EP0499600A1 - Gesinterter Permanentmagnet(-werkstoff) sowie Verfahren zu dessen Herstellung - Google Patents
Gesinterter Permanentmagnet(-werkstoff) sowie Verfahren zu dessen Herstellung Download PDFInfo
- Publication number
- EP0499600A1 EP0499600A1 EP92890030A EP92890030A EP0499600A1 EP 0499600 A1 EP0499600 A1 EP 0499600A1 EP 92890030 A EP92890030 A EP 92890030A EP 92890030 A EP92890030 A EP 92890030A EP 0499600 A1 EP0499600 A1 EP 0499600A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sse
- magnetic phase
- phase
- concentration
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000008569 process Effects 0.000 title claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000000696 magnetic material Substances 0.000 title description 5
- 230000005291 magnetic effect Effects 0.000 claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000009792 diffusion process Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 claims description 19
- 239000000654 additive Substances 0.000 claims description 18
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- 229910002546 FeCo Inorganic materials 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000005275 alloying Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 238000005272 metallurgy Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 2
- 229910052738 indium Inorganic materials 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 150000001247 metal acetylides Chemical class 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 150000002902 organometallic compounds Chemical class 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Definitions
- the invention relates to a sintered permanent magnet (material) according to the preamble of claim 1.
- the invention further relates to a method for producing permanent magnets (materials) according to the preamble of claim 6.
- Permanent magnets or permanent magnet materials made essentially of an alloy of iron (Fe), boron (B) and rare earths (SE) in the sintering process are preferably used when high coercive force, high remanence and / or large energy product are required.
- the component which forms or contains the magnetic phase of the SE2Fe14B type is melt-metallurgically produced and pulverized, which powder, optionally mixed with additives, is pressed into a green compact in the magnetic field and sintered, the sintered body optionally being subjected to at least one further heat treatment.
- EP-B1-0126802 discloses sintered permanent magnets of the Fe-B-R type (R means at least one SE element including Y), in which Fe can be partially replaced by Co.
- R means at least one SE element including Y
- Fe can be partially replaced by Co.
- the elements are in due to the manufacturing process used the magnetic phase is homogeneously distributed and a heat or aging treatment of the sintered body is said to improve the magnetic values. If Fe is partially replaced by Co, this increases the Curie point or the Curie temperature (T c ) of the magnetic material, the coercive force of which, as is known to the person skilled in the art, however, decreases with increasing Co content, which also results in the energy product can be adversely affected.
- the invention has for its object to eliminate the disadvantages of the known RE-containing magnets (materials) and their manufacturing processes and to create sintered permanent magnets that have high saturation magnetization, high coercive force and large energy product with good temperature stability and high Curie point. It is also an object of the invention to provide a new and improved manufacturing method for magnets, with which high magnetic characteristics can be achieved and their scatter can be reduced.
- grains of the magnetic phase are surface-smoothed or their surface energy is reduced or minimized by diffusion molding in sinter-active or grain-connecting phases and have a diameter of at most 60 ⁇ m, but at least 3 ⁇ m.
- grain surfaces designed in this way energetically, a domain wall formation and / or shift at least made difficult, which generally leads to an improvement in the coercive force values.
- a corresponding grain size of the magnetic phase is of great importance because, as has been found, grain diameters of greater than 60 ⁇ m and less than 3 ⁇ m lead to a drop in the coercive force or the magnetic induction.
- a special feature of the new permanent magnet (material) according to the invention is a partial replacement of iron (Fe) by cobalt (Co) in the magnetic phase formed with boron (B) and light rare earths (LSE) and heavy rare earths (SSE) , where the average SSE content is set at a certain value depending on the concentration value of Co. It is known that Co contents cause a slight increase in magnetization and an increase in the Curie point, but the coercive force or magnetic inductance is reduced, which leads to a lower energy product (BH max ) of the magnet and thus to a deterioration in all of the magnetic properties.
- BH max lower energy product
- LSE magnetic moments of LSE, in particular the advantageously usable elements neodymium (Nd) and praseodymium (Pr), are aligned parallel to Fe or ferromagnetic and the SSE has an antiparallel direction to Fe or an antiferromagnetic direction of its have magnetic moments.
- SSE Dysprosium (Dy) has been shown to be particularly effective and advantageous because, among other things, the anisotropy field strength increases strongly due to the antiferro- magnetic coupling.
- the SSE content be at least 0.05 times the Co content because lower concentrations cause a reduction in the coercive force.
- SSE contents higher than 0.2 times the Co content lead to a decrease in the saturation magnetization.
- the local concentration of SSE atoms is also inhomogeneous across the cross-section of the grains, in particular increasing in the direction of the surface-smoothed grain boundary, domain wall formation and / or domain wall displacement is further reduced, as a result of which the coercive force and the result of the energy product are further increased .
- An at least 3 times higher concentration of SSE atoms in a range of at most 1 ⁇ m at the grain boundary has proven to be particularly effective.
- Another particularly important characteristic of the new permanent magnet according to the invention is a higher SSE content than the hard magnetic phase and / or a higher activity of the SSE at the diffusion temperature of the sinter-active or grain-connecting, essentially paramagnetic phase.
- Good magnetic values are preferably obtained if the SE concentration of this grain-connecting phase is greater by at least 25% and its SSE concentration by at least 90% than that of the magnetic phase on average.
- the hard magnetic phase of the type SE2 (FeCo) 14 B forming or containing component by melting and casting an alloy with 8 to 30 at.% SE, consisting of LSE and SSE, 2 to 28 at.% B , 3 to 25 at.% Co, remainder iron and optionally further alloying elements and impurities produced and to powder with a grain size crushed between 60 ⁇ m and 3 ⁇ m.
