vorrichtung zum Auftragen |
US5793013A (en) * | 1995-06-07 | 1998-08-11 | Physical Sciences, Inc. | Microwave-driven plasma spraying apparatus and method for spraying |
GB2302291B (en) * | 1995-06-15 | 1999-07-07 | Basf Plc | Ammoxidation of propane and preparation of catalyst therefor |
KR100276674B1 (ko) * | 1998-06-03 | 2001-01-15 | 정기형 | 플라즈마 토치 |
US6114649A (en) * | 1999-07-13 | 2000-09-05 | Duran Technologies Inc. | Anode electrode for plasmatron structure |
KR100323494B1 (ko) * | 1999-10-18 | 2002-02-07 | 황해웅 | 분말강화재 분사용 플라즈마건 장치 |
DE19953928B4 (de) * | 1999-11-10 | 2004-01-29 | Steinbeis-Transferzentrum Raumfahrtsysteme-Reutlingen | Plasmaerzeugungseinrichtung zur Erzeugung von thermischen Lichtbogenplasmen |
US6202939B1 (en) | 1999-11-10 | 2001-03-20 | Lucian Bogdan Delcea | Sequential feedback injector for thermal spray torches |
DE19963904C2 (de) * | 1999-12-31 | 2001-12-06 | Gtv Ges Fuer Thermischen Versc | Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls |
GB2359096B (en) * | 2000-02-10 | 2004-07-21 | Tetronics Ltd | Apparatus and process for the production of fine powders |
EP1257376B1 (fr) * | 2000-02-10 | 2004-01-21 | Tetronics Limited | Reacteur a arc de plasma pour la production de poudres fines |
GB0004845D0 (en) | 2000-02-29 | 2000-04-19 | Tetronics Ltd | A method and apparatus for packaging ultra fine powders into containers |
KR100776068B1 (ko) | 2000-04-10 | 2007-11-15 | 테트로닉스 엘티디 | 트윈 플라즈마 토치 장치 |
AT4667U1 (de) * | 2000-06-21 | 2001-10-25 | Inocon Technologie Gmbh | Plasmabrenner |
GB2364875A (en) * | 2000-07-10 | 2002-02-06 | Tetronics Ltd | A plasma torch electrode |
DE10065629C1 (de) * | 2000-12-21 | 2002-08-29 | Fraunhofer Ges Forschung | Vorrichtung zur Beschichtung eines Substrates mit einem Plasmabrenner |
US6392189B1 (en) | 2001-01-24 | 2002-05-21 | Lucian Bogdan Delcea | Axial feedstock injector for thermal spray torches |
US6669106B2 (en) | 2001-07-26 | 2003-12-30 | Duran Technologies, Inc. | Axial feedstock injector with single splitting arm |
US6762391B2 (en) * | 2001-12-20 | 2004-07-13 | Wilson Greatbatch Technologies, Inc. | Welding electrode with replaceable tip |
EP1808056B1 (fr) * | 2004-11-05 | 2015-08-26 | Dow Corning Ireland Limited | Traitement au plasma |
US7750265B2 (en) * | 2004-11-24 | 2010-07-06 | Vladimir Belashchenko | Multi-electrode plasma system and method for thermal spraying |
US7759599B2 (en) * | 2005-04-29 | 2010-07-20 | Sulzer Metco (Us), Inc. | Interchangeable plasma nozzle interface |
SE529058C2 (sv) * | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning, användning av en plasmakirurgisk anordning och förfarande för att bilda ett plasma |
SE529053C2 (sv) | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning och användning av en plasmakirurgisk anordning |
SE529056C2 (sv) | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning och användning av en plasmakirurgisk anordning |
EP1765044A1 (fr) * | 2005-09-16 | 2007-03-21 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Source plasma |
DE102006024050B4 (de) * | 2006-05-23 | 2009-08-20 | Daimler Ag | Vorrichtung zum Aufbringen einer Beschichtung auf eine Oberfläche eines Werkstückes |
DE102006044906A1 (de) * | 2006-09-22 | 2008-04-17 | Thermico Gmbh & Co. Kg | Plasmabrenner |
US7928338B2 (en) | 2007-02-02 | 2011-04-19 | Plasma Surgical Investments Ltd. | Plasma spraying device and method |
CN101828432B (zh) * | 2007-08-06 | 2013-11-06 | 普拉斯马外科投资有限公司 | 用于生成脉冲等离子体的脉冲等离子体装置和方法 |
