EP0498020B1 - Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel - Google Patents

Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel Download PDF

Info

Publication number
EP0498020B1
EP0498020B1 EP19910101801 EP91101801A EP0498020B1 EP 0498020 B1 EP0498020 B1 EP 0498020B1 EP 19910101801 EP19910101801 EP 19910101801 EP 91101801 A EP91101801 A EP 91101801A EP 0498020 B1 EP0498020 B1 EP 0498020B1
Authority
EP
European Patent Office
Prior art keywords
gas
exhaust gas
electrostatic precipitator
dust
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910101801
Other languages
English (en)
French (fr)
Other versions
EP0498020A1 (de
Inventor
Masami c/o Electric Power Res. & Dev. Center Kato
Tadashi c/o Elec. Power Res.& Dev. Center Tanaka
Yasuki c/o Elec. Power Res.& Dev.Center Nishimura
Katsutoshi c/o Kobe Shipyard & Engine Works Yata
Masahiko c/o Kobe Shipyard & Engine Works Nakao
Takeshi c/o Mitsubishi Jukogyo K.K. Sakai
Tsuyoshi c/o Mitsubishi Jukogyo K.K. Ohishi
Tsuneo c/o Mihara Machinery Works Higashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Chubu Electric Power Co Inc
Priority to DK91101801T priority Critical patent/DK0498020T3/da
Publication of EP0498020A1 publication Critical patent/EP0498020A1/de
Application granted granted Critical
Publication of EP0498020B1 publication Critical patent/EP0498020B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/019Post-treatment of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2217/00Intercepting solids
    • F23J2217/10Intercepting solids by filters
    • F23J2217/102Intercepting solids by filters electrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds

Definitions

  • the present invention relates to a handling method and system for removing dust and SOx from exhaust gas in a coal-fired boiler.
  • Figs. 4 and 5 are block diagrams of conventional systems for removing dust and SOx from exhaust gas in a coal-fired boiler.
  • a system includes a coal-fired boiler 1.
  • the temperature of exhaust gas from the boiler 1 is reduced to 120 to 160°C in an air preheater 2.
  • Dust is removed from the exhaust gas in a dry electrostatic precipitator 4 until its concentration is reduced to about 100 mg/m 3 N or slightly higher.
  • Heat recovery is effected in a regeneration-type gas-gas heater 7.
  • the temperature of the exhaust gas is reduced to its saturation temperature in a cooling/dust removing section 6a of a wet desulfurization unit 6, and dust is further removed from the exhaust gas.
  • the concentration of SOx is also reduced in a SOx absorbing section 6b.
  • the exhaust gas is reheated in the gas-gas heater 7 and then, directed to a chimney.
  • a system adapted to reduce the concentration of dust to for example, 10 mg/m 3 N includes a leak-free type gas-gas heater wherein heat exchange is effected through a heating medium.
  • the system is different from the system of Fig. 4 in that a heat recovery section 3a is separated from a reheater section 3b, and a wet electrostatic precipitator 8 is located downstream of the purifier 6.
  • this system suffers from the problems (1) and (3).
  • a more critical problem of this system is that the wet electrostatic precipitator 8 consumes larger space and results in an increase in the production cost of the system.
  • a prior art method and apparatus for heat recovery from hot exhaust gases from a boiler fired with sulfur-containing fuel is disclosed in FR-2 550 610 A1.
  • the exhaust gas from the boiler is directed through an air preheater, a heat exchanger, a particulate precipitator, a heat recovery unit and a desulfurization unit.
  • the heat exchanger for exchanging heat of the exhaust gas with a fresh air stream supplied to the boiler and a heat exchanger for exchanging heat with boiler water is arranged upstream the electrostatic precipitator as heat recovery units.
  • the exhaust gas before entering the dry electrostatic precipitator for dust removal is cooled down to 140° - 175°C in case a regular precipitator, and not one that is resistant against the sulfuric acid, is employed. By setting the gas temperature to a value above 140°C as the condensation temperature of sulfuric acid, the attack of the precipitator and of the preceeding preheater and heat recovery devices is avoided.
  • a method for cleaning exhaust gases from a sintering machine of an ion manufacturing plant is described in AU-B 500 466.
  • This document states that the cleaning of exhaust gas having a temperature of 120° - 180°C is extremely difficult with an electrostatic precipitator and proposes a method in which the gas should be at a temperature of around 110°C and at a dew point of 50°C before entry into the precipitator to thereby reduce the electric resistance of the dust and to allow to use a smaller precipitator for a given throughput.
  • exhaust gases from a sintering plant considerably vary in temperature and particulate composition from exhaust gases at issue in the present invention.
  • a method for handling exhaust gas in a coal-fired boiler comprises the steps of: cooling the exhaust gas from the coal-fired boiler to a temperature of between 80 and 110°C by directing the exhaust gas through an air preheater of the boiler and a heat recovery section of a leak free type gas-gas heater; subsequently reducing the concentration of dust in the exhaust gas to 100 mg/m 3 N by directing the gas through a dry electrostatic precipitator; subsequently reducing SO x in the exhaust gas by passing the exhaust gas through a desulfurization unit; and subsequently heating the exhaust gas and lowering concentration of dust in the exhaust gas to 10 mg/m 3 N or lower by passing the exhaust gas through a reheating section of the gas-gas heater, said gas-gas heater being of the type using a heating medium flowing in a heating medium line.
  • a system for handling exhaust gas in a coal-fired boiler comprising: an air preheater of the boiler, a leak free type of a gas-gas heater having a heat recovery section and a reheating section through which heating medium is circulated, a dry electrostatic precipitator, and a desulfurization unit all disposed in a gas flue of the boiler, said air preheater being disposed at an upstream location in the gas flue so as to reduce the temperature of the exhaust gas to a predetermined temperature, the heat recovery section of said gas-gas heater being disposed downstream of said air preheater in the gas flue so as to further reduce the temperature of the exhaust gas, said dry electrostatic precipitator being disposed downstream of said heat recovery section in the gas flue so as to reduce the concentration of dust in the exhaust gas to a predetermined level, said desulfurization unit being disposed downstream of said dry electrostatic precipitator in the gas flue so as to reduce the concentration of SO x in the exhaust gas and further reduce
  • the heat recovery unit is located upstream of the dry electrostatic precipitator so as to reduce the temperature of exhaust gas to 80 to 110°C at the inlet of the electrostatic precipitator. This results in a corresponding decrease in the specific resistance of dust and thus, prevents reverse ionization in the electrostatic precipitator and improves the performance of the dry electrostatic precipitator.
  • the heat recovery unit does not suffer from corrosion due to SO 3 if the concentration of dust is reduced to 100 mg/m 3 N in the electrostatic precipitator, because the heat recovery unit is not located downstream of the dry electrostatic precipitator. Since the dry electrostatic precipitator is able to substantially reduce the concentration of dust, the desulfurization unit does not require a separate cooling/dust removing section and can be of the single-tower type. Also, a wet electrostatic precipitator is unnecessary.
  • Fig. 1 is a block diagram of a system according to one embodiment of the present invention.
  • Fig. 2 is a vertical sectional view schematically showing a dry electrostatic precipitator.
  • Fig. 3 is a graph showing the flow rate of exhaust gas under control of the electrostatic precipitator shown in Fig. 2.