- Additives containing at least one SSE element, preferably to an extent of 5 to 15% by weight, are introduced into this powder and distributed homogeneously.
- additives In order to bring the surface of the powder grains and the additives into good contact with one another, it is necessary for solid additives to provide their particle diameter below 5 .mu.m or less than 15% of the diameter of the powder grains and, if appropriate, a further grinding process.
- the additives can also be introduced into the powder in liquid form, for example as SE compounds.
- the SS content as a function of the Co content is adjusted in a range from 0.02 to 0.19 times the Co content by the melt metallurgical route.
- the SSE content of the additive is intended to be at least 100% greater than that of the powder.
- a green compact is pressed from the material formed from powder with the additives and is preferably sintered in a vacuum or, if appropriate, in a protective gas atmosphere at high temperature.
- the additives become at least partially liquid or pasty, essentially envelop the grains and act as a sinter-active or grain-connecting agent which largely fills the edges and fissures in and between the grains.
- the sintering temperature is selected so high for a short time that the sintering agent is given a sufficient degree of liquid to in particular fill or envelop the fissures and sharp-edged concave cavities of the grain surfaces.
- the sintered body is subjected to a diffusion treatment or diffusion annealing at a temperature below the sintering temperature with a temperature between 600 and 1100 ° C. and a period of 1 to 12 hours.
- the sinter-active or grain-connecting phase or mass has a sufficient degree of strength for shape stabilization.
- a Diffusion treatment of the sintered body which can be directly connected to the sintering, achieves surface structures and concentration profiles of atoms which are advantageous for the grains for the magnetic properties.
- the surfaces of the grains forming or containing the hard magnetic phase which are made sharp-edged by the comminution process, are smoothed because the edges or tips represent energetic irregularities and an increased atom diffusion takes place in these areas.
- a shaping of the grains or a largely directed atom diffusion brings about a reduction or minimization of their surface energy. Due to smoothed surfaces with reduced energy of the grains from the hard magnetic phase, a new formation of domain walls, which preferably occurs at the tips and edges, is effectively reduced in relation to the change in direction of the magnetic moments, and thus the coercive force of the magnets is increased.
- a certain grain size specified above and a sufficient filling, in particular the fissures and sharp-edged concave cavities of the grain surfaces with sinter-active mass or phase are important.
- SSE atoms Due to the set difference in concentration of SSE atoms in the hard magnetic phase and the grain-connecting, largely paramagnetic phase, SSE atoms also penetrate into the magnetocrystalline phase during the diffusion treatment. Because in the case of elements diffused in, such as AL, for example, a rapid, essentially immediate, concentration equalization takes place, it was surprising that SSE atoms at the grain boundaries or in the region near the grain boundaries can be enriched to at least 3 times the content and one inhomogeneous concentration of SSE atoms can be formed in the grains. It is important to choose the diffusion treatment parameters in such a way that the thickness of the area of the increased SSE concentration is set to at least 0.05 ⁇ m, but at most 1 ⁇ m. Smaller strengths cause only an insignificant further reduction in the formation of domain walls and / or domain wall mobility, thus a slight increase in coercive force; greater strengths reduce the achievable saturation magnetization and reduce the energy product of the permanent magnet.
- Table 1 shows the magnetic values of reference magnets (materials) with different compositions.
- the respective starting material was produced by melt metallurgy and ground into powder. Under the influence of a magnetic field, the powder was pressed into a green body, which was sintered, heat-treated and magnetized.
- the composition and the measured magnetic values of the permanent magnet bodies are given under the designations A to F in Table 1.
- the permanent magnets (materials) according to the invention are listed under numbers 1 to 14 in Table 2.
- the analytical determinations were carried out by transmission electron microscopy (TEM).
- TEM transmission electron microscopy
- the SSE content in the magnetic phase on average was determined by averaging from point and area measurements over the grain cross section.
- the Co content and the magnetic field strength or magnetization are increased by the Co content and, as has been shown, the coercive force or induction is kept at high values as a result of the further measures, which synergistically brings about an increased energy product .
- conventional magnets largely without Co content, high coercive forces become low at low Curie temperatures and at high Co content high magnetization achieved at high Curie temperatures.
- the magnetic energy product is relatively low in both cases.
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
- Die Erfindung betrifft einen gesinterten Permanentmagnet(- werkstoff) nach dem Oberbegriff des Anspruchs 1.
- Weiters bezieht sich die Erfindung auf ein Verfahren zur Herstellung von Permanentmagneten(- werkstoffen) nach dem Oberbegriff des Anspruchs 6.
- Permanentmagnete bzw. Permanentmagnetwerkstoffe aus im wesentlichen einer Legierung von Eisen ( Fe), Bor (B) und Seltenen Erden ( SE) im Sinterverfahren gefertigt, werden bevorzugt dann verwendet, wenn hohe Koerzitivkraft, hohe Remanenz und/oder großes Energieprodukt gefordert sind. Dabei wird der die magnetische Phase vom Typ SE₂Fe₁₄B bildende oder enthaltende Bestandteil schmelzmetallurgisch hergestellt und pulversisiert , welches Pulver gegebenenfalls mit Zusätzen vermenkt im Magnetfeld zu einem Grünling verpreßt und dieser gesintert wird, wobei der Sinterkörper gegebenenfalls mindestens einer weiteren Wärmebehandlung unterworfen werden kann.