US7589473B2 (en) * | 2007-08-06 | 2009-09-15 | Plasma Surgical Investments, Ltd. | Pulsed plasma device and method for generating pulsed plasma |
CA2695902C (fr) * | 2007-08-06 | 2016-01-05 | Plasma Surgical Investments Limited | Ensemble cathodique et procede de generation de plasma pulse |
US8735766B2 (en) * | 2007-08-06 | 2014-05-27 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
WO2009143626A1 (fr) * | 2008-05-29 | 2009-12-03 | Northwest Mettech Corp. | Procédé et système de production de revêtements à partir de matière première liquide à l’aide d’une alimentation axiale |
FR2943209B1 (fr) | 2009-03-12 | 2013-03-08 | Saint Gobain Ct Recherches | Torche a plasma avec injecteur lateral |
DE102009015510B4 (de) * | 2009-04-02 | 2012-09-27 | Reinhausen Plasma Gmbh | Verfahren und Strahlgenerator zur Erzeugung eines gebündelten Plasmastrahls |
US9315888B2 (en) | 2009-09-01 | 2016-04-19 | General Electric Company | Nozzle insert for thermal spray gun apparatus |
US8237079B2 (en) * | 2009-09-01 | 2012-08-07 | General Electric Company | Adjustable plasma spray gun |
US8613742B2 (en) | 2010-01-29 | 2013-12-24 | Plasma Surgical Investments Limited | Methods of sealing vessels using plasma |
US9089319B2 (en) | 2010-07-22 | 2015-07-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
DE102011002183B4 (de) | 2010-10-15 | 2014-04-30 | Industrieanlagen- Betriebsgesellschaft mit beschränkter Haftung | Vorrichtung und Verfahren zur plasmagestützten Herstellung nanoskaliger Partikel und/oder zur Beschichtung von Oberflächen |
WO2012143024A1 (fr) | 2011-04-20 | 2012-10-26 | Industrieanlagen-Betriebsgesellschaft Mbh | Dispositif et procédé de production assistée par plasma de particules à l'échelle nanométrique et/ou de formation de revêtement sur des surfaces |
CN102325423B (zh) * | 2011-09-16 | 2013-04-10 | 武汉天和技术股份有限公司 | 一种大功率长寿命等离子发生装置及方法 |
CN103260330B (zh) * | 2012-02-21 | 2015-11-11 | 成都真火科技有限公司 | 一种多阴极中轴阳极电弧等离子体发生器 |
EP2819802A4 (fr) * | 2012-02-28 | 2015-08-19 | Sulzer Metco Us Inc | Pistolet à plasma en cascade étendu |
US9272360B2 (en) | 2013-03-12 | 2016-03-01 | General Electric Company | Universal plasma extension gun |
CN103354695B (zh) * | 2013-07-25 | 2016-02-24 | 安徽省新能电气科技有限公司 | 一种电弧通道直径异形的电弧等离子体炬 |
CZ2013949A3 (cs) * | 2013-11-29 | 2015-11-11 | Ústav Fyziky Plazmatu Akademie Věd České Republiky, V. V. I. | Kapalinou stabilizovaný plazmatron s pevnou anodou |
WO2015147127A1 (fr) * | 2014-03-28 | 2015-10-01 | 中国電力株式会社 | Dispositif de pulvérisation plasmatique |
WO2016151826A1 (fr) * | 2015-03-25 | 2016-09-29 | 中国電力株式会社 | Appareil de projection thermique plasma |
CH712835A1 (de) | 2016-08-26 | 2018-02-28 | Amt Ag | Plasmaspritzvorrichtung. |
CN108430148B (zh) * | 2018-03-30 | 2023-09-05 | 山东辰跃节能科技有限公司 | 一种等离子发生器 |
SA118390599B1 (ar) * | 2018-05-14 | 2024-03-19 | مدينة الملك عبدالعزيز للعلوم والتقنية | طريقة وجهاز نفاث لتخليق وتوليد شعلة من البلازما الحرارية |
CN112423460B (zh) * | 2019-08-20 | 2023-03-21 | 新奥科技发展有限公司 | 等离子体发生器 |
WO2022047227A2 (fr) | 2020-08-28 | 2022-03-03 | Plasma Surgical Investments Limited | Systèmes, procédés et dispositifs pour générer un flux de plasma étendu principalement radialement |
CN112647037A (zh) * | 2020-12-17 | 2021-04-13 | 青岛科技大学 | 一种四阴极等离子喷涂喷枪装置 |
US20230040683A1 (en) * | 2021-08-06 | 2023-02-09 | PlasmaDent Inc. | Plasma-generating nozzle and plasma device including same |