  • a system which includes a coal-fired boiler 1.
  • Exhaust gas from the boiler 1 includes SOx and dust.
  • the temperature of the exhaust gas is reduced to 120 to 160°C in an air preheater 2.
  • a gas-gas heater 3a is of the leak-free type and uses a heating medium.
  • the gas-gas heater 3a includes a heat recovery section 3a in which the temperature of the exhaust gas is further reduced to 80 to 110°C.
  • the concentration of dust is reduced to 100 mg/m 3 N in a dry electrostatic precipitator 4. Further removal of dust from the exhaust gas is effected in a desulfurization unit 5.
  • the desulfurization unit 5 is of the single-tower type and employs lime - gypsum method and said unit 5 reduces the concentration of SOx to a predetermined level.
  • the exhaust gas as cooled to a saturation temperature is then reheated in a reheater section 3b of the gas-gas heater of the leak-free type and is directed to a chimney.
  • a denitrification unit or a gas fan which may be located between the boiler 1 and the air heater 2 and a heating medium line of the gas-gas heater are not shown in Fig. 1.
  • the heat recovery section 3a of the gas-gas heater is located upstream of the dry electrostatic precipitator 4 so as to reduce the temperature of the exhaust gas to 80 to 110°C as compared to 120 to 160°C in the conventional systems. In this way, the specific resistance of dust, regardless of types of coals, is reduced to 10 11 ⁇ -cm where no reverse ionization occurs. This provides an improved charging condition of the dry electrostatic precipitator and ensures high performance of the same.
  • the dry electrostatic precipitator can thus be made compact.
  • the concentration of dust at the inlet of the heat recovery section 3a of the gas-gas heater is the same as that at the outlet of the air preheater 2 (usually 10 - 20 g/m 3 N) and sufficient to fully prevent corrosion of the former due to the presence of SO 3 .
  • the gas-gas heater is of the leak-free type, and therefore, no leakage of dust takes place at the inlet of the chimney.
  • the concentration of dust at the outlet of the dry electrostatic precipitator 4 is sufficiently reduced below 100 mg/m 3 N. Accordingly, the purity of the gypsum as collected can be maintained at a predetermined level when a single-tower type desulfurization unit is used.
  • the concentration of dust at the outlet of the desulfurization unit is reduced below a predetermined level by the dry electrostatic precipitator provided at the upstream side with respect to the desulfurization unit. This eliminates the need for a wet electrostatic precipitator.
  • the specific resistance of dust arising from burning of several kinds of coals is measured.
  • Fig. 6 shows the results of measurement of three typical kinds of coals.
  • the specific resistance of dust is 10 11 ⁇ -cm or higher in the prior art systems.
  • the temperature of the exhaust gas is reduced to 90 to 100°C to ensure that the specific resistance of the dust is below 10 11 ⁇ -cm.
  • the dry electrostatic precipitator no longer suffers from reverse ionization. This ensures constant charging.
  • Fig. 7 is a graph showing the temperature of exhaust gas vs. the rate of dust collectable by the dry electrostatic precipitator. Dust is effectively attracted to'collector elements in the electrostatic precipitator as shown by the line A in Fig. 7 since charging conditions have been improved as stated earlier.
  • the exhaust gas is saturated at a temperature of 110°C or lower. However, the dust are again dispersed due to hammering, etc. This results in a rapid increase in the dust discharged from the electrostatic precipitator. In fact, the rate of dust collection is reduced as shown by the line B in Fig. 7. Dust dispersed from the collector elements is shown by a shaded area C in Fig. 7.
  • FIG. 2 11 is a body of the dry electrostatic precipitator. 12 is an inlet duct. 13 is an outlet duct. 14 are partitions by which a gas passage within the electrostatic precipitator body 11 is divided into a plurality of parallel passages (eight passages in Fig. 2). 15 and 16 are inlet and outlet dampers provided for the respective passages.
  • Fig. 8 shows the concentration of dust at the outlet of the electrostatic precipitator vs. time after hammering has been effected without charge. It has been found that the amount of dust dispersed is kept low for a period of two to three hours after hammering has been effected. With the arrangement shown in Fig. 2, hammering is carried out for about fifteen minutes without charge while the eight gas passages are subsequently closed by the respective dampers. In this way, the hammering can be repeated every two hours so as to prevent an increase in the dispersion of dust.
  • Fig. 9 shows the flow speed of exhaust gas vs. the concentration of dust or the amount of dust dispersed as a result of hammering. From Fig. 9, it is clear that dust is rapidly and substantially dispersed when the flow speed of the exhaust gas is below 0.5 m/s. This means that the electrostatic precipitator is less effective when the boiler is operated under low load. To this end, the number of the passages closed by the dampers in the electrostatic precipitator is changed in response to the flow of the exhaust gas so as to control the flow speed of the exhaust gas flowing therethrough.
  • Fig. 10 shows dust collection characteristics of the desulfurization unit. It has been found that the desulfurization unit of this embodiment provides a substantial improvement in dust collection over the prior art desulfurization unit. In the illustrated embodiment, the ratio of dust dispersed as a result of hammering is relatively high in the outlet duct of the dry electrostatic precipitator, and this dust is largely agglomerated. This results in a further advantage of the system which effectively and efficiently removes dust without the need for a wet electrostatic precipitator.
  • the wet desulfurization unit can use method other than the lime-gypsum method.
  • a wet electrostatic precipitator of a small capacity may be provided downstream of the desulfurization unit.
  • the present invention provides a method and system for handling exhaust gas in a coal-fired boiler which consumes less space and is economical to manufacture. Advantages of the present invention are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Separation (AREA)
  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Claims (3)