- In der EP-B1-0126802 sind gesinterte Permanentmagnete des Typs Fe-B- R ( R bedeutet mindestens ein SE- Element einschließlich Y) bekannt, bei welchen Fe teilweise durch Co ersetzt werden kann. Die Elemente sind dabei auf Grund des verwendeten Herstellverfahrens in der magnetischen Phase homogen verteilt und eine Wärme- oder Alterungsbehandlung des Sinterkörpers soll die magnetischen Werte verbessern. Wird Fe teilweise durch Co ersetzt, so erfolgt dadurch eine Erhöhung des Curie- Punktes bzw. der Curie- Temperatur ( Tc) des Magnetwerkstoffes, dessen Koerzitivkraft, wie dem Fachmann bekannt ist, jedoch mit steigendem Co-Gehalt sinkt, wodurch auch das Energieprodukt nachteilig beeinflußt werden kann.
- Um Permanentmagnete mit verbesserten magnetischen Eigenschaften bei Raumtemperatur zu schaffen, wird gemäß EP-B1-0101552 vorgeschlagen, eine Co-freie Legierung mit einem Gehalt an Fe-B-R einzusetzen, die Omindestens eine stabile Verbindung des ternären Systems Fe-B-R enthält, wobei R mindestens ein Seltenerdenelement einschließlich Yttrium bedeutet. Die magnetische Hauptphase muß dabei eine intermetallische Verbindung mit konstanter Zusammensetzung sein, was eine homogene Verteilung der Legierungselemente bedingt. Abgesehen von dem großen legierungstechnischen Aufwand bei der Fertigung der Ausgangslegierung und den starken Streuungen der magnetischen Werte des sintertechnisch hergestellten Magnetwerkstoffes weist dieser eine signifikante Abnahme der magnetischen Kennwerte mit steigender Temperatur im Bereich von Raumtemperatur bis 200°C auf, wobei der Curie-Punkt schon bei etwa 300°C erreicht wird.
- Ferner ist aus der EP-A1-0265006 ein Verfahren zur Herstellung von gesinterten Permanentmagneten bekannt, bei welchem stöchiometrisch zusammengesetztes kristallines RE₂( FeCo)₁₄B- Material ( RE bedeutet Seltene Erden) mit einem anderen Material gemahlen wird, wobei dieses andere Material bei der Wärmebehandlung bzw. beim Sinterprozeß eine zweite nicht magnetische flüssige Phase an der Oberfläche de Körner aus RE (FeCo) B bildet. Damit soll erreicht werden, daß die genaue chemische Zusammensetzung bei homogener Verteilung aller Elemente der magnetischen Phase im Magnetwerkstoff unabhängig von der zweiten Phase, die besondere schmelztechnische Eigenschaften und/oder Zusammensetzungen aufweisen kann, einstellbar ist. Bei dieser Aufsführungsform besteht jedoch der Nachteil im großen legierungstechnischen Aufwand und der schlechten Reproduzierbarkeit der magnetischen Werkstoffdaten.
- Der Erfindung liegt die Aufgabe zugrunde, die Nachteile der bekannten SE-enthaltenden Magnete(-werkstoffe) sowie ihrer Herstellungsverfahren zu beseitigen und gesinterte Permanentmagnete zu erstellen, die hohe Sättigungsmagnetisierung, hohe Koerzitivkraft und großes Energieprodukt bei guter Temperaturstabilität und hohem Curie-Punkt aufweisen. Ferner ist es Ziel der Erfindung, ein neues und verbessertes Herstellverfahren für Magnete anzugeben, mit welchem hohe magnetische Kennwerte erreicht und deren Streuung verringert werden.
- Diese Aufgabe wird bei einem gattungsgemäßen Gegenstand durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet. Ein Verfahren der eingangs genannten Art ist erfindungsgemäß in den Ansprüchen 6 bis 18 gekennzeichnet.
- Beim erfindungsgemäßen Permanentmagnet(-werkstoff) und auf Grund der erfindungsgemäßen Vorgangsweise bei einer Herstellung desselben werden synergetisch eine Reihe von Vorteilen erreicht, wobei nachteilige Wechselwirkungen von einzelnen Maßnahmen weitgehend unterdrückt sind und die Gesamtheit der magnetischen Eigenschaften wesentlich erhöht wird. Die wissenschaftlichen Grundlagen und Ursachen dieser Kombinationseffekte sind noch nicht vollkommen geklärt; es handelt sich jedoch im wesentlichen dabei um physikalisch-chemische Wirkungen in Verbindung mit der Magnetokinetik.
- Erfindungsgemäß sind Körner der magnetischen Phase oberflächengeglättet bzw. in sinteraktiven bzw. kornverbindenden Phasen in ihrer Oberflächenenrgie verringert bzw. minimiert diffusionseingeformt und weisen einen Durchmesser von höchstens 60 µm, jedoch mindestens von 3 µm auf. Durch derartig ausgebildete Kornoberflächen wird, energetisch bedingt, eine Domänwandbildung und/oder- verschiebung zumindest erschwert, womit allgemein eine Verbesserung der Koerzitivkraftwerte erreicht wird. Von hoher Wichtigkeit ist dabei eine entsprechende Korngröße der magnetischen Phase, weil, wie gefunden wurde, Korndurchmesser von größer als 60 µm und kleiner als 3 µm zu einem Abfall der Koerzitivkraft bzw. der magnetischen Induktion führen.