CN114059024B (zh) * | 2022-01-17 | 2022-04-08 | 北京航空航天大学 | 一种等离子物理气相沉积用喷枪及热障涂层制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990015516A1 (fr) * | 1989-06-08 | 1990-12-13 | Suennen Jean | Procede et dispositif d'obtention de hautes temperatures |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2892067A (en) * | 1956-05-24 | 1959-06-23 | Russell S Donald | Electric-arc torch |
FR1207809A (fr) * | 1957-08-09 | 1960-02-18 | Knapsack Ag | Dispositif d'arc électrique à courant monophasé ou polyphasé pour la production d'un courant de gaz à haute densité d'énergie |
US3239130A (en) * | 1963-07-10 | 1966-03-08 | Cons Vacuum Corp | Gas pumping methods and apparatus |
DE1932150U (de) * | 1965-09-24 | 1966-02-03 | Siemens Ag | Plasmaspritzpistole. |
US3360988A (en) * | 1966-11-22 | 1968-01-02 | Nasa Usa | Electric arc apparatus |
US3628079A (en) * | 1969-02-20 | 1971-12-14 | British Railways Board | Arc plasma generators |
US3562486A (en) * | 1969-05-29 | 1971-02-09 | Thermal Dynamics Corp | Electric arc torches |
DE2246300A1 (de) * | 1972-08-16 | 1974-02-28 | Lonza Ag | Plasmabrenner |
DE3304790A1 (de) * | 1982-02-15 | 1983-09-01 | Československá akademie věd, Praha | Verfahren zur stabilisierung des niedertemperatur-plasmas eines lichtbogenbrenners und lichtbogenbrenner zu seiner durchfuehrung |
DE8309927U1 (de) * | 1982-04-06 | 1983-11-24 | Arnoldy, Roman Francis, 77024 Houston, Tex. | Plasma-Schmelzvorrichtung |
US4521666A (en) * | 1982-12-23 | 1985-06-04 | Union Carbide Corporation | Plasma arc torch |
USRE32908E (en) * | 1984-09-27 | 1989-04-18 | Regents Of The University Of Minnesota | Method of utilizing a plasma column |
US4725447A (en) * | 1984-09-27 | 1988-02-16 | Regents Of The University Of Minnesota | Method of utilizing a plasma column |
DE3544657A1 (de) * | 1985-12-17 | 1987-06-19 | Plasmainvent Ag | Hochstromelektrode |
US4780591A (en) * | 1986-06-13 | 1988-10-25 | The Perkin-Elmer Corporation | Plasma gun with adjustable cathode |
-
1991
- 1991-02-21 DE DE4105407A patent/DE4105407A1/de active Granted
-
1992
- 1992-02-10 DE DE59205803T patent/DE59205803D1/de not_active Expired - Lifetime
- 1992-02-10 AT AT92810095T patent/ATE136190T1/de active
- 1992-02-10 EP EP92810095A patent/EP0500492B1/fr not_active Expired - Lifetime
- 1992-02-12 US US07/836,037 patent/US5332885A/en not_active Expired - Lifetime
- 1992-02-13 CA CA002061181A patent/CA2061181C/fr not_active Expired - Lifetime
- 1992-02-21 JP JP04035347A patent/JP3131001B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990015516A1 (fr) * | 1989-06-08 | 1990-12-13 | Suennen Jean | Procede et dispositif d'obtention de hautes temperatures |
Non-Patent Citations (1)
Title |
---|
Rutscher/Deutsch: Plasmatechnik. München, Wien 1984. Seiten 244, 262, 263. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1801256B2 (fr) † | 2005-12-21 | 2015-07-01 | Sulzer Metco (US) Inc. | Procedé hybride de Plasma-pulvérisation à froid et appareil |
Also Published As
Publication number | Publication date |
---|---|
CA2061181A1 (fr) | 1992-08-22 |
DE59205803D1 (de) | 1996-05-02 |
JPH0584455A (ja) | 1993-04-06 |
ATE136190T1 (de) | 1996-04-15 |
US5332885A (en) | 1994-07-26 |
CA2061181C (fr) | 1998-06-30 |
EP0500492A1 (fr) | 1992-08-26 |
JP3131001B2 (ja) | 2001-01-31 |
DE4105407A1 (de) | 1992-08-27 |
DE4105407C2 (fr) | 1993-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0500492B1 (fr) | Appareil de pulvérisation par plasma de matériaux en poudre ou gazeux | |
EP0500491B1 (fr) | Appareil de pulvérisation par plasma de matériaux en poudre ou gazeux | |