  1. Verfahren zum Behandeln von Abgas in einem kohlebefeuerten Heizkessel, welches Verfahren folgende Schritte umfaßt:
    Kühlen des Abgases vom kohlebefeuerten Heizkessel (1) auf eine Temperatur zwischen 80° und 110°C durch Leiten des Abgases durch einen Luftvorwärmer (2) des Heizkessels (1) und eine Wärmerückgewinnungssektion (3a) eines leckfreien Gas-Gasheizers,
    anschließendes Verringern der Konzentration an Staub im Abgas auf 100 mg/m3N durch Leiten des Gases durch einen elektrostatischen Trocken-Ausfällapparat (4),
    danach erfolgendes Reduzieren von SOx im Abgas durch Führen des Abgases durch eine Entschwefelungseinheit (5) und
    anschließendes Erwärmen des Abgases und Verringern seiner Staubkonzentration auf 10 mg/m3N oder weniger durch Führen des Abgases durch eine Nachwärmsektion (3b) des Gas-Gasheizers, der von dem ein in einer Heizmediumleitung strömendes Heizmedium verwendenden Typ ist.
  2. Anlage zum Behandeln von Abgas in einem kohlebefeuerten Heizkessel (1), umfassend:
    einen Luftvorwärmer (2) des Heizkessels (1), einen leckfreien Gas-Gasheizer mit einer Wärmerückgewinnungssektion (3a) und einer Nachwärmsektion (3b), durch welche Heizmedium umgewälzt wird, einen elektrostatischen Trocken-Ausfällapparat (4) und eine Entschwefelungseinheit (5), die sämtlich in einem Gaszug des Heizkessels (1) angeordnet sind, wobei der Luftvorwärmer (2) an einer stromaufseitigen bzw. vorgeschalteten Stelle im Gaszug angeordnet ist, um die Temperatur des Abgases auf eine vorbestimmte Temperatur zu senken, die Wärmerückgewinnungssektion (3a) des Gas-Gasheizers dem Luftvorwärmer (2) im Gaszug nachgeschaltet ist, um die Temperatur des Abgases weiter zu senken, der elektrostatische Trocken-Ausfällapparat (4) der Wärmerückgewinnungssektion (3a) im Gaszug nachgeschaltet ist, um die Staubkonzentration im Abgas auf eine vorbestimmte Größe zu verringern, die Entschwefelungseinheit (5) dem elektrostatischen Trocken-Ausfällapparat (4) im Gaszug nachgeschaltet ist, um die SOx-Konzentration im Abgas zu reduzieren und seine Temperatur sowie die Staubkonzentration darin weiter zu verringern, und die Nachwärmsektion (3b) des Gas-Gasheizers der Entschwefelungseinheit (5) im Gaszug nachgeschaltet ist, um das in der Entschwefelungseinheit (5) entschwefelte Abgas wieder zu erwärmen.
  3. Anlage zum Behandeln von Abgas in einem kohlebefeuerten Heizkessel nach Anspruch 2, wobei der elektrostatische Trocken-Ausfällapparat (4) eine Anzahl von ihn durchsetzenden Gasdurchgängen festlegt bzw. aufweist, die sowohl mit der Wärmerückgewinnungssektion (3a) des Gas-Gasheizers als auch mit der Entschwefelungseinheit (5) in Verbindung stehen, und der elektrostatische Trocken-Ausfällapparat (4) eine Anzahl von in den Gasdurchgängen angeordneten Klappen (oder Schiebern) (15, 16) aufweist, die selektiv geöffnet und geschlossen werden können, um die Strömungsgeschwindigkeit des Abgases durch den elektrostatischen Trocken-Ausfällapparat (4) zu regeln.
EP19910101801 1989-08-09 1991-02-08 Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel Expired - Lifetime EP0498020B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK91101801T DK0498020T3 (da) 1989-08-09 1991-02-08 Fremgangsmåde og system til behandling af udstødsgas i en kedel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204591A JPH0756377B2 (ja) 1989-08-09 1989-08-09 ボイラ排ガスの処理方法および装置