- Ein besonderes Kennzeichen des neuen erfindungsgemäßen Permanentmagneten(-werkstoffes) ist ein teilweiser Ersatz von Eisen (Fe) durch Kobalt (Co) in der magnetischen, mit Bor (B) sowie leichten Seltenen Erden (LSE) und schweren Seltenen Erden (SSE) gebildeten Phase, wobei der Durchschnittsgehalt an SSE mit einem bestimmten Wert in Abhängigkeit vom Konzentrationswert von Co eingestellt ist. Es ist bekannt, daß Co- Gehalte eine geringe Erhöhung der Magnetisierung und eine Anhebung des Curie-Punktes bewirken, die Koerzitivkraft bzw. mangnetische Induktuon wird jedoch dabei erniedrigt, was zu einem geringeren Energieprodukt (BHmax) des Magneten und somit zu einer Verschlechterung in der Gesamtheit der magnetischen Eigenschaften führen kann. Diese Wirkungen können damit erklärt werden, daß Co- Atome in der tetragonalen Kristallstruktur bei Raumtemperatur eine Umorientierung der magnetischen Momente in Richtung der Basisebene bewirken und daß die uniachsiale magnetokristalline Anisotropie verschlechtert wird bzw. die Anisotropiefeldstärke sinkt. Vollkommen überraschend wurde gefunden, daß diese Nachteile eines Co- Ersatzes dadurch aufgehoben bzw. minimiert werden können, wenn SSE in einer bestimmten vom Co- Gehalt abhängigen Konzentration vorliegen und der übrige Seltene Erden (SE)- Teil der hartmagnetischen Phase durch LSE gebildet ist. Dies könnte damit im Zusammenhang stehen, daß die der magnetischen Momente von LSE insbesondere die vorteilhaft einsetzbaren Elemente Neodym (Nd) und Praseodym ( Pr) parallel zu Fe bzw. ferromagnetisch ausgerichtet sind und die SSE eine antiparallele Richtung zu Fe bzw. eine antiferromagnetische Richtung ihrer magnetischen Momente aufweisen.
- Als besonders wirkungsvoll und vorteilhaft einsetzbar hat sich unter den SSE Dysprosium ( Dy) gezeigt, weil u.a. durch die antiferro- magnetische Kopplung die Anisotropiefeldstärke stark zunimmt. Es ist jedoch wichtig, daß der Gehalt an SSE mindestens 0,05 mal dem Gehalt an Co entspricht, weil niedrigere Konzentrationen eine Verringerung der Koerzitivkraft bewirken. Höhere SSE- Gehalte als 0,2 mal dem Gehalt an Co führen zu einer Abnahme der Sättigungsmagnetisierung.
- Ist zusätzlich erfindungsgemäß die örtliche Konzentration an SSE-Atomen über den Querschnitt der Körner inhomogen, insbesondere in Richtung zur flächengeglätteten Korngrenze hin ansteigend, so wird eine Domänwandbildung und/oder Domänwandverschiebung weiter vermindert, wodurch eine weitere Vergrößerung der Koerzitivkraft und in der Folge des Energieproduktes eintreten. Als besonders wirkungsvoll hat sich eine mindestens 3-fach höhere Konzentration an SSE- Atomen in einem Bereich von höchstens 1 µm an der Korngrenze gezeigt.
- Ein weiteres besonders wichtiges Kennzeichen des erfindungsgemäßen neuen Permanentmagneten ist ein gegenüber der hartmagnetischen Phase höherer Gehalt an SSE und/oder eine höhere Aktivität der SSE bei Diffusionstemperatur der sinteraktiven bzw. kornverbindenden, im wesentlichen paramagnetischen Phase. Bevorzugt gute magnetische Werte werden erhalten, wenn die SE- Konzentration dieser kornverbindenden Phase um mindestens 25 % und deren SSE- Konzentrationen um mindestens 90% größer ist als diejenigen der magnetischen Phase im Durchschnitt.
- Beim erfindungsgemäßen Verfahren wird der die hartmagnetische Phase vom Typ SE₂(FeCo)₁₄ B bildende oder enthaltende Bestandteil durch Schmelzen und Gießen einer Legierung mit 8 bis 30 At.-% SE, bestehend aus LSE und SSE, 2 bis 28 At.-% B, 3 bis 25 At.-% Co, Rest Eisen sowie gegebenenfalls weitere Legierungselemente und Verunreinigungen hergestellt und zu Pulver mit einer Korngröße zwischen 60 µm und 3 µm zerkleinert. In dieses Pulver werden zumindest ein SSE-Element enthaltende Zusätze, vorzugsweise in einem Ausmaß von 5 bis 15 Gew.-%, eingebracht und homogen verteilt. Um die Oberfläche der Pulverkörner und die Zusätze miteinander in guten Kontakt zu bringen, ist es bei festen Zusätzen erforderlich, deren Teilchendurchmesser unter 5 um bzw. kleiner als 15 % des Durchmessers der Pulverkörner und gegebenenfalls einen weiteren Mahlvorgang vorzusehen. Die Zusätze können auch in flüssiger Form, z.B. als SE- Verbindungen, in das Pulver eingebracht werden.
- Im Ausgangsmaterial des Pulvers wird auf schmelzmetallurgischem Weg vom SE-Anteil der SSE- Gehalt in Abhängigkeit vom Co- Gehalt und zwar in einem Bereich von 0,02 bis 0,19 mal dem Co- Gehalt eingestellt. Der SSE- Gehalt des Zusatzes wird um mindestens 100 % größer als derjenige des Pulvers vorgesehen.
- Aus dem aus Pulver mit den Zusätzen gebildeten Material wird in einem Magnetfeld ein Grünling gepreßt, welcher vorzugsweise im Vakuum oder gegebenenfalls in Schutzgasatmosphäre bei hoher Temperatur gesintert wird. Die Zusätze werden dabei zumindest teilweise flüssig oder teigig, hüllen die Körner im wesentlichen ein und wirken als sinteraktives bzw. kornverbindendes Mittel, welches die Kanten und Klüfte in und zwischen den Körnern weitgehend ausfüllt. Dazu ist es wichtig, daß die Sintertemperatur kurzzeitig derart hoch gewählt wird, daß dem sinteraktiven Mittel ein ausreichender Flüssigkeitsgrad erteilt wird, um insbesondere die Klüfte und scharfkantigen Konkavhohlräume der Kornoberflächen auszufüllen bzw. zu umhüllen.