EP0596830B1 (fr) | Appareil de pulvérisation par plasma | |
DE69525162T2 (de) | Plasmabrenner mit axialer pulverinjektion | |
DE3878570T2 (de) | Verfahren und apparat zum hochleistungsplasmaspritzen. | |
DE19900128B4 (de) | Düse sowie Düsenanordnung für einen Brennerkopf eines Plasmaspritzgeräts | |
DE69032704T2 (de) | Plasmalichtbogenbrenner mit verbessertem Düsenschild und Stufenfluss | |
DE69924117T2 (de) | Elektrode für einen lichtbogen-plasmabrenner mit einem einsatz mit verbesserter konfiguration | |
DE68911457T2 (de) | Plasmaspritzbrennerverlängerung zum Anbringen von Schichten in Nuten. | |
DE3929960A1 (de) | Duese fuer einen plasmabrenner und verfahren zum einbringen eines pulvers in die plasmaflamme eines plasmabrenners | |
DE2912843A1 (de) | Plasmabrenner, plasmabrenneranordnung und verfahren zur plasmaerzeugung | |
DE4030541C2 (de) | Brenner zur Beschichtung von Grundwerkstoffen mit pulverförmigen Zusatzwerkstoffen | |
DE2306022B2 (de) | Plasmabrenner mit Achsialzufuhr des stabilisierenden Gases | |
DE2615679A1 (de) | Lichtbogen-metallspritzgeraet | |
DE3241476C2 (fr) | ||
EP0017201B1 (fr) | Chalumeau à plasma à courant continu | |
DE3787804T2 (de) | Elektrodenstruktur für einen plasmabrenner vom non-transfer-typ. | |
EP0446238B1 (fr) | Chalumeau a plasma a refroidissement par liquide avec arc de transfert | |
DE1764978C3 (de) | Hochfrequenz-Plasmagenerator | |
DE69901731T2 (de) | Aus kupfer-legierung hergestelltes verschleissteil für lichtbogenbrenner | |
DE1440618B2 (fr) | ||
WO1997016947A1 (fr) | Chalumeau a plasma | |
DE2229716A1 (de) | Verfahren und einrichtung zur energiebeladung eines reaktionsfaehigen werkstoffs mittels einer bogenentladung | |
DE19935468A1 (de) | Plasmaspritzvorrichtung | |
DE68906137T2 (de) | Duesenschutz fuer plasmalichtbogenschweissbrenner. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19921015 |
|
17Q | First examination report despatched |
Effective date: 19940831 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SULZER METCO AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960327 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19960327 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960327 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960327 Ref country code: DK Effective date: 19960327 Ref country code: BE Effective date: 19960327 |
|
REF | Corresponds to: |
Ref document number: 136190 Country of ref document: AT Date of ref document: 19960415 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960328 |
|
REF | Corresponds to: |
Ref document number: 59205803 Country of ref document: DE Date of ref document: 19960502 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960627 Ref country code: PT Effective date: 19960627 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970228 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Effective date: 19970831 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SULZER MANAGEMENT AG Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: EP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110302 Year of fee payment: 20 Ref country code: DE Payment date: 20110218 Year of fee payment: 20 Ref country code: CH Payment date: 20110222 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110217 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59205803 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59205803 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120209 |