Publications (2)

Publication Number Publication Date
EP0498020A1 EP0498020A1 (de) 1992-08-12
EP0498020B1 true EP0498020B1 (de) 1996-07-17

Family

ID=16493004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910101801 Expired - Lifetime EP0498020B1 (de) 1989-08-09 1991-02-08 Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel

Country Status (5)

Country Link
EP (1) EP0498020B1 (de)
JP (1) JPH0756377B2 (de)
CA (1) CA2036018C (de)
DE (1) DE69120927T2 (de)
DK (1) DK0498020T3 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306228A1 (de) * 1993-02-27 1994-09-01 Abb Patent Gmbh Rauchgasfilteranordnung für Stäube und gasförmige Schadstoffe
JP3216743B2 (ja) * 1993-04-22 2001-10-09 富士電機株式会社 トランジスタ用保護ダイオード
JP2826560B2 (ja) * 1996-06-03 1998-11-18 バブコック日立株式会社 排煙処理方法
JP3611272B2 (ja) 1997-12-19 2005-01-19 三菱重工業株式会社 回転再生式熱交換器
JP3546132B2 (ja) * 1997-12-22 2004-07-21 三菱重工業株式会社 排煙処理方法
US6710295B1 (en) 2000-06-15 2004-03-23 Hitachi Global Storage Technologies Netherlands, B.V. Slider curvature modification by substrate melting effect produced with a pulsed laser beam
JP2011094962A (ja) * 2004-11-29 2011-05-12 Mitsubishi Heavy Ind Ltd 熱回収設備
JP2006295062A (ja) 2005-04-14 2006-10-26 Rohm Co Ltd 半導体装置
JP5209952B2 (ja) * 2007-12-19 2013-06-12 三菱重工メカトロシステムズ株式会社 高ダスト排ガス熱回収処理装置
JP5281858B2 (ja) * 2008-09-22 2013-09-04 バブコック日立株式会社 排ガス処理装置
EP2354651B1 (de) 2010-01-18 2014-07-23 Alstom Technology Ltd System zur kombinierten Abgaswärmerückgewinnung und Staubabscheidung als Umrüstungslösung für existierende Kohlekraftwerke
KR101599712B1 (ko) 2012-03-14 2016-03-04 가부시키가이샤 아이에이치아이 산소 연소 보일러 시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521144B2 (de) * 1974-05-15 1977-01-12
US3988127A (en) * 1975-05-07 1976-10-26 John Louis Schumann Electrostatic precipitator apparatus and method
DE2520957C3 (de) * 1975-05-10 1978-08-31 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum Entfernen von staub- und gasförmigen Schadstoffen aus Starterabgas
JPS521144A (en) * 1975-06-20 1977-01-06 Toshiba Machine Co Ltd Cut wire detector for wire twister
DE2724372C2 (de) * 1977-05-28 1986-02-13 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum Konditionieren von Bypaßgasen
AU500466B2 (en) * 1977-08-01 1979-05-24 Metallgesellschaft Ag Cleaning gases from sintering plants
JPS5792614A (en) * 1980-12-02 1982-06-09 Mitsui Eng & Shipbuild Co Ltd Equipment for disposal of waste gas
JPS58120020A (ja) * 1982-01-13 1983-07-16 Mitsubishi Heavy Ind Ltd 排煙処理方法
US4559211A (en) * 1983-08-05 1985-12-17 Research-Cottrell, Inc. Method for reduced temperature operation of flue gas collectors
US4582122A (en) * 1983-08-10 1986-04-15 Linde Aktiengesellschaft Efficient waste heat recovery process from sulfur containing flue gas
JPS60227844A (ja) * 1984-04-27 1985-11-13 Mitsubishi Heavy Ind Ltd 排煙処理設備
JPS61111125A (ja) * 1984-11-02 1986-05-29 Mitsubishi Heavy Ind Ltd 排煙処理法
FR2572952B1 (fr) * 1984-11-14 1987-02-06 Kaiser Victor Procede et installation de purification des fumees
DE3604946C2 (de) * 1986-02-17 1987-04-09 Mehdi Haji Dr.-Ing. 7259 Friolzheim Javad Verfahren und Vorrichtung zur Reinigung von Rauchgasen
DE3608690A1 (de) * 1986-03-15 1987-09-17 Rennebeck Klaus Verfahren zum stofftrennen oder abgasreinigen
JP2573589B2 (ja) * 1987-01-09 1997-01-22 バブコツク日立株式会社 排煙処理装置