- Nach dem Sintervorgang wird der Sinterkörper bei einer Temperatur unterhalb der Sintertemperatur einer Diffusionsbehandlung bzw. Diffusionsglühung mit einer Temperatur zwischen 600 und 1100°C und einer Zeitdauer von 1 bis 12 Stunden unterworfen. Die sinteraktive bzw. kornverbindende Phase bzw. Masse weist dabei einen ausreichenden Festigkeitsgrad zur Formstabilisierung auf. Mit einer Diffusionsbehandlung des Sinterkörpers, die unmittelbar an das Sintern angeschlossen werden kann, werden betreffend die Körner für die magnetischen Eigenschaften vorteilhafte Oberflächenstrukturen und Konzentrationsprofile von Atomen erreicht. Die durch den Zerkleinerungsvorgang scharfkantig ausgebildeten Oberflächen der die hartmagnetische Phase bildenden oder enthaltenden Körner werden geglättet, weil die Kanten bzw. Spitzen energetische Unregelmäßigkeiten darstellen und in diesen Bereichen eine verstärkte Atomdiffusion erfolgt. Eine Einformung der Körner bzw. eine weitgehend gerichtete Atomdiffusion bewirkt eine Verringerung bzw. Minimierung ihrer Oberflächenergie. Durch geglättete Oberflächen mit verringerter Enerige der Körner aus hartmagnetischer Phase wird, bezogen auf die Richtungsänderung der magnetischen Momente energetisch eine Neubildung von Domänwänden, welche bevorzugt an Spitzen und Kanten erfolgt, wirksam verringert und damit die Koerzitivkraft der Magnete erhöht. Dabei sind jedoch eine bestimmte oben angegebene Korngröße und eine ausreichende Füllung, insbesondere der Klüfte und scharfkantigen Konkavhohlräume der Kornoberflächen mit sinteraktiver Masse bzw. Phase wichtig.
- Auf Grund des eingestellten Konzentrationsunterschiedes an SSE-Atome in der hartmagnetischen Phase und der kornverbindenden, weitgehend paramagnetischen Phase erfolgt bei der Diffusionsbehandlung auch ein Eindringen von SSE- Atomen in die magnetokristalline Phase. Weil bei eindiffundierten Elementen wie beispielsweise AL ein rascher, im wesentlicher unmittelbarer, Konzentrationsausgleich stattfindet, war es überraschend, daß SSE-Atome an den Korngrenzen bzw. im korngrenzennahen Bereich auf einen im Vergleich mit dem Korninneren mindestens 3-fachen Gehalt angereichert werden können und eine inhomogene Konzentration von SSE- Atomen in den Körnern ausbildbar ist. Dabei ist es wichtig, die Diffusionsbehandlungsparameter derart zu wählen, daß die Stärke des Bereiches der erhöhten SSE- Konzentration auf mindestens 0,05 µm, höchstens jedoch 1 µm eingestellt wird. Kleinere Stärken bewirken nur eine unmaßgebliche weitere Verminderung der Domänwandbildung und/oder Domänwandbeweglichkeit, somit eine geringfügige Erhöhung der Koerzitivkraft; größere Stärken reduzieren die erreichbare Sättigungsmagnetisierung und verkleinern das Energieprodukt des Permanentmagneten.
- Im folgenden wird die Erfindung anhand von beiliegenden Tabellen 1 und 2, in welchen Legierungsgehalte und Mittelwerte von magnetischen Messungen von Permanentmagnetkörpern angegeben sind, näher erläutert.
- In der Tabelle 1 sind die magnetischen Werte von Vergleichsmagneten(-werkstoffen) mit unterschiedlicher Zusammensetzung angegeben. Dabei wurde das jeweilige Ausgangsmaterial schmelzmetallurgisch hergestellt und zu Pulver gemahlen. Unter Einwirkung eines Magnetfeldes erfolgte die Verpressung des Pulvers zu einem Grünling, welcher gesintert, wärmebehandelt und magnetisiert wurde. Die Zusammensetzung und die gemessenen magnetischen Werte der Permanentmagnetkörper ( Vergleichsmagnete) sind unter der Bezeichnung A bis F in Tabelle 1 angegeben.
- Unter den Nummern 1 bis 14 in der Tabelle 2 werden erfindungsgemäße Permanentmagnete(-werkstoffe) angeführt. Die analytischen Bestimmungen erfolgten durch Transmissions-Elektronen-Mikroskopie ( TEM). Der SSE- Gehalt in der magnetischen Phase im Durchschnitt wurde dabei durch Mittelwertbildung aus Punkt- und Bereichsmessungen über den Kornquerschnitt festgestellt.
- Bei den erfindungsgemäßen Permanentmagneten wird durch den Co-Gehalt der Curie-Punkt und die magnetische Feldstärke bzw. die Magnetisierung erhöht und infolge der weiteren Maßnahmen , wie sich erwiesen hat, die Koerzitivkraft bzw. Induktion auf hohen Werten gehalten, was synergetisch ein erhöhtes Energieprodukt bewirkt. Bei üblichen Magneten, weitgehend ohne Co- Gehalt, werden hohe Koerzitivkräfte beiniedrigen Curie-Temperaturen und bei hohem Co-Gehalt hohe Magnetisierung bei hohen Curie- Temperaturen erreicht. Das magnetische Energieprodukt ist jedoch in beiden Fällen relativ niedrig.
Claims (20)
- Gesinterter Permanentmagnet(-werkstoff) im wesentlichen bestehend aus einer magnetischen Phase vom Typ SE₂(Fe,Co)₁₄B und mindestens einer weiteren sinteraktiven bzw. kornverbindenden Phase, dadurch gekennzeichnet, daß die magnetische Phase aus oberflächengeglätteten bzw.in ihrer Oberflächenenergie verringert bzw. minimiert diffusionseingeformten Körnern mit einem Durchmesser von höchstens 60 um, vorzugsweise höchstens 45 µm, insbesondere 3 bis 30 µm, gebildet ist, die magnetische Phase bzw. die aus dieser Phase gebildeten Körner Co mit einer Konzentration von 3 bis 25 At.-%, vorzugsweise 6 bis 20 At.-%, insbesondere 8 bis 14 At.-% und Seltene Erden ( SE) mit Anteilen an leichten Seltenen Erden ( LSE) und schweren Seltenen Erden ( SSE) aufweist bzw. aufweisen, wobei der Durchschnittsgehalt an SSE gleich 0,05 bis 0,2, vorzugsweise 0,06 bis 0,15, insbesondere etwa 0,1, multipliziert mit dem Konzentrationswert von Co beträgt und die örtliche Konzentration an SSE- Atomen über den Querschnitt der Körner inhomogen, insbesondere im korngrenzennahen Bereich bzw. in Richtung zur Korngrenze hin ansteigend, vorzugsweise überproportional ansteigend, ist und die sinteraktive(n) bzw. kornverbindene(n) Phase(n), welche gegebenenfalls Einlagerungen von Metallen und/oder Verbindungen beinhaltet(en), gegenüber der magnetischen Phase bzw. den Körnern einen höheren Gehalt an SSE und/oder eine höhere Aktivität der SSE bei Diffusionstemperatur aufweist ( aufweisen).
- Permanentmagnet(-werkstoff) nach Anspruch 1, dadurch gekennzeichnet, daß der SSE- Gehalt der magnetischen Phase zumindest teilweise durch in die Körner eindiffundierten SSE- Atome gebildet wird.
- Permanentmagnet(-werkstoff) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Konzentration an SSE-Atomen an den bzw. im Bereich der Korngrenzen einen Wert aufweist, der mindestens das 3-fache, vorzugsweise mindestens das 4,5-fache, insbesondere mindestens das 6-fache des Wertes im Korninneren beträgt.
- Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Bereich mit hoher Konzentration von SSE- Atomen an den Korngrenzen eine Stärke von 0,05 bis 1 µm, vorzugsweise 0,09 bis 0,9 µm, insbesondere von 0,2 bis 0,4 µm, aufweist.
- Permanentmagnet(-werkstoff) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die gegebenenfalls Einlagerungen aufweisende sinteraktive(n) bzw. kornverbindende(n) Phase(n) gegenüber der magnetischen Phase im Durchschnitt einen um mindestens 25 % , vorzugsweise um mindestens 35 %, insbesondere um mindestens 80 %, größeren SE-Konzentrationswert und einen um mindestens 90 %, vorzugsweise 140 %, insbesondere mindestens 190 %, größeren SSE-Konzentrationswert aufweist (en).
- Verfahren zur Herstellung von Seltene Erden (SE) enthaltenden Permanentmagnet(en)(-werkstoff(en), wobei zumindest der die magnetische Phase vom Typ SE₂(FeCo)₁₄B bildende oder enthaltende Bestandteil schmelzmetallurgisch hergestellt und danach pulverisiert wird, worauf das Pulver mit Zusätzen im Magnetfeld verpreßt und anschließend unter Bildung eines magnetisierbaren Rohkörpers gesintert und gegebenenfalls wärmebehandelt wird, dadurch gekennzeichnet, daß der die magnetische Phase bildende oder enthaltende Bestandteil durch Schmelzen und Gießen einer Legierung, enthaltend in At.-% 8 bis 30 Seltende Erden (SE), 2 bis 28 B, Rest Fe sowie Co, gegebenenfalls weitere Legierungselemente und Verunreinigungen, in welcher Co mit einer Konzentration von 3 bis 25 At.-%, vorzugsweise 6 bis 20 At.-%, insbesondere 8 bis 14 At.-%, eingestellt und der SE-Anteil aus leichten Seltenen Erden ( LSE) und schweren Seltenen Erden ( SSE) gebildet wird, hergestellt und zu Pulver mit einer Korngröße von kleiner als 60 µm, vorzugsweise kleiner als 45 µm, insbesondere 3 bis 30 µm, zerkleinert wird, in welches Pulver ein oder mehrere schwere Seltene Erden (SSE) enthaltende Zusätze eingebracht und homogen verteilt werden, worauf das Gemisch im Magnetfeld zu einem Grünling verpreßt, dieser gesintert und der Sinterkörper einer Diffusionsbehandlung bzw.- glühung und nachfolgend gegebenenfalls einer oder mehreren weiteren Wärmebehandlung(en) unterworfen wird.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der SSE-Teil vom SE-Anteil der Legierung in Abhängigkeit von der Co-Konzentration eingestellt wird.
- Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß in der Legierung ein SSE-Gehalt mit einem Wert in At.-% von 0,02 bis 0,19, vorzugsweise von 0,06 bis 0,12, insbesondere etwa 0,08, multipliziert mit dem Konzentrationswert von Co eingestellt wird.
- Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß in das die magnetische Phase enthaltende oder bildende Pulver ein pulverförmiger Zusatz oder pulverförmige Zusätze mit einer Korngröße von kleiner als 5 µm, vorzugsweise kleiner als 1 µm, insbesondere kleiner als 0,5 µm, eingebracht und homogen verteilt wird (werden).
- Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichent, daß der (die) pulverförmige(n) Zusatz ( Zusätze) mit einer Korngröße, welche kleiner als 15 % , vorzugsweise kleiner als 9 %, insbesondere kleiner als 2 %, der Korngröße des die magnetische Phase enthaltenden oder bildenden Pulvers ist, in dieses eingebracht wird bzw. werden.
- Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß in das die magnetische Phase enthaltende oder bildende Pulver ein Zusatz ( Zusätze) in zumindest teilweise flüssiger Form, vorzugsweise chemisch, insbesondere metallorganische Verbindungen, welche bei Erhitzen Oxide und/oder Nitride und/oder Karbide bilden, eingebracht und homogen verteilt wird ( werden).
- Verfahren nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß die homogene Verteilung des (der) Zusatzes (Zusätze) zum Pulver durch ein Mahlverfahren erfolgt.
- Verfahren nach einem der Ansprüche 6 bis 12, dadurch gekennzeichnet, daß als Zusatz ( Zusätze) Stoff(e) mit einer gegenüber den Pulverkörnern um mindestens 25 %, vorzugsweise um mindestens 35 %, insbesondere um mindestens 80 %, größeren SE-Konzentration und einer um mindestens 100 %, vorzugsweise 150 %, insbesondere 200 %, größeren SSE- Konzentration verwendet wird (werden).
- Verfahren nach einem der Ansprüche 6 bis 13, dadurch gekennzeichnet, daß der durch Sintern des Grünlings hergestellte Sinterkörper diffusionsbehandelt bzw. -geglüht wird und daß SSE-Atome aus dem bzw. der den (die) Zusatz (Zusätze) enthaltenden und/oder von diesem(n) gebildeten sinteraktiven bzw. kornverhindernden Mittel bzw. Phase in den Oberflächenbereich der die magnetische Phase bildenden oder enthaltenden Körner eindiffundieren gelassen wird.
- Verfahren nach einem der Ansprüche 6 bis 14, dadurch gekennzeichnet, daß in den die magnetische Phase bildenden oder enthaltenden Körnern eine inhomogene, insbesondere eine in Richtung zur Korngrenze hin steigende, Konzentration vn SSE- Atomen ausgebildet wird.
- Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, daß die Diffusionsbehandlung bzw.- glühung des Sinterkörpers bei einer unter der Sintertemperatur liegenden Temperatur von 600 bis 1100°C, vorzugsweise 800 bis 1050°C, insbesondere 900 bis 1000°C, durchgeführt wird.
- Verfahren nach einem der Ansprüche 6 bis 15, dadurch gekennzeichnet, daß die Diffusionsbehandlung bzw.- glühung mit einer Zeitdauer von 1 bis 12 Stunden, vorzugsweise von 2 bis 8 Stunden, insbesondere von 3 bis 5 Stunden, durchgeführt wird, wobei beiniedrigen Behandlungstemperaturen deren Zeitdauer verlängert wird.
- Verfahren nach einem der Ansprüche 6 bis 17, dadurch gekennzeichnet, daß der durch Sintern des Grünlings hergestellte Sinterkörper diffusionsbehandelt bzw.- geglüht wird und daß die die magnetische Phase bildenden oder enthaltenden Körner oberflächengeglättet bzw. in ihrer Oberflächenenergie verringert bzw. minimiert diffusionseingeformt werden.
- Verwendung eines Verfahrens gemäß einem der Ansprüche 6 bis 18 zur Anreicherung von SSE- Atomen im Bereich der Korngrenzen von die magnetische Phase enthaltenden oder bildenden Körnern.
- Verwendung eines Verfahrens gemäß einem der Ansprüche 6 bis 18, zur Herstellung eines gesinterten Permanentmagneten(-werkstoffes) gemäß den Ansprüchen 1 bis 5 mit hohem Energieprodukt und hoher Curie-Temperatur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0028791A AT398861B (de) | 1991-02-11 | 1991-02-11 | Gesinterter permanentmagnet(-werkstoff) sowie verfahren zu dessen herstellung |
AT287/91 | 1991-02-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0499600A1 true EP0499600A1 (de) | 1992-08-19 |
EP0499600B1 EP0499600B1 (de) | 1994-11-23 |
Family
ID=3486534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92890030A Expired - Lifetime EP0499600B1 (de) | 1991-02-11 | 1992-02-10 | Gesinterter Permanentmagnet(-werkstoff) sowie Verfahren zu dessen Herstellung |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0499600B1 (de) |
AT (2) | AT398861B (de) |
CZ (1) | CZ281161B6 (de) |
DE (1) | DE59200795D1 (de) |
HU (1) | HU213284B (de) |
PL (1) | PL169844B1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4331563A1 (de) * | 1992-09-18 | 1994-03-24 | Hitachi Metals Ltd | Nd-Fe-B-Sintermagnete |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0265006A1 (de) * | 1986-10-13 | 1988-04-27 | Koninklijke Philips Electronics N.V. | Verfahren zur Herstellung eines Dauermagneten |
EP0126802B1 (de) * | 1983-05-25 | 1988-12-14 | Sumitomo Special Metals Co., Ltd. | Verfahren zur Herstellung eines Permanentmagneten |
EP0344542A2 (de) * | 1988-06-03 | 1989-12-06 | Masato Sagawa | Gesinterter Nd-Fe-B-Magnet und sein Herstellungsverfahren |
EP0389626A1 (de) * | 1988-06-03 | 1990-10-03 | Mitsubishi Materials Corporation | Gesinterter seltenerdelement-b-fe-magnet und verfahren zur herstellung |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1316375C (en) * | 1982-08-21 | 1993-04-20 | Masato Sagawa | Magnetic materials and permanent magnets |
AT393177B (de) * | 1989-04-28 | 1991-08-26 | Boehler Gmbh | Permanentmagnet(-werkstoff) sowie verfahren zur herstellung desselben |
-
1991
- 1991-02-11 AT AT0028791A patent/AT398861B/de not_active IP Right Cessation