Also Published As

Publication number Publication date
DE69120927T2 (de) 1996-12-05
JPH0370907A (ja) 1991-03-26
JPH0756377B2 (ja) 1995-06-14
CA2036018A1 (en) 1992-08-09
DE69120927D1 (de) 1996-08-22
EP0498020A1 (de) 1992-08-12
DK0498020T3 (da) 1996-12-16
CA2036018C (en) 1998-06-30

Similar Documents

Publication Publication Date Title
US4919696A (en) Supercooling type mist eliminator apparatus
US7691349B2 (en) Exhaust gas treating method
EP0498020B1 (de) Verfahren und Anlage für die Behandlung von Abgas in einem Heizkessel
US7651389B2 (en) Exhaust smoke-processing system
US4310498A (en) Temperature control for dry SO2 scrubbing system
US5282429A (en) Method and system for handling exhaust gas in a boiler
WO2010132143A2 (en) Regenerative heat exchanger and method of reducing gas leakage therein
CN107013933A (zh) 一种管式空气预热器防低温结露及堵灰的方法及系统
CN206755210U (zh) 燃煤锅炉烟气净化及余热回收处理系统
JPS6084131A (ja) 排煙処理方法及び装置
JP3200608B2 (ja) 排ガス処理方法
CN1039789C (zh) 处理燃煤锅炉废气的方法
KR19980032281A (ko) 회전 재생식 열교환기에 의한 배기 가스 처리 장치
KR950004356B1 (ko) 보일러 배기가스의 처리방법 및 장치
JPS60227845A (ja) 排ガス処理装置
JPS60227844A (ja) 排煙処理設備
JPH1199317A (ja) 排煙処理装置とその運転方法
JPH0638926B2 (ja) 石炭焚ボイラからの排ガス処理方法
KR100621751B1 (ko) 열교환 기능을 구비한 탈황설비의 덕트배치구조
JPH07275647A (ja) 高効率排ガス処理装置と方法
WO1993018833A1 (en) Process and arrangement for vapour enrichment of air
JPS58133845A (ja) 排ガス処理方法
SU1108291A1 (ru) Воздухоподогреватель
JPH0424109B2 (de)
GB2376060A (en) Rotary heat exchanger and a method of desulpherising flue gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK GB IT

17Q First examination report despatched

Effective date: 19930528

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69120927

Country of ref document: DE

Date of ref document: 19960822

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050208

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100219

Year of fee payment: 20

Ref country code: GB

Payment date: 20100202

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69120927

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110208