-
1992
- 1992-02-10 EP EP92890030A patent/EP0499600B1/de not_active Expired - Lifetime
- 1992-02-10 CZ CS92392A patent/CZ281161B6/cs unknown
- 1992-02-10 PL PL92293427A patent/PL169844B1/pl unknown
- 1992-02-10 DE DE59200795T patent/DE59200795D1/de not_active Expired - Fee Related
- 1992-02-10 HU HU9200403A patent/HU213284B/hu not_active IP Right Cessation
- 1992-02-10 AT AT92890030T patent/ATE114383T1/de not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0126802B1 (de) * | 1983-05-25 | 1988-12-14 | Sumitomo Special Metals Co., Ltd. | Verfahren zur Herstellung eines Permanentmagneten |
EP0265006A1 (de) * | 1986-10-13 | 1988-04-27 | Koninklijke Philips Electronics N.V. | Verfahren zur Herstellung eines Dauermagneten |
EP0344542A2 (de) * | 1988-06-03 | 1989-12-06 | Masato Sagawa | Gesinterter Nd-Fe-B-Magnet und sein Herstellungsverfahren |
EP0389626A1 (de) * | 1988-06-03 | 1990-10-03 | Mitsubishi Materials Corporation | Gesinterter seltenerdelement-b-fe-magnet und verfahren zur herstellung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4331563A1 (de) * | 1992-09-18 | 1994-03-24 | Hitachi Metals Ltd | Nd-Fe-B-Sintermagnete |
Also Published As
Publication number | Publication date |
---|---|
CZ39292A3 (en) | 1993-12-15 |
HU213284B (en) | 1997-04-28 |
CZ281161B6 (cs) | 1996-07-17 |
PL169844B1 (pl) | 1996-09-30 |
PL293427A1 (en) | 1992-10-19 |
ATE114383T1 (de) | 1994-12-15 |
ATA28791A (de) | 1994-06-15 |
AT398861B (de) | 1995-02-27 |
HU9200403D0 (en) | 1992-04-28 |
HUT64108A (en) | 1993-11-29 |
DE59200795D1 (de) | 1995-01-05 |
EP0499600B1 (de) | 1994-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602004009979T2 (de) | R-T-B-Seltenerd-Permanentmagnet | |
DE60221448T2 (de) | Seltenerdlegierungs Sinterformteil | |
DE69720206T2 (de) | Verbundmagnet mit niedrigen Verlusten und leichter Sättigung | |
DE60309120T2 (de) | Gesinterter R-Fe-B Magnet | |
DE69911138T2 (de) | Gesinterter R-T-B-Dauermagnet | |
DE3780876T2 (de) | Dauermagnet auf der basis der seltenen erden. | |
DE3783413T2 (de) | Verfahren zur herstellung eines seltenerd-eisen-bor-dauermagneten mit hilfe eines abgeschreckten legierungspuders. | |
DE68916184T2 (de) | Magnetische Stoffe, enthaltend Seltenerdelemente, Eisen, Stickstoff und Wasserstoff. | |
DE19626049C2 (de) | Magnetwerkstoff und Verbundmagnet | |
DE102014118984B4 (de) | Seltenerdbasierter Magnet | |
DE60319339T2 (de) | Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis | |
DE102017115791B4 (de) | R-T-B-basierter Seltenerdpermanentmagnet | |
DE3887429T2 (de) | Korrosionswiderstandsfähiger Seltenerdmetallmagnet. | |
DE102014119040B4 (de) | Seltenerdbasierter Magnet | |
DE4402783B4 (de) | Nd-Fe-B-System-Dauermagnet | |
DE60317767T2 (de) | R-t-b-seltenerd-permanentmagnet | |
DE112016002876T5 (de) | R-T-B basierter Sintermagnet und Verfahren zu seiner Herstellung | |
DE9018099U1 (de) | Dauermagnet mit verbessertem Korrosionswiderstand | |
DE4408114B4 (de) | Magnetisches Material | |
DE102014119055B4 (de) | Seltenerdbasierter Magnet | |
DE60031914T2 (de) | Magnetpulver und isotroper Verbundmagnet | |
DE69400618T2 (de) | Verfahren zum Schutz von Magnetpudern und verdichte Dauermagneten, Typ Nd-Fe-B, gegen Oxydation und atmospherische Korrosion | |
DE3884817T2 (de) | Magnetisch anisotrope sintermagnete. | |
DE102014110004A1 (de) | Auf seltenen Erden basierender Magnet | |
AT393177B (de) | Permanentmagnet(-werkstoff) sowie verfahren zur herstellung desselben |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920226 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19930728 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19941123 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19941123 Ref country code: DK Effective date: 19941123 Ref country code: BE Effective date: 19941123 |
|
REF | Corresponds to: |
Ref document number: 114383 Country of ref document: AT Date of ref document: 19941215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59200795 Country of ref document: DE Date of ref document: 19950105 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950126 Year of fee payment: 4 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 92890030.7 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950228 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950901 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950901 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960211 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: BOEHLER YBBSTALWERKE G.M.B.H. TRANSFER- VACUUMSCHM |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19980210 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990210 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020530 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050125 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050210 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050216 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060210 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060210 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20061031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070328 